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ABSTRACT

The presence of undesired background areas associated with
potential noise and unknown spectral characteristics degrades
the performance of hyperspectral data processing. Masking
out unwanted regions is key to addressing this issue. Pro-
cessing only regions of interest yields notable improvements
in terms of computational costs, required memory, and over-
all performance. The proposed processing pipeline encom-
passes two fundamental parts: regions of interest mask gener-
ation, followed by the application of hyperspectral data pro-
cessing techniques solely on the newly masked hyperspec-
tral cube. The novelty of our work lies in the methodol-
ogy adopted for the preliminary image segmentation. We
employ the Segment Anything Model (SAM) to extract all
objects within the dataset, and subsequently refine the seg-
ments with a zero-shot Grounding Dino object detector, fol-
lowed by intersection and exclusion filtering steps, without
the need for fine-tuning or retraining. To illustrate the effi-
cacy of the masking procedure, the proposed method is de-
ployed on three challenging applications scenarios that de-
mand accurate masking i.e. shredded plastics characteriza-
tion, drill core scanning, and litter monitoring. The numeri-
cal evaluation of the proposed masking method on the three
applications is provided along with the used hyperparame-
ters. The scripts for the method will be available at https:
//github.com/hifexplo/Masking.

Index Terms— Hyperspectral Imaging, Classification,
Masking, SAM, Grounding Dino.

1. INTRODUCTION

The deployment of Machine Learning (ML) has significantly
improved task efficiency and performance across various do-
mains, e.g., medical field, agriculture, industry, and remote
sensing [1]. Deep learning, a subfield of ML, focuses on
utilizing neural networks to approximate complex functions
present in the data. However, supervised learning scenarios
often necessitate significant amounts of labeled data for train-
ing deep learning models. The process of data labeling can
be labor-intensive and time-consuming, particularly for com-
puter vision segmentation tasks that require precise labeling.

Moreover, numerous real-world applications demand accu-
rate segmentation even in the absence of large-scale train-
ing datasets. The number of publicly available hyperspec-
tral datasets together with their detailed labeled samples are
limited [2]. This pressing shortcoming in the hyperspectral
community usually hinders the optimization of deep learn-
ing models for downstream tasks such as classification and
segmentation. The existence of undesirable backgrounds can
obstruct the segmentation performance. In tasks where the
scene contains a large area of background along the objects of
interest, the performance of classification techniques is com-
promised at multiple stages of the processing pipeline, e.g:

• Dimensionality reduction: methods like Principal
Component Analysis (PCA) (band-wise) build upon
calculating the mean of the values in the hyperspectral
scene. Having a large area of irrelevant background
means having many pixels skewing the calculation,
yielding impaired desired-objects representative prin-
cipal components, i.e., exerting a negative impact on
the new representation of the object of interest in the
hyperspectral scene. Excluding the background from
the calculations enhances the indicative principal com-
ponents.

• Machine learning models: during an RGB segmenta-
tion task, the model can focus on learning the visual
characteristics of the objects and differentiate them
from the surrounding regions implicitly since objects
are distinct in terms of color, texture, or shape. How-
ever, having an irrelative background in the hyperspec-
tral scene can exhibit significant spectral variations due
to illumination changes, shadows, sensor deficiencies,
or different materials present in the scene. This leads
to noisy predictions in the model’s output. This can be
problematic in tasks where the spatial coordination of
the segmented pixels is needed. Therefore, masking
out unwanted backgrounds can help in this manner.

To address these challenges and improve model perfor-
mance in scenarios with limited training data, we propose a
segmentation method that preserves the objects of interest and
allows the exclusion of the background without the need for
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any retraining or fine-tuning. The method’s pipeline leverages
the Segment Anything Model (SAM); developed by Meta [3]
and Grounding Dino zero-shot object detector [4].

The remainder of this paper is structured as follows: Sec-
tion two provides a detailed explanation of the methodology
and its components. Section three is a discussion of the three
applications on which the method was tested. We present the
numerical evaluation of its segmentation performance, the re-
sults obtained, the hyperparameters used, and suggestions for
subsequent hyperspectral processing techniques. Section four
focuses on the discussion of masking methods, while section
five concludes the work.

2. METHODOLOGY

A key factor in building models with good segmentation per-
formance is the availability of large training datasets. How-
ever, in the hyperspectral community, this is not feasible due
to the limitation of publicly available hyperspectral datasets.
Therefore, our work is motivated by the use of pre-trained
models, specifically the utilization of SAM and the zero-shot
grounding dino object detector.

2.1. Segment Anything Model (SAM)

SAM is an advanced segmentation model that builds upon
incorporating several key modifications to enhance efficiency
and scalability. It uses a masked auto-encoder pre-trained
vision transformer with minimal adaptations to handle high-
resolution inputs, a prompt encoder to encode sparse and
dense prompts into an embedding vector in real time, and
a lightweight mask decoder that predicts the segmentation
masks based on embeddings from both the image and prompt
encoder[3]. The model has been trained on an extensive
dataset comprising 1.1 billion masks and 1 million images
from diverse sources [3]. Experimental results have demon-
strated the effectiveness of SAM, showcasing superior per-
formance compared to existing state-of-the-art methods on
benchmark datasets. It serves as a comprehensive segmenta-
tion model capable of segmenting all objects within an input
image [5]. However, it should be noted that SAM’s segmenta-
tion does not include object identification or labeling, which
may pose limitations for direct deployment in specific tasks.

To address this limitation and refine the segmentations
predicted by SAM, the zero-shot grounding dino object de-
tection model is employed. This additional model focuses on
desired targets or objects of interest, allowing for more pre-
cise and tailored segmentation [4].

2.2. Grounding Dino

Grounding dino is a novel zero-shot object detector that lever-
ages user-provided descriptive textual prompts to accurately

detect the specified objects of interest with a certain confi-
dence threshold [4], which can be used to emphasize the de-
sired masks predicted by SAM. Grounding dino leverages
the transformer architecture, to facilitate the comprehension
of visual input through the association of textual and visual
information[4].

Incorporating SAM and grounding dino into one process-
ing pipeline, along an intersection, and excluding filtering
steps, non-desired abundant segmentation masks generated
by SAM can be filtered out effectively. It allows accurate seg-
mentation masking for objects of interest without fine-tuning
or retraining needed. Through the combined utilization of
SAM and grounding dino, we achieve the effective removal
of undesired segmentation masks generated by SAM. The
method pipeline can be stated with the following steps:

1. Three bands selection: three bands are chosen from the
hyperspectral input data by the user based on experi-
ence, emphasizing spatial features that effectively rep-
resent the objects of interest.

2. SAM segmentation: The selected three-band represen-
tation is fed to SAM, generating initial segmentation
masks for all objects within the dataset.

3. Grounding dino integration: grounding dino is applied
to the three-band representation, using the user-defined
language prompt that specifies either the desired ob-
jects to retain SAM’s segmentation masks or the un-
wanted objects to exclude from SAM’s segmentation
masks.

4. Intersection and exclusion filtering: based on the lan-
guage prompt provided to grounding dino, an intersect-
ing filtering or exclusion filtering step is selected on the
segmentation masks, ensuring the preservation or elim-
ination of specific objects, respectively.

5. Final mask generation: from the resulting masks after
the filtering steps, the objects of interest are retained
in the original hyperspectral cube, while the remaining
pixels are masked out.

Fig. 1 presents the suggested method pipeline and flow
of data. The spatial features quality of the three selected
bands from the hyperspectral or multispectral data directly
impacts the performance of SAM and grounding dino. To
preserve SAM’s desired masks, the intersection filtering step
is selected, where bounding boxes from grounding dino and
SAM are intersected based on the object of interest described
in dino’s language prompt. Alternatively, for removing unde-
sired SAM’s masks, the excluding filtering step is employed:
performing an XOR operation between SAM’s predictions
and dino’s. This process may be repeated for multiple types
of irrelevant objects. Finally, the masked hyperspectral im-
age is obtained by projecting the final mask on the original
hyperspectral cube.
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Fig. 1. Methodology Workflow.

3. EXPERIMENTS & RESULTS

This section presents three applications in which the proposed
method was deployed, with the hyperparameters used to gen-
erate the results and a numerical evaluation relative to expert
manually annotated ground truth. These results serve as com-
pelling evidence for the effectiveness of the proposed method.

3.1. Plastics Identification

The identification of plastic materials is a crucial step for re-
cycling and waste management, and it is the primary focus of
RAMSES-4-CE, a project undertaken by our team at the He-
lios Lab, Helmholtz Institute Freiberg for Resource Technol-
ogy. Hyperspectral imaging scans of the shredded plastics are
conducted using SPECIM Aisa Fenix and RGB JAI. The sug-
gested method is applied to the hyperspectral data, resulting in
the generation of a final mask that is projected on the original
hyperspectral cube to obtain the masked set. Once the masked
hyperspectral data is obtained, a minimum wavelength map-
ping (MWM) [6] technique and a decision tree are employed
for hyperspectral data processing to identify the plastic mate-
rial for each shredded plastic piece. The segmentation perfor-
mance, relative to manually annotated ground truth, is sum-
marized in Table 1. The corresponding hyperparameters used
in the process are presented in Table 2.

Fig. 2 presents the results flow at each step. The fi-
nal mask (bottom-right) is acquired by deploying our method
on the original hyperspectral data (false color representation,
top-left) and using the masked hyperspectral data (middle) as
input for the MWM and decision tree, which yields the final
plastics-type map (top right). The efficiency of the proposed
method is demonstrated through improved denoising results
achieved by utilizing a masked Hyperspectral Image (HSI)
containing 145,258 vectors instead of the non-masked HSI
(bottom right) with 863,360 vectors.

3.2. Drill core scanning

Hyperspectral scanners are being increasingly used for min-
eral exploration, as they provide a rapid, non-destructive
tool for gleaning otherwise cryptic mineralogical information
from drillcores [7]. Drill cores are generally stored in open
boxes, containing around 1-5 m of core, and scanned in suc-
cession to build up a database of many hundreds or thousands
of individual scans. Each of these needs to be accurately
masked to remove background and core tray pixels before
mineralogical analyses can begin, a tedious and currently
largely manual process. Fig. 3 showcases the generation
of the masked hyperspectral data (right) by projecting the
method’s generated mask (bottom-left) on the original hyper-
spectral image (top-left), effectively eliminating extraneous
noise originating from the background. The utilization of a
masked hyperspectral data significantly enhances the perfor-
mance of subsequent processing techniques by processing
280,584 vectors in the masked hyperspectral cube instead of
727,000 vectors in the original one, ensuring optimal output
quality. Table 1 demonstrates the highly accurate segmenta-
tion performance relative to the manually annotated ground
truth. Table 2 provides the hyperparameters used to generate
the results.

3.3. Litter monitoring

The utilization of hyperspectral imaging, with its wide range
of descriptive wavelengths in the visible and near-infrared re-
gion, is expected to enhance macro litter material identifica-
tion in complex outdoor riverine scenarios [8]. Fig. 4 de-
picts one exemplary calibrated hypercube represented as the
RGB composite (top left), and the generated mask (bottom
left), which plays a crucial role in the processing workflow
by reducing the 168,000 total vectors to 5,653 relevant ones
(right). The application of masking techniques to identify rel-
evant objects in the scene facilitates and accelerates subse-
quent analysis of the hyperspectral imagery. This analysis can
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Fig. 3. Extracting the Masked HSI in the Drill Core Scanning
Application.

involve techniques such as unmixing, feature extraction, and
classification. Consequently, this approach effectively miti-
gates the influence of background noise (shadows and water),
while reducing the computational requirements. The numeri-
cal segmentation performance relative to the manually anno-
tated ground truth is demonstrated in table 1, the high pre-
cision and recall scores are proofs of the proposed method’s
accuracy in masking out undesired backgrounds while pre-
serving the desired regions, respectively. The used hyperpa-
rameters can be seen in Table 2. The hyperparameter ’C’ in
the filtering steps is used as a margin for comparing coordi-
nation values between bounding boxes in pixels.’C’ should
be chosen with trial and error based on the application’s data
spatial resolution.

4. DISCUSSION

Several alternative masking methods have been considered
for comparison. Traditional computer vision techniques like
alpha channel masking and thresholding necessitate manual
parameter tuning for each image, especially when handling
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Fig. 4. Extracting the Masked HSI in the Litter Monitoring
Application.

brightness variations. This presents a considerable challenge
to the algorithm’s reliability. Deep learning techniques have
successfully addressed this issue by employing segmentation
models such as DeepLab, Unet, and others. However, it is
known that the performance of these models heavily depends
on the quantity and quality of available training data. In con-
trast, our proposed method achieves comparable performance
to manual expert masking, and it eliminates the need for train-
ing data and individual image parameter tuning.

5. CONCLUSION

This work introduces a masking method that leverages var-
ious computer vision techniques to enhance the effective-
ness of hyperspectral data processing pipelines. The method
serves as a filtering approach that effectively masks out unde-
sired backgrounds and unwanted objects in the hyperspectral
cube, allowing the retainment of objects of interest only. By
eliminating spectral vectors that introduce further noise, this
approach enhances hyperspectral pre-processing tasks such
as normalization and dimensionality reduction, as well as



Application \Metric Precision Recall F1-Score
Plastics Identification 0.80 0.92 0.86
DrillCores Scanning 0.97 0.98 0.97

Litter Monitoring 0.77 0.87 0.82

Table 1. The Proposed Method Segmentation Evaluation Metrics Relative to Manual Annotations on the Three Applications.

Hyperparameter Shredded Plastics Drill Core Scan Litter Monitoring
Points per Side 256 128 128

Points per Batch 128 128 128
Pred IOU Thresh 0.7 0.7 0.8

Crop n Points Downscale Factor 2 1 1
Text Prompt ”shredded piles of plastics” ”cores” ”object”

Box Threshold 0.4 0.5 0.1
Text Threshold 0.4 0.4 0.1

C 15 5 5

Table 2. Hyperparameters Used in the Proposed Method to Generate the Final Masks: SAM’s Hyperparameters (Cyan),
Grounding Dino (Green), the Filtering Steps (Orange).

subsequent processing techniques such as classification.The
proposed method utilizes the SAM and the grounding dino
zero-shot object detector, followed by intersection and exclu-
sion filtering processes, resulting in a masked hyperspectral
cube as the output. The masking generalization of the method
is demonstrated in three applications: plastics identification,
drill core scanning, and litter monitoring. The numerical eval-
uation demonstrates the proposed method’s ability to mask
regions of interest with high precision and recall proving its
effectiveness as a promising alternative to laborious and time-
intensive manual masking routines. Moreover, addressing the
need for reliable solutions in scenarios where annotated train-
ing datasets for masking are scarce or non-existent.

6. ACKNOWLEDGMENT

The authors would like to thank EIT RawMaterials for fund-
ing the project ‘RAMSES-4-CE’ (KIC RM 19262). We ac-
knowldge the European Regional Development Fund (EFRE)
and the Land of Saxony for their funding of the computational
equipment through the project ‘CirculAIre’.

7. REFERENCES

[1] Jürgen Schmidhuber, “Deep learning in neural networks:
An overview,” Neural networks, vol. 61, pp. 85–117,
2015.

[2] Michael Schmitt, Pedram Ghamisi, Naoto Yokoya, and
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