
Deriving Customized Integrated Web Query
Interfaces

Eduard C. Dragut #1, Fang Fang #2, Clement Yu #3, Weiyi Meng ∗4

#Computer Science Department, University of Illinois at Chicago, USA
1edragut@cs.uic.edu, 2ffang@cs.uic.edu, 3yu@cs.uic.edu

∗Computer Science Department, SUNY at Binghamton, USA
4meng@cs.binghamton.edu

Abstract— Given a set of query interfaces from providers
in the same domain (e.g., car rental), the goal is to build
automatically an integrated interface that makes the access to
individual sources transparent to users. Our goal is to allow users
to choose their preferred providers. Consequently, the integrated
interface should reflect only the query interfaces of these sources.
The problem scrutinized in this work is deriving customized
integrated interfaces. On the hypothesis that query interfaces on
the Web are easily understood by ordinary users (well-designed
assumption), mainly because of the way their attributes are
organized (structural property) and named (lexical property), we
develop algorithms to construct customized integrated interfaces.
Experiments are performed to validate our analytical studies,
including a user survey.

I. INTRODUCTION

With each application domain (e.g., real estate) hosting
large and increasing number of sources, it is rather unrealistic
to expect a user to probe each source individually. One
way of enabling users to access these sources uniformly and
effectively is the construction of an integrated query interface
that acts as a one-stop gateway to disparate relevant sources
in the same application domain. Recent research [2], [6], [8],
[12] has focused on facilitating users to exploit the content
of the numerous web databases as a whole, in contrast to our
goal in this work—allow users to choose the ones relevant to
them. We see this accomplished by customizing the integrated
interface to a user’s needs. Specifically, even though a meta-
search engine may cover a large number of providers, give the
user the ability to create a customized view that reflects the
providers of her choice. We describe a scenario demonstrating
the usefulness of such a view in practice.

Companies bundle themselves in groups of interests offering
complex services with the goal of tightly coupling their
clients with their services so that the clients would not look
for alternatives offered by competitors. Marriott Rewards or
Holiday Inn’s Priority Club are examples of such groups in the
hotel industry. These groups run special membership programs
(e.g., rewards programs: free nights, miles) to entice customers
to use their services. Consequently, many users ignore the low
price criterion when it comes to room reservations and prefer
to use the same group so that they build up their membership
status. This adds a twist to the integration process that the
current approaches (regardless of the domain: e.g., query
interface, schema integration) [3], [6], [8], [9] do not support:
tailoring on-the-fly the integrated model to the user specific

needs. As an example, if the user wants to search among the
partners of Marriott only then the integrated interface should
reflect providers like Courtyard, Renaissance, or Fairfield Inn.

After a user specifies the search engines to be integrated,
there are two ways to dynamically obtain a customized inte-
grated interface:
1) create it from scratch on demand from the given individual

user interfaces, called bottom-up,
2) create it by deleting unwanted fields from an existing

integrated interface that comprises as many interfaces in
the same application domain as possible, called top-down.

In the bottom-up approach we can apply any existing inte-
gration algorithm [5], [8]; there are a number of disadvantages,
though. First, as it will be shown in Section 4, automatic
labeling of certain attributes of the integrated interface may not
be possible for the bottom-up approach, but it may be possible
for the top-down approach. Second, building an interface
with the bottom-up approach may take even minutes, whereas
with the top-down approach this can be accomplished in
milliseconds (see Section 5). Hence, the bottom-up approach
is not feasible for real-time applications.

In practice, a hybrid approach should be taken. That is,
given an application domain D, we apply the bottom-up
approach [5], [6] to construct the integrated user interface for
D. The resulting user interface may not be properly designed.
Some manual adjustments by a designer may be needed (e.g.,
adding missing labels to fields). This is a one-time effort.
When a user wants a customized user interface for the a subset
of interfaces Q in D, the top-down approach is dynamically
invoked to produce the desired integrated user interface from
the integrated interface of D.

The contributions of this paper are:
• To our knowledge, we are the first to introduce the notion

of customizing an integrated user interface and provide a
practical way (the hybrid approach) to construct such a user
interface.

• We perform experiments on 9 domains comparing the top-
down and bottom-up approaches. Experimental results show
that the former approach is superior and suggest a hybrid
approach is desirable in practice.

The paper is structured as follows. Section 2 discusses
related work. Section 3 introduces the main concepts. Section
4 presents the top-down approach. Experimental results are in
Section 5. Section 6 is the conclusion.

2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology

978-0-7695-3801-3/09 $26.00 © 2009 IEEE

DOI 10.1109/WI-IAT.2009.115

685

2009 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology - Workshops

978-0-7695-3801-3/09 $26.00 © 2009 IEEE

DOI 10.1109/WI-IAT.2009.115

685

Fig. 1. Example of query interface.

II. RELATED WORK

The goal of recent research projects on Deep Web [2],
[6], [7], [8], [10], [12] has been to enable a uniform access
to the large amount of data behind query interfaces. The
most advocated approach is to undergo integration domain-
wise. Our work addresses one step among several that need
to be completed to make such integration practical. First,
query interfaces are identified, extracted from the relevant
Web pages [4] and clustered on subject domains [2]. Second,
equivalent fields of different query interfaces in the same
domain are matched [7], [11]. Third, for each domain a unified
interface [5], [6], [8] is constructed. This is the main focus
of the paper. Fourth, a user’s query on the unified interface
is translated to queries against interfaces of specific sources
[12]. Last, returned data by individual sources needs to be
correctly extracted and the results ranked in descending order
of desirability (e.g. price).

III. TECHNICAL PRELIMINARIES

We now provide the definitions of the structural and lexical
properties of query interfaces used in the rest of the paper.

Informally, a group [5] is a sequence of adjacent sib-
ling leaves within the integrated interface derived from sets
of siblings of the source interfaces. For instance, in Fig.
2, {Company Name, Occupation}, {Name of Company,
Time at Company, Business Phone} and {Employer
Name, Length of Employment} are sets of adjacent leaves
in the Chase, HSBC and NCL, respectively. They lead to the
group [Occupation, Company Name, Time at Company,
Business Phone] ([] denotes a sequence), where all the
adjacent leaves in the three sets remain adjacent.

Ancestor-descendant relationships among attributes in
source interfaces need to be preserved in the global interface
as they convey significant semantic information. For instance,
we know that Address (along with its children) mentioned in
the interface Chase (Fig. 2) is a company address because
Address is a descendant of Employment Information. By
preserving this hierarchical relationship within the integrated
interface a user would also know that Address refers to the
address of a company.

An integrated interface has a horizonal consistency, if the
labels of leaves in the same group have certain linguistic
relationships [5]. For instance, Adults, Seniors, Children are
all plurals. An integrated interface has vertical consistency,
if for any two internal nodes v and w, v an ancestor of
w, the label of v is semantically more general than one of
w. An integrated interface is weakly consistently labeled
if it has both vertically and horizontally consistent labeling.

Fig. 2. Example of user interfaces.

The interface is inconsistently labeled if it is not weakly
consistently labeled.

IV. DERIVING INTEGRATED INTERFACES

In this section, we establish the following key result: If
an integrated query interface can be constructed for a set
of interfaces while satisfying the grouping constraint, the
ancestor-descendant relationships and the labeling consisten-
cies, then an integrated interface for a subset of interfaces
can also be built obeying the two structural constraints and
the labeling properties. Thus, customized integrated interfaces
can be dynamically obtained in practice. We first analyze the
properties of the structural component.

Lemma 1: Suppose an integrated query interface I for the
set of interfaces QI obeys (1) the grouping constraints and (2)
all ancestor-descendant relationships in the individual schema
trees. Then for any Q ⊆ QI, |Q| ≥ 2, there exists an
integrated interface obeying the two properties w.r.t Q.

Sketch of Proof : The proof is by construction. We build
an integrated interface, called IQ, for the set of interfaces in
Q from the integrated interface of QI, I, and show that this
obeys the two structural properties. The construction algorithm
has three steps:
1) Remove the leaves in I that do not appear in any schema

tree in Q. Also, recursively remove all “fake” leaves. A
“fake” leaf is an internal node in I that becomes a leaf
during the removal process.

2) Collapse an internal node with its child whenever the child
is its sole child. It needs to be applied recursively.

3) Split up the groups w.r.t Q that share the same parent
node w.r.t QI . Also, split up a group from an isolated leaf
whenever they share the same parent node.
A leaf is isolated if it does not belong to any group and it
is not a child of the root in any of the source query
interfaces (e.g., node Fa in Fig. 3a) is isolated).
Example 1: To illustrate the algorithm, we create a

synthetic example depicted in Fig. 3. The integrated interface
is shown on the left. Its groups are {[Da, Db, Dc, Dd, De,
Df], [Ea, Eb], [Ha, Hb], [Ga, Gb]}. Suppose the groups w.r.t
Q are {[Da, Db], [Dd, De]}. The isolated leaves w.r.t Q are:
Df, Hb. Marked in grey are the leaves of the tree that will be
removed. After the remove step, the new intermediate

686686

Fig. 3. Example of construction by pruning using Lemma 1.

Fig. 4. Example of bottom-up construction.

integrated schema tree has only the leaves of the schema
trees in Q and the “fake” leaves (Fig. 3b)). All fake leaves
need to be removed. Each internal node having only one
child needs to be collapsed with its child. The nodes on the
path from E to Hb are recursively collapsed. The new
intermediate integrated schema tree is shown in Fig. 3c).
Since [Da, Db] and [Dd, De] are groups w.r.t. Q, and they
share the same parent node, D, they need to be separated.
The final integrated interface is shown in Fig. 3d). Note that
[Da, Db, Dd, De, Df] may be left as children of the same
parent as the larger group was validated w.r.t. the original
integrated interface.

The construction algorithm in the proof of the lemma gives
us a useful tool in practice. One scenario is when an integrated
query interface for a subset of interfaces from a predefined set
of interfaces needs to be generated upon user request.

Construction by pruning: We investigate the issue of
constructing customized integrated query interfaces by prun-
ing from an existing one, rather than bottom-up. Using the
example in Fig. 2 we show why the automatic labeling of
certain attributes in an integrated interface may not be possible
for a given set of query interfaces. Suppose the application
domain consists of two interfaces: Chase and NCL (Fig.
2). We are required to construct a unified interface for them.
We will get the interface called Integrated bottom-up (Fig.
4), which does not have labels for its internal nodes. For
instance, for the parent node of the field Occupation we
have only two choices of labels: Company Information and
Employment Information. To choose any of them we need
to show that they semantically cover [6] the following set of
descendant leaves {Occupation, Company Name, Length of
Employment, Company State, Company City, Company
Street, Company ZIP}. The former label semantically covers
all the leaves in the set but Occupation and the latter label
semantically covers all the leaves in the set but Length
of Employment. The knowledge from the three interfaces
is not sufficient (there is no lexical or ancestor-descendant
relationship between the two labels) to show that at least one

Fig. 5. Example of construction by pruning.

of the labels covers both fields.

Assume now that the application domain is larger, having
all four interfaces in Fig. 2, and we are required to derive on-
the-fly a unified interface for the subset of interfaces Chase
and NCL. With the top-down approach we first build the
integrated interface for all four interfaces and, on demand, we
derive (extract) from it the unified interface for the subset of
interfaces at hand. The construction algorithm is presented in
the proof of Lemma 1. The unified interface obtained for the
two interfaces with this technique is depicted in Fig. 5. It is
obtained by pruning out all elements of MBNA and HSBC that
do not appear in the other interfaces. This has better properties
than the previous interface, shown in Fig. 4. For example, it
has labels for the internal nodes while the other does not.

Proposition 1: Suppose there exists an integrated query
interface for QI that (1) satisfies the structural constraints
in the individual schema trees (i.e. grouping and ancestor-
descendant) and (2) it has a (weakly) consistent solution.
Then for any Q ⊆ QI there exists an integrated interface
obeying the structural constraints w.r.t Q and it has a (weakly)
consistent solution w.r.t QI.

The consistency is validated against QI and not against Q.
This is an acceptable solution given that a consistent solution
cannot always be reached by employing only the interfaces
in Q. Although the vocabulary increases from Q to QI it
is still within the same application domain and, therefore,
the current words remain unambiguous. The labeling can be
refined, however, once the pruning is completed since at each
internal node of the unified interface of QI we keep track of
all the candidate labels. Therefore, labels that belong to the
interfaces of Q can be used.

V. EXPERIMENTS

We describe a set of experiments that validate the following
claims: (1) the integrated interfaces generated by the top-down
approach are qualitatively superior to those generated by the
bottom-up approach and (2) the top-down algorithm produces
customized integrated interfaces on-the-fly. Thus, in practice
the bottom-up approach is used to assist a designer to construct

687687

Fig. 6. Easiness Fig. 7. Preference w/o manual Fig. 8. Preference w/ manual

an integrated interface for an application domain and the
top-down approach is employed to dynamically generate the
customized integrated user interface for a subset of interfaces
in the domain. The bottom-up construction is accomplished
with the merge and labeling algorithms depicted in [5], [6].

The testing data set consists of 220 sources over 9 real-
world domains on the Web. Two experiments are performed:
one to evaluate the efficiencies of the algorithms and the other
to evaluate their qualities.

Efficiency: The pruning algorithm generates a unified inter-
face almost instantaneously (average time over 450 runs (50
runs per domain) is 1.6 milliseconds, with the standard devi-
ation of 1 millisecond) while the bottom-up algorithm takes
on average 1.8 minutes (the standard deviation is 3.4 minutes)
to generate a unified interface. In some domains, the bottom-
up may even take between 5 and 10 minutes (e.g., Alliances,
Credit Card). This supports our on-the-fly statement regarding
the top-down customization. The difference is that the bottom-
up approach has to compute both the integrated interface and
the labels of all the nodes from scratch while the top-down
approach does not (Lemma 1 & Proposition 1).

Quality (User Survey): We undertook a user survey to eval-
uate three algorithms: bottom-up, top-down with and without
manual intervention. 15 people participated. In the top-down
approach with manual intervention, the integrated interface
of D was modified manually before the pruning algorithm
was applied, while in the top-down approach with manual
intervention, it was not. The survey was designed as follows.
In Car Rental and Hotel, we randomly picked 5 out of 20 and
10 out of 30 source interfaces, respectively. In the Alliances
domain, for each alliance, i.e., Star Alliance, SkyTeam and
Oneworld, we constructed its unified interface by applying
bottom-up and top-down algorithms. This domain has 50
interfaces. There are 5 subsets of query interfaces—one in
Hotel, one in Car Rental and three in Alliances. For each
subset three integrated interfaces were created with the three
algorithms. In total, 15 unified interfaces were used for the
survey. They were deployed online [1] and the users were
asked the following simple questions. First, each of the 15
interfaces was shown individually and users were asked: “Is
the interface easily understood?”. The graph in Fig. 6 shows
the outcome to this question. The bar on the left represents
the percentage of people that found the unified interface con-
structed bottom-up easy to understand. The bars in the middle
and on the right represent similar percentages for the interfaces
derived by the top-down approach without and with manual
intervention, respectively. The graph shows an overwhelming
easiness of understanding an interface derived top-down over

bottom-up, regardless of the manual intervention.
Second, for each of the five scenarios the integrated in-

terfaces constructed bottom-up and top-down without manual
intervention were shown side by side and the user was asked:
“Which one do you prefer?”. There are three possible answers:
prefer left, prefer right or no preference, where left and right
represent bottom-up and top-down, respectively. The users are
not aware what left and right denote. Fig. 7 summarizes the
results. From left to right, the bars represent the percentage
of people preferring bottom-up, preferring top-down and with
no preference, respectively. The interfaces derived top-down
are significantly preferred over the ones constructed bottom-
up. Third, we performed the same experiment for bottom-up
and the top-down with manual intervention algorithms. The
outcome of the experiment is shown in Fig. 8. The salient
observation is that no user expressed a definite preference for
the interfaces created by the bottom-up approach.

VI. CONCLUSIONS

The customization (derivation) of integrated query interfaces
is the central problem tackled in this paper. We argued that:
The top-down approach yields qualitatively better integrated
user interfaces than the bottom-up approach. We suggest using
a hybrid approach in practice, where the bottom-up approach
is used to assist a designer to construct an integrated interface
for a given application domain and then the top-down approach
is employed to produce automatically a customized interfaces.

Acknowledgements: This work is supported in part by the
following NSF grants: IIS-0414939 and IIS-0414981.

REFERENCES

[1] http://www.cs.uic.edu/∼edragut/QIProject.html.
[2] L. Barbosa, J. Freire, and A. Silva. Organizing hidden-web databases

by clustering visible web documents. In ICDE, 2007.
[3] P. Buneman, S. Davidson, and A. Kosky. Theoretical aspects of schema

merging. In EDBT, 1992.
[4] E. Dragut, T. Kabisch, C. Yu, and U. Leser. A hierarchical approach to

model web query interfaces for web source integration. In VLDB, 2009.
[5] E. Dragut, W. Wu, P. Sistla, C. Yu, and W. Meng. Merging source query

interfaces on web databases. In ICDE, 2006.
[6] E. Dragut, C. Yu, and W. Meng. Meaningful labeling of integrated

interfaces. In VLDB, 2006.
[7] B. He and K. Chang. Statistical schema matching across web query

interfaces. In SIGMOD, 2003.
[8] H. He, W. Meng, C. Yu, and Z. Wu. WISE-integrator: An automatic

integrator of Web search interfaces for e-commerce. In VLDB, 2003.
[9] R. Pottinger and P. Bernstein. Merging Models Based on Given

Correspondences. In VLDB, 2003.
[10] J. Wang, J.-R. Wen, F. H. Lochovsky, and W.-Y. Ma. Instance-based

schema matching for web databases by domain-specific query probing.
In VLDB, 2004.

[11] W. Wu, A. Doan, and C. Yu. Webiq: Learning from the web to match
query interfaces on the deep web. In ICDE, 2006.

[12] Z. Zhang, B. He, and K. Chang. Light-weight domain-based form
assistant: querying web databases on the fly. In VLDB, 2005.

688688

