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ABSTRACT 

 

In this work the authors present an innovative methodology, 

based on proximal hyperspectral sensing and chemometric 

techniques, aimed at detecting asbestos containing soils. 

Short Wave InfraRed (SWIR) reflectance spectra of reference 

samples containing known chrysotile fractions were collected 

in laboratory. Since the identification of asbestos containing 

soils depends on the contaminant mass percentage 

(weight/weight), two supervised multivariate data projection 

methods were evaluated for asbestos concentration 

prediction. The first results are reported here, together with 

advantages and limits of the analytical methods. Orthogonal 

Partial Least Squares (PLS) regression showed the lowest 

error in prediction and the highest coefficient of 

determination in prediction. This technique would support 

screening activities frequently conducted during 

environmental assessment and remediation projects. 

 

Index Terms— Hyperspectral sensing, orthogonal 

partial least squares regression, asbestos, soil contamination 

 

1. INTRODUCTION 
 

Asbestos Containing Soils (ACSs) are frequently found in 

Naturally Occurring Asbestos (NOA) sites, where asbestos 

has been mined and asbestos-containing materials produced, 

installed, or disposed of [1]. ACSs represent a health issue 

because hazardous fibers may be released in air following 

natural or anthropic disturbances. Contamination levels are 

usually measured and compared to guideline values, for 

choosing the type of management (i.e., disposal vs reuse).  

The few standardized methods are based on 

microscopy, that profit of high resolution and sensitivity, but 

require complex procedures [2]. Fourier-Transform InfraRed 

(FTIR) spectroscopy and X-Ray powder diffraction require 

sample preparation too and suffer from high Limits of 

Detection (LOD).  

The collection of SWIR reflectance data with 

hyperspectral sensors and application of chemometric 

treatments has become a reliable method with a broad range 

of applications, including assessment of mineralogical 

composition and pollution levels [3, 4]. When analyzing 

ACSs, the key issues derive from sample complexity (e.g., 

interferents) and instrumental sensitivity/resolution, which in 

turn affect analytical precision and reliability. Often, the LOD 

and the estimated error make the analytical method less 

suitable than the available standard techniques.  

To overcome such issues, the performance of an 

innovative method has been assessed on reference ACSs 

samples and is presented in this work. 

 

2. MATERIALS AND METHODS 

 

Chrysotile fibers extracted in the former Balangero mine 

(Piedmont, Italy) were milled with ethanol and then dried, 

while a sample of topsoil collected in Monte Porzio Catone 

(Latium, Italy) was firstly dried, then hand ground and sieved 

with a 106 µm mesh-size.  

Aliquots were weighed with 0.1 mg resolution and 

mixed thoroughly by hand to make reference soil samples 

with known concentration of chrysotile. Each sample was 

placed on Petri dishes and 25mm-aluminum stubs covered 

with adhesive carbon tabs were pressed on them. Finally, the 

stubs were fixed with plasticine into sealed plastic boxes.  

The obtained reference samples are listed in Table 1. 

 
 



Table 1. Chrysotile concentration of reference samples. 

 

 

   
Chrysotile 

conc. (wt.%) 0 0.1 1 

 

   
Chrysotile 

conc. (wt.%) 3.5 10 100 

 

Reflectance spectroscopy was conducted with a 

portable ASD FieldSpec® 4 Standard-Res, in the SWIR 

region (1000-2500 nm), with a spectral resolution of 10 nm. 

The instrument was connected to a contact probe with 10 mm 

spot. A standard calibration procedure was performed before 

data acquisition. To avoid fibers being released during 

operations, a borate glass disc was placed between the sample 

and the contact probe after opening the plastic box. The 

borate glass was chosen because this material does not 

significantly absorb in the SWIR spectral region [5].  

Twenty spectra were acquired for each sample and 

analyzed in MATLAB® environment (Ver. 9.10.0. R2021a; 

The Mathworks, Inc.) with the PLS_toolbox (ver. 8.9.1; 

Eigenvector Research, Inc.). Splice Correction (SC) was 

firstly applied to all spectra to eliminate the gaps occurring in 

the collected data (typically at 1800 nm).  

The spectral dataset was randomly split into two parts 

by using Kennard-Stone (K-S) algorithm. 70% of the spectra 

was used as training set (calibration and cross-validation), 

while the remaining percentage (30%) was used as test set 

(validation). Venetian blinds (VB) method was used as cross-

validation for choosing the right number of Latent Variables 

(LVs) according to an optimal complexity. 

Then, two Partial Least-Squares (PLS) regression 

methods were tested and compared, both consisting in 

supervised multivariate data projection techniques that are 

commonly used in predictive models. 

The first method is a traditional PLS regression, with 

Standard Normal Variate (SNV) normalization, Savitzky–

Golay (S–G) 2nd derivative (order: 2, window: 33 pt., tails: 

weighted) and Mean Centering (MC) as pre-processing 

algorithms [6, 7, 8, 9]. The second method is the orthogonal 

PLS regression, which instead exploits Orthogonal Signal 

Correction (OSC) as pre-processing [10, 11]. 

Root Mean Square Error in Prediction (RMSEP) and the 

coefficient of determination in prediction (𝑅𝑃
2) were 

compared for evaluating prediction performances, while 

contributes from independent variables were assessed 

through Selectivity Ratio (SR) and Variable Important in 

Projection (VIP) scores [12]. 

3. RESULTS AND DISCUSSION 

 

The raw reflectance spectra averaged according to chrysotile 

content are shown in Figure 1. 

 

 
Figure 1. Average raw reflectance spectra. 

 

The absolute reflectance differences between the 

spectra are caused by minor spacing shifts between the 

samples and the probe. The average soil spectra are typical of 

Al-rich clay soils, with absorptions in the first overtone of ‒

OH stretching (1400 nm), the H2O bending (1900 nm) and 

the Al‒OH combination band (2200 nm)  [13, 14]. Chrysotile 

analytical peak (2330 nm) is easily visible in the 100% 

asbestos sample, and is less and less observable as the 

percentage decreases. This absorption is caused by 

combination of the ‒OH stretch with the Mg‒OH bend and is 

typical of trioctahedral phyllosilicates [13]. 

 

3.1. Partial Least Squares Regression 

 

Spectra pre-processed by SNV, 2nd Derivative and MC are 

showed in Figure 2. The algorithms enhanced wavelengths at 

around 1380, 1880 and 2330 nm for chrysotile and at 1400, 

1900 and 2200 nm for uncontaminated soil. 

 
Figure 2. Pre-processed spectra (SNV, 2nd Derivative, MC) 



The PLSR results and the related  SR and VIP scores are 

reported in Figure 3a, 3b and 3c, respectively. 

 

 
Figure 3. PLSR results (a), SR (b) and VIP scores (c). 

 

The RMSEP with 3 LVs (Fig. 3a) is 2.09 wt.% 

(𝑅𝑃
2=0.83), which makes this method unsuitable to detect 

asbestos at concentrations around 1% w/w. The higher SR 

scores (Fig. 3b) are located at 1380 and 2330 nm, both related 

to chrysotile [13, 14]. The VIP scores (Fig. 3c) enhanced the 

same wavelengths, plus 1410, 1880, 1900, 2200 and 2360 

nm, that are related to soil constituents (clay minerals) [13]. 

 

3.2. Orthogonal Partial Least Squares Regression 

 

The pre-processing algorithms (OSC and MC) enhance the 

difference between chrysotile and soil spectra (Figure 4). 

 

 
Figure 4. Pre-processed spectra (OSC, MC) 

 

The OPLSR results and the related SR and VIP scores 

are reported in Figure 5a, b and c, respectively. 

 

 
Figure 5. OPLSR results (a), SR (b) and VIP scores (c). 

 



The RMSEP with 3 LVs (Fig. 5a) is 0.40 wt.% 

(𝑅𝑃
2=0.99) and is significantly lower than the error associated 

to PLSR. Such performance is still inadequate for assessing 

soils with low asbestos levels but may be suitable for 

screening applications in medium/highly contaminated sites.  

In this case, the SR enhanced the medium wavelengths 

(Fig. 5b), while the VIP scores the short ones (Fig. 5c). Both 

the algorithms highlight peaks at around 1900 (H2O bending) 

and 2200 nm (Al‒OH combination band). Interestingly, the 

chrysotile absorption at 2330 nm overcomes the VIP scores 

significance threshold, while it is the only signal placed under 

the SR 95% confidence interval. 

 

4. CONCLUSIONS 

 

Two regression methods based on high-resolution reflectance 

data collected in the SWIR region were evaluated on 

reference samples of pure chrysotile and asbestos-containing 

soils in different percentages, to identify spectral differences 

between sample types and assess the concentration 

prediction. The performance of OPLSR was better than 

PLSR, with the same number of LVs (3).  

The SR and VIP scores of both regression techniques 

enhanced wavelengths in the first overtone of ‒OH 

stretching, the H2O bending and the Al/Mg‒OH combination 

bands. Since absorption peaks of hydrated minerals are in 

these regions, hyperspectral instruments are needed to resolve 

between different signals, thus detecting asbestos in the 

sample. 

Further studies should be conducted, to lower the 

prediction error and apply this method for comparing 

chrysotile concentration with regulatory limit values (usually 

0.1% w/w). Such studies should involve a broader sample set. 

Since these techniques do not require complex sample 

preparation, their adoption may reduce the risks of exposure 

to airborne fibers for technicians. Moreover, the analysis may 

be performed onsite with handled instruments. Therefore, the 

presented method may be useful during screening/ 

monitoring activities in contaminated sites. 
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