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Abstract

The World Wide Web has transformed into an environment
where users both produce and consume information. In
order to judge the validity of information, it is important
to know how trustworthy its creator is. Since no individual
can have direct knowledge of more than a small fraction of
information authors, methods for inferring trust are needed.
We propose a new trust inference scheme based on the idea
that a trust network can be viewed as a random graph, and
a chain of trust as a path in that graph. In addition to
having an intuitive interpretation, our algorithm has several
advantages, noteworthy among which is the creation of an
inferred trust-metric spacewhere the shorter the distance
between two people, the higher their trust. Metric spaces
have rigorous algorithms for clustering, visualization, and
related problems, any of which is directly applicable to our
results.

1. Introduction

There are two important entities on the web: people and
information. As the web has transformed into an interactive
environment filled with billions of pages of user-generated
content, trust becomes a critical issue. When interacting with
one another, users face a wide range of risks. Similarly,
information provided by users can be overwhelming because
there is so much of it and because it is often contradictory.
Fortunately, as trust has become a concern, potential solu-
tions have also emerged.

Social networks on the web are a major phenomenon. This
large corpus of publicly-accessible relationship information
has the potential to transform the way intelligent systems
on the web are built. The trust relationship is particularly
powerful since it speaks directly to the “quality” of a person
and what they produce online.

In a large network, a given user likely knows only a small
fraction of the people with whom he or she will interact;
thus, the user has no knowledge of how trustworthy most
people are. To handle this, methods are needed for inferring
trust between users who do not know one another directly.
We present a novel way of interpreting trust networks that
leads to an immediate method for taking local trust values
and computing implicit trust between all pairs of nodes,

including those who have no direct knowledge of each
other’s trustworthiness. Our approach also leads rigorously
to a metric space among the users, with closer pairs cor-
responding to higher trust-values; this naturally leads to
efficient algorithms for clustering the population.

There are a number of prior algorithms for inferring trust
in social networks. To comply with space constraints we do
not review these algorithms here, but a full treatment can
be found in [1]. Our approach is quite different from the
methods developed in the literature so far, for its proba-
bilistic treatment of trust, its integrated notions of trust and
confidence, and the algorithm itself. Also see Andersen et
al. [2] for an axiomatic approach to a different type of trust-
inference problem, where the initial trust votes are “-” or
“+”.

The idea that trust networks can be treated as random
graphs drives our work. For every pair of nodes(u, v),
we place an edge between them with some probability that
depends on the direct trust value between them which we
denote bytu,v. We then infer trust between two people
from the probability that they are connected in the resulting
graphs. Formally we choose a mappingf from trust value
to probabilities. We then construct a random graphG in
which each edge(u, v) exists independently with probability
f(tu,v). We then use this graph to generate inferred trust
values,Tu,v, such thatf(Tu,v) equals the probability that
there is a path fromu to v in the random graph.

A very intuitive idea motivates this model. Consider the
following scenario: Alice knows Bob and thinks he has
an f(ta,b) chance of being trustworthy. Bob knows Eve
and thinks she has af(tb,e) chance of being trustworthy,
and he tells this to Alice if he is trustworthy. If Bob is
not trustworthy, he may lie aboutpe and give any value
to Alice. Alice reasons that Eve is trustworthy if Bob is
trustworthy and gives her the correct valuef(tb,e) and
Eve is trustworthy with respect to Bob. This combination
happens with probabilityf(ta,b)f(tb,e) = f(Ta,e) if Bob’s
trustworthiness and Eve’s trustworthiness are independent.
Thus we view a path through the network as a Bayesian
chain. To illustrate this view, defineXB, XE to be the
random events that Bob and Eve are trustworthy from Alice’s



perspective. This gives the formula:

Pr[XE ] = Pr[XE |XB] · Pr[XB ] + Pr[XE |XB] · Pr[XB]

≥ Pr[XE |XB] · Pr[XB ] = Pr[XB ∧ XE ].

The same analysis can be used if trust is a proxy for
similarity: Alice and Bob’s mutual trust can be a measure
of how similar they are. If trust is interpreted as a probability
of being in the same category, then Alice’s category is the
same as Eve’s if (but not necessarily only if) Alice and Bob
share a category and Bob and Eve share a category.

In large, complex networks the Bayesian chain view still
applies. If there exists a path from Alice to Eve in a random
network constructed from trust values, then that path is a
chain of people from Alice to Eve who each correctly trust
their successor, and Alice can trust Eve. Therefore Alice
trusts Eve with the probability that there is a path from
Alice to Eve in the random graph. Since it is#P−Complete
[3] to compute connectivity probabilities exactly, we rely
on random sampling. If the true connectivity probability
between Alice and Eve isp and we sample the graphk
times, thenkp of them will contain an Alice to Eve path
in expectation. We then apply Chernoff bounds which show
that whenk is reasonably large, our sampled value will be
very close to the actual valuekp. In fact, for anyǫ > 0,
if we take k = Θ( log n

ǫ2 ) samples, then for any pairu, v
the probability that our estimate is off by more thanǫ is at
moste−Θ(ǫ2 log n/ǫ2) = n−Ω(1). We then take a union bound
over all pairs to bound the probability that any pair deviates
by more thanǫ. If we take as few as5 logn/ǫ2 samples
this probability is at mostn−3 for each pair. Then taking
a union bound over all pairs shows that with probability at
least1− 1

n , Tu,v will be within ǫ of the true value forevery
pair u, v simultaneously.

In addition to having an intuitive motivation, our algo-
rithm is also novel within the area of trust inference in the
extent to which it allows us to make use of established
algorithms in graph and clustering theory. Because of the
graph-theoretic nature of the algorithm, we can make use of
the probabilistic method as well as theory of random graphs
pioneered by Erdös and Rényi [4] and heavily studied since
then. Additionally, because our algorithm defines a metric
space on the people in a trust network – as demonstrated in
Section 3 – we obtain the flexibility and utility of a variety
of metric-clustering algorithms that we can apply.

2. Illustrative Examples

In Figure 1 we introduce a few small example graphs to
demonstrate some of the desirable qualities that our path
probability formulation exhibits. In these examples trustis
symmetric, however it could just as easily be asymmetric.

In our first example, the graph consists of two cliques
connected by a single edge. Since any path from one clique
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Figure 1. These figures show important trust properties.

to the other includes this edge, the trust between any two
nodes in different cliques is bounded by this edge’s trust.

In our second example, the nodesa and b have no
direct trust, instead they are connected through a sequence
of common neighbors. If the trust between neighbors is
uniformly p, then each path connectinga and b occurs
with probability p2, and the cumulative path probability
is 1 − (1 − p2)k ≈ 1 − e−p2k. This can be close to 1
even whenp is low. Intuitively this corresponds to Alice
having many acquaintances who also know a little about
Eve’s trustworthiness. They all vouch for Eve a little bit
and collectively provide a strong link froma to b.

3. Additional Benefits

The functiond(u, v) = log 1
f(Tu,v) defines a metric space

(or an asymmetric metric space) on the nodes. This holds pri-
marily becausef(T (u, v)) ≥ f(T (u, w)) · f(T (w, v)), and
taking logs of one divided by these terms givesd(u, v) ≤
d(u, w) + d(w, v). A metric space on the nodes allows
us to make use of existing metric clustering algorithms to
partition the nodes into groups. A clustering algorithm takes
a set of points in a metric space and groups them in a
way that tries to optimize some criteria. Examples that have
good approximation algorithms include,k-centers [5], [6],
k-means [7], and correlation clustering [8], [9].

Another major analytical benefit of our algorithm involves
the identification of key edges. A quick inspection of Figure
1’s first graph shows that the edge(c, d) is in some sense
critical in that removing it would drastically alter some of
the distances in the graph. Our technique gives a simple way
of quantifying the importance of such edges.

For each trust edge, we define its criticalitycu,v as the
difference between the inferred trustTu,v, and what the
inferred trust would be without the edge(u, v), which we
denote byT ′

u,v. Criticality measures how important a direct
relationship is. A redundant edge’s criticality is small, and
can be weakened or removed without changing the graph



distances much. Conversely, if the criticalitycu,v is large,
most paths fromu to v require the edgeu, v.

We make use of the probabilistic details of our trust
estimates to efficiently determine criticality for all edges.
We only need to acquire one set of estimates on theTu,v,
and we can directly compute correspondingT ′

u,v values. The
edge(u, v) is included in the random graph with probability
f(tu,v), we denote this event byEu,v. Eu,v is independent
of the event that any other path fromu to v exists, which
we denote byPu→v. We can compute the criticalitycu,v by:

f(Tu,v) = Pr[Eu,v ∨ Pu→v]

= Pr[Eu,v] + Pr[Pu→w ∧ Eu,v]

= f(tu,v) + f(T ′

u,v
)(1 − f(tu,v))

cu,v = Tu,v = T ′

u,v
= Tu,v − f−1

(

f(Tu,v) − f(tu,v)

1 − f(tu,v)

)

.

4. Application to Existing Datasets

We used two social networks with trust values as test
networks: the Trust Project network [10] and the FilmTrust
social network [11]. In both networks, we selected the giant
component and removed nodes with a degree of 1. This left
330 nodes with 1,059 edges in the FilmTrust network. In
the Trust Project network, the same filter left 62 people and
177 edges.

Both of these networks contain directed edges with asym-
metric trust values. However, either symmetric or asym-
metric trust relationships can occur in real networks. For
the purpose of our experiments, we worked with both the
directed graph and with a version where we converted the
networks to undirected graphs with symmetric trust values.

4.1. Symmetric Trust

Our datasets are inherently asymmetric, each trust value
comes from one person rating the other. Since in both
datasets trust is a type of similarity measure, we resolve
differing trust values by taking their mean. We then address
two issues with our choice of the functionf . First, people
appear to be biased towards giving high trust, treating
low values as negative trust, so we bias our function to
compensate. Second, someone could become one of the
most trusted nodes in the graph by rating many others
regardless of the ratings others give them. To compensate
we truncate the amount of outgoing trust for any node at 5
times the maximum individual trust. The choice of 5 was
fairly arbitrary, though the choice of a small constant is
motivated by the work of Erdös and Rènyi which showed
that a random graph with more than one expected edge per
node is likely to have a giant component.

We show the largest component of our leftmost dataset
in Figure 2. We tried many different mappings from trust
to probabilities, and most yielded similar results. Looking

Trust Project FilmTrust Asymmetric
t/10 t/20 t/20

Figure 2. The top data row gives the function f . The
top figures show distances between all pairs of nodes.
The distance from u to v is given by the color from row
u column v. The distance grids are sorted to highlight
clusters. The middle figures show a clustering based
on the trust metric. The bottom figure is the key for the
grids, distances increase linearly from 0 at red to 10 or
greater at violet.

at the graphs and the metric distance grids, you can pick
out some of the natural groups. Specifically, there are three
mostly red blocks (indicating high mutual trust) along the
diagonal in the grid that correspond to the main clusters.
Notice that while the distances change, the two main clusters
are fairly robust to changes in the functionf .

Next we examine the FilmTrust dataset. The middle
column of Figure 2 breaks down our results similarly to
the previous dataset. It is dominated by a single, highly
connected cluster. Yet our algorithm is still able to identify
a few isolated groups, as well as which nodes within the
cluster are loosely connected enough to be separate from
the core.

4.2. Asymmetric Trust

When trust is asymmetric, all of the same fundamentals
apply. However there are a few noticeable differences. First,
we need a much richer graph. In the symmetric case, a
large connected component is enough to make the problem
interesting. However with asymmetric trust, we can have a
situation where there are no non-trivial paths. Second, in
the symmetric case a person who rates everyone else can
become the most trusted node, so we truncate total outgoing
trust. This is unnecessary in the directed case. Because
of these reasons, the smaller dataset is not particularly
interesting, and we will not examine it in detail.

In the rightmost column of Figure 2 we display the asym-
metric FilmTrust dataset. The distance grid shows one large



mutually trusting group, as well as several progressively
smaller mutually trusting groups. The largest of the groups
is trusted by a large portion of the network. It also shows a
secondary group that is well trusted by this largest group.

5. Applications of Clustered Networks

A clustering of a network is a partition of the nodes into
meaningful groups. A good clustering will identify groups of
nodes where a node is more similar to the others in its cluster
than to those in other clusters. There are many ways to find a
“good” clustering. We generally use a correlation clustering
algorithm which minimizes the sum of distances within
groups and maximizes the sum of distances between groups.
This seems well suited to the trust domain, but, based on the
particular needs of an application, any clustering algorithm
over a metric space can be applied.

Once a network has been clustered, there are a number of
interesting applications. First, visualizing large networks is
difficult, as is identification of important groups within them.
A clustering algorithm that groups similar, trusted individu-
als together can be used to display the network and support
visual analysis. In addition, some applications use trust as
a background for other operations. For example, trust-based
recommender systems (e.g. [12]) could use clusters to limit
the search space and optimize the items shown to users.

6. Conclusions

Trust is an important issue in the type of large social
networks available on the World Wide Web. It helps us
estimate the quality of people and the information they
produce, which in turn helps us to filter or validate that
information. Since these networks are often so large that no
one knows more than a small fraction of the other people,
direct trust has limited usefulness. To overcome this, trust
inference algorithms have been proposed.

We present a novel trust inference algorithm based on the
intuitive idea that a trust network can correspond to a random
graph where an edge froma to b occurs with a probability
that is a function ofa’s direct trust inb. If we interpret the
graph so that an edge in the graph froma to b meaning that
a was correct to trustb, then we infer thatc can trustd if
there is any path in the graph fromc to d.

We show that this trust inference scheme leads to good
results for inferred trust, and because of its basis in prob-
ability theory, it offers additional benefits as well. Perhaps
the most important of these is the creation of a trust metric
space on the people in the network where the closer together
two people are, the greater the inferred trust between them.
There are many, well studied, applications of metric spaces,
including clustering and visualization. Any one of which can
be used on the metric we produce, and we demonstrate the
effectiveness of applying clustering to several real datasets.
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