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ABSTRACT

Hyperspectral sensors have enjoyed widespread use in
the realm of remote sensing; however, they must be adapted
to a format in which they can be operated onboard mobile
robots. In this work, we introduce a first-of-its-kind sys-
tem architecture with snapshot hyperspectral cameras and
point spectrometers to efficiently generate composite dat-
acubes from a robotic base. Our system collects and reg-
isters datacubes spanning the visible to shortwave infrared
(660-1700 nm) spectrum while simultaneously capturing the
ambient solar spectrum reflected off a white reference tile.
We collect and disseminate a large dataset of more than 500
labeled datacubes from on-road and off-road terrain com-
pliant with the ATLAS ontology to further the integration
and demonstration of hyperspectral imaging (HSI) as bene-
ficial in terrain class separability. Our analysis of this data
demonstrates that HSI is a significant opportunity to increase
understanding of scene composition from a robot-centric
context. All code and data are open source online: https:
//river-lab.github.io/hyper_drive_data

Index Terms— hyperspectral imaging, robot spectroscopy,
multi-modal sensing, terrain segmentation

1. INTRODUCTION

Mirroring human-level terrain perception in robots is area of
active research, given its criticality in enabling actionable in-
telligence prior to traversing the surface. Terrain can be best
understood as a type of abstract material of unspecified ex-
tent [1]. Unlike objects defined by regular geometric proper-
ties, terrain challenges traditional perception systems because
surface materials vary widely in their size and shape. For
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Fig. 1: Hyper-Drive system mounted to off-road mobile robot, with
sample data representations of white reference target from a) the
Visible to Near Infrared (VNIR) hyperspectral camera b) Shortwave
Infrared hyperspectral camera c) High resolution RGB camera d)
Combined point spectrometers.

instance, a farm field and patch of soil have the same tex-
ture and micro appearance, but cover drastically different ge-
ographic areas. Coarse labels like grass, soil, and sand are
useful in semantic segmentation, but intra-class differences
affect traversability. On road surfaces, these features might
manifest as oil slicks, standing water, or black ice.

Our approach to this problem builds on our previous
work in terrain classification with point-based spectroscopy
and multi-modal sensing [2]. This present work introduces
hyperspectral imaging (HSI) to mobile robot terrain under-
standing. In this research, we develop a system, HYPER
DRIVE, shown in Fig. 1, to capture datacubes from a mov-
ing platform with variable illumination. Our work shows
forward-facing HSI is a powerful tool for robotics and is use-
ful in a variety of terrain conditions. The contributions of this
paper are as follows.

• Development of a sensing system to incorporate Visible
to Short Wave Infrared hyperspectral cameras onto a
mobile robot with solar reference spectrum.

• Open-source software framework and message types
implemented for the Robot Operating System [3]

• Multi-modal dataset containing registered imaging
products and ambient solar spectra data for system.
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2. RELATED WORK

Hyperspectral data acquired from moving vehicles is still in
its infancy. The recent innovation of snapshot hyperspectral
cameras with fast integration times has made it possible to
capture images of a nonplanar scene, while either the camera
or objects are moving relative to each other. The absence of
artifacts like motion blurring is critical to obtain representa-
tive spectra and distinct spatial characteristics.

2.1. Hyperspectral Terrain Datasets

There have been multiple efforts to develop vehicle-mounted
hyperspectral cameras to collect datacubes from off-road [4,
5], on-road [6, 7, 8]. Notably, all the aforementioned ex-
amples make use of Visible-Near Infrared (VNIR) cameras,
which are well-suited to detect vegetative properties, but do
not have the same insight into the numerous absorption bands
in the shortwave infrared spectrum [9]. Unlike RGB image
terrain segmentations which have adopted standard label sets
such as the widely-used KITTI classes [10], HSI datasets are
contextually driven with labels largely chosen by the operat-
ing range of the camera. Examples of semantic label sets from
the literature include (dataset name bolded):

• HSI-Drive: Road, road marks, vegetation, painted
metal, sky, concrete/stone/brick, pedestrian/cyclist,
water, unpainted metal, glass/transparent plastic [6].

• Winkens et al. Drivable, rough, obstacle, sky[11]
• HyKo Plastic, soil, paper, street, wood, chlorophyll,

metal, sky [5].
• Jakubczyk et al. Ground road, forest road, asphalt

road, grass, forest [4].
• Hyperspectral City V1.0: Car, human, road, traffic

light, traffic sign, tree, building, sky, object [7].
• HSI Road: Road, background [12].
[6] contains annotations for the time of day and the time

of year and aggregations of classes into categories including
drivable / non-drivable, drivable / road markers / vehicles and
drivable / road markers / vehicles / pedestrians [6]. Similarly
[5] included multi-modal sensors including a VNIR spec-
trometer and Light Detection and Ranging (LIDAR) sensors
in their HyKo dataset, but did not elaborate on how the spec-
trometer could benefit the system calibration [5]. HyKo also
contains condensed annotations on drivability classes (rough,
sky, obstacle, drivable).

2.2. Spectral Informed Terrain Understanding

[11] shows the potential of HSI in terrain classification, even
with simple machine learning methods such as random forest,
and later through manual feature extraction [13].

[8] claims HSI overcomes challenges induced by object
metamerism. RGB images are empirically shown to have a
lower degree of separability than HSI datacubes. The authors
exploit this information in a semantic segmentation network,

with a finetuning module leveraging 10 classes that combine
semantic purpose and material information.

[14] explores the use of RGB imagery alone to perform
material segmentation with transform-based neural networks.
They also propose a dataset called KITTI-Materials, contain-
ing 1000 frames with 20 different material categories [14].
The same group also augmented RGB imagery with NIR and
polarization images to improve classification accuracy on ma-
terials such as metal and water [15].

In our previous work, we demonstrated high accuracy in
terrain classification by measuring the spectral signatures of
terrain near the contact point on wheeled vehicles [2]. Com-
bining feature-specific neural networks for IMU and RGB
image classification through a fusion network provided in-
creased performance. The results of [16] show that further
fusing visual imagery and NIR spectral signatures aids in the
classification of urban road surface types.

3. SYSTEM ARCHITECTURE

3.1. Imaging System

For this research we integrated two snapshot hyperspectral
cameras onto a reconfigurable platform. Both sensors are
manufactured by IMEC. The VNIR camera captures light
from 660-900 in a 5×5 Fabry–Pérot filters placed in front of
a silicon-based photodetector element. When corrected, these
filters produce a data cube with 24 spectral bands. Similarly,
the IMEC SWIR camera captures wavelength information
from 1100-1700 nm using a 3×3 filter array. These filters are
placed on an uncooled Indium Gallium Arsenide (InGaAs)
photodetector. Unlike the VNIR camera, which has filters
evenly spaced across the sensitive spectral range, the SWIR
camera concentrates its bands in the lower range of the wave-
length spectrum, where there are more prevalent spectral
absorption features. Combined, our hyperspectral sensing
solution features 33 channels, covering 1100 nm of the elec-
tromagnetic spectrum. The cameras are housed inside a 3D
printed Onyx housing weatherized with epoxy. An uncoated
Gorilla Glass shielding glass allows minimal perturbation of
the light entering the lens.

The hyperspectral cameras are coaligned with a 5 megapixel
RGB machine vision camera (Allied Vision). This system
provides a high-resolution spatial reference containing the
hyperspectral cameras’ full field of view.

The hyperspectral cameras have a primary FOV of 25◦.
Each is calibrated using a precision checkerboard target
board. The individual bands of the camera are then radi-
ally undistorted. The combined hyperspectral datacube is
generated by calculating projective transforms through the
checkerboard images, using bands that reveal the highest
contrast between the board’s squares. The combined dat-
acube dimension is 1012×1666×33; each cube is registered
with the RGB camera.



Fig. 2: Quantum efficiencies of each of the spectrum sensing devices used in these experiments. Note: the Fabry–Pérot filters allow a spectral
response typically characterized by a primary transmission peak, followed by a smaller secondary peak. This smaller feature is corrected for
in the hypercube demosaicing operation.

3.2. Point Spectrometer

The protective water-proof computer housing also contains
two point spectrometers (Ibsen). The Pebble VIS-NIR, with
a silicon detector, is sensitive between 500 and 1100 nm with
256 spectral pixels; the Pebble NIR, with an uncooled In-
GaAs detector, is sensitive from 950 to 1700 nm with 128
pixels. The two spectrometers have an overlap in the spec-
tral signature range, which is advantageous because of the
decreased quantum efficiency of the VIS-NIR spectrometer
at wavelengths greater than 950 nm. As evidenced by Fig. 2,
we leverage the greater efficiency of the InGaAs detector, and
truncate the VIS-NIR device at wavelengths less than 950
nm. Together, the spectrometers cover a greater spectral range
than the hyperspectral cameras and with an increased sensi-
tivity. The InGaAs sensors are an order of magnitude less
sensitive than the silicon-based devices, resulting in integra-
tion times that are appropriately larger.

The point spectrometers are coupled to low OH (Hydroxl)
group fiber optic cables (Thor Labs). This allows the spec-
trometers to remain inside the weatherized housing, while still
sensing light from the outside. The fiber optic cables are con-
nected to an SMA fitting, which holds the end ferrules offset
4 cm above a 99% Spectralon white reference target (Lab-
sphere). The spectrometers measure a white reference signal
data under the current illumination conditions, both natural
and artificial. This reference signal will be used to dynami-
cally generate reflectance calibrations in future work.

3.3. Messaging and Computation

Snapshot hyperspectral datacubes produced by the system are
≈20 megabytes. At its maximum operating rate, the system
can generate nearly 1 gigabyte of data per second. To expe-
dite data processing, the onboard compute system leverages
an Intel Core i7 processor with 3 terabytes of SSD storage.

The Robot Operating System [3] is used to synchronize
data collection from all the onboard systems. The three cam-
eras are time-synchronized, so the RGB, VNIR, and SWIR

images all correspond to the same scene at a rate of 10 Hz.
All custom ROS compatible drivers, data structures, and algo-
rithms are implemented in Python and C++ and are included
as an open-source resource in the project repository. ROS
enables time-synchronized data from the camera system and
point spectrometers to be acquired, even when device drivers
operate at different frequencies. Spectrometer messages con-
tain time stamps, wavelength values, and raw digital counts,
in addition to optional metadata fields, such as ambient hu-
midity and device temperature. Hyperspectral data are trans-
mitted as flattened 1-D arrays, with the dimensions of the 3-D
cube, as well as meta-data fields for the central wavelengths,
quantum efficiencies, and full-width half-maximum values.
These message structures are extensible to other manufactur-
ers, with examples available in the project repository.

4. HYPER DRIVE DATASET

4.1. Dataset Construction

We conducted a field data collection at the autonomous sys-
tems track on the campus of Olin College. The compute
and sensor systems were mounted atop a Warthog unmanned
ground vehicle (Clearpath Robotics). The Warthog’s large
ground clearance and tire treads make it an ideal candidate
for mobility in both on-road and off-road terrain.

Data were collected over two days including late after-
noon, during the setting sun, early morning sunrise, and mid-
day. This temporal variation increases the variation of solar
illumination and image intensity. The vehicle was driven on
4.0 kilometers of paved roads, hiking trails, and dirt roads.
We downsampled the data collection to 1 Hz to ensure scene
differentiation between samples. The published dataset con-
tains the following structure:

• ROS bag file containing compressed time synchronized
datastream with all following datatypes (.bag)

• RGB image file registered to datacube (.png)
• Hyperspectral datacube compressed in 3-D array (.npz)



Fig. 3: a) Warthog collection vehicle traversing grass environment with dense surrounding vegetation. b) Ground-truth ATLAS segmentation
labels overlayed on high-resolution RGB image. c) Reduced order labels for drivability assessments.

• White reference spectra from spectrometers (.npy)
• Image segmentation masks (.png)

4.2. Annotations

Previous hyperspectral datasets suffer from a lack of consis-
tent labels, making it difficult to compare the performance
of classification algorithms between datasets. We address
this problem by adopting the All-Terrain Labelset for Au-
tonomous System (ATLAS) [17]. ATLAS provides an exten-
sible, hierarchical ontology to generate fine-grain or coarse
labels for off-road vehicle data. Each datacube has a set
of labels for the whole scene: biome, time of day, season,
weather}. Additionally, instance labels mark the presence of
specific features in the image. At the highest level, these cat-
egorizations include: {landscape, vegetation, animal, person,
obstacle, atmospheric}. Each of these labels can be decom-
posed into more specific classes or simplified to binary labels

Fig. 4: t-SNE two-dimensional embedding visualization of images
of selected dataset image from RGB data (left) and HSI data (right).

Table 1: Class Structure Statistics in HYPER DRIVE Dataset

Level #1 Label Level # 2 Label # Segments # Images

Path

Dirt 198 144
Rock/Gravel 303 213

Paved 143 116
Concrete 117 92

Vegetation
Ground Cover 806 464

Bush/Tree 795 503
Leaves/Mulch 233 158

Obstacle
Vehicle 92 68

Infrastructure 241 181
Road Signage 127 98

Person - 15 15

such obstacle or landscape. Fig. 3 shows images from the
dataset overlayed with ATLAS labels.

As part of the initial data release, we provide 12,874 dat-
acubes and RGB images collected from the various data col-
lections. 500 of these images have been finely labeled with
segmentation masks. To the best of the authors’ knowledge,
this is the largest and most diverse vehicle-centric hyperspec-
tral dataset and the first to include shortwave infrared infor-
mation. Table 1 contains an extracted breakdown of the full
label information as a function of the hierarchical classes.

5. DISCUSSION

As a motivating example for why this dataset is beneficial
in robotic terrain analysis, we consider the inter-class differ-
ences of the data. Fig. 4 shows a t-SNE [18] separability
analysis conducted on the data. t-SNE attempts to find a two-
dimensional embedding for the natively high-dimensional hy-
perspectral datacube. The plot on the left shows the separa-
bility from the RGB color space alone. The plot on the right
is generated from the hyperspectral datacube.

From these embeddings, there is a clearer decision bound-
ary between the dominant classes in the HSI t-SNE embed-
ding. We also observe that there are more distinct groupings
through the RGB data. There is still a significant amount
of overlap between the classes in this two-feature represen-
tation, which is to be expected given the large number of
classes (10) present in these data. The RGB plot contains
a significant number of outliers in the clusters, especially in



the “dirt” class. These tighter clusters suggest there are nat-
ural distinctions amongst the classes that semantic segmenta-
tion networks will exploit to generate more accurate classifi-
cations.

6. CONCLUSION

In this work, we presented a novel system architecture for
collecting and associating snapshot hyperspectral data from a
moving vehicle. We release a large dataset of VIS-SWIR im-
ages that encompass operating conditions as seen from a mo-
bile robot according to the ATLAS ontology. The project also
contains open-source software to integrate HSI into robotics
applications. Future iterations of this system will generate
fully normalized datacubes without imaging a camera white-
reference image by predicting the unobserved white reference
from the spectrometers’ ambient spectra. We hope the intro-
duction of a ROS framework for hyperspectral data and dis-
semination of our dataset will encourage further research on
the applicability of HSI to other unstructured environments.
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