D be GenEve

Chapitre d'actes 2009 Published version

This is the published version of the publication, made available in accordance with the publisher’s policy.

Di Marzo Serugendo, Giovanna; Puviani, Mariachiara; Cabri, Giacomo

How to cite

DI MARZO SERUGENDO, Giovanna, PUVIANI, Mariachiara, CABRI, Giacomo. Methodologies for Self-
Organising Systems: A SPEM Approach. In; 2009 IEEE/WIC/ACM International Joint Conferences on
Web Intelligence and Intelligent Agent Technologies - WI-IAT'09 Workshops (Vol. 2). Milan (ltaly).
Washington : IEEE Computer Society, 2009. p. 66—69. doi: 10.1109/WI-IAT.2009.128

This publication URL: https://archive-ouverte.unige.ch//unige:48316
Publication DOI: 10.1109/WI-IAT.2009.128

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch//unige:48316
https://doi.org/10.1109/WI-IAT.2009.128

2009 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology - Workshops

Methodologies for self-organising systems: a SPEM approach

Mariachiara Puviani
Dept. of Information Engineering,
Univ. of Modena and Reggio Emilia,
Modena, Italy
mariachiara.puviani@unimore.it

Abstract

We define 'SPEM fragments’ of five methods for devel-
oping self-organising multi-agent systems. Self-organising
traffic lights controllers provide an application scenario.

1. Introduction

A large amount of work has focused on translating
natural self-organising mechanisms into artificial systems.
These developments remain ad hoc solutions, usually highly
dependent on finely tuned parameters. To convince potential
industrial buyers of such an approach, more systematic
development and validation techniques are needed. Different
existing methodologies can be helpful, but not every method-
ology provides a solution to any problem in any context. It
is therefore convenient to join reusable method fragments
from existing methodologies. This combines the designer’s
need for a specific methodology with the advantages and the
experience of existing and documented methodologies. The
SPEM (Software Process Engineering Metamodel) specifi-
cation! provides a complete Meta Object Facility* based
metamodel, used to describe method fragments. We choose
the FIPA? type, even though others exist. SPEM is structured
as an UML profile, which facilitates the integration of
different methodologies.

We report five software engineering techniques, define
relevant SPEM fragments (sections 3-7) and apply them to a
common self-organisation problem (section 2). Conclusions
are in section 8. Abbreviations: DL for deliverables, PC for
preconditions, and GL for guidelines.

2. Case study - Traffic Lights Control

We consider a system composed of cars and traffic light
controllers (TL) disposed in a grid as shown in Figure 1. The
global goal of the system is to optimise traffic throughput.
Cars need to reach their destination as fast as possible
without stopping; TLs need to allow vehicles to travel as
fast as possible while mediating their conflicts for space
and time at intersections. Traffic lights are independent of

1. http://www.omg.org/spec/SPEM/
2. http://www.omg.org/spec/MOF/2.0/
3. http://www.fipa.org/activities/methodology.html

978-0-7695-3801-3/09 $26.00 © 2009 IEEE
DOI 10.1109/WI-IAT.2009.128

Giovanna Di Marzo Serugendo,
Regina Frei
Computer Science and Information Systems,
BBK College, London, United Kingdom
dimarzo@dcs.bbk.ac.uk, regina.frei @uninova.pt

Giacomo Cabri
Dept. of Information Engineering,
Univ. of Modena and Reggio Emilia,
Modena, Italy
giacomo.cabri@unimore.it

each other, and the global system behaviour will appear
from the traffic flow of the whole system. To simplify the
system, cars travel along horizontal and vertical lines only.
TLs synchronise with each other (two by two) using the
traffic flow information given by cars that pass by.

@3) (?ﬁ\m
b b
o
NP ﬁz/

Figure 1. Traffic lights case study

3. Adelfe

ADELFE [5] is based on the RUP (Rational Unified Pro-
cess) and on the AMAS (Adaptive Multi-Agent System) the-
ory. During cooperation an agent tries to anticipate problems,
detect cooperation failures (Non Cooperative Situations -
NCS) and repair them. An AMAS agent is autonomous and
unaware of the global function of the system; it can detect
NCSs and acts to return to a cooperative state. Adelfe is
divided into six phases or Work Definitions (Figure 2); each
phase consists of several activities (A).

A1 Define user requirements

AZ: Walidate user requirements

AZ: Define consensual requirements
A4 Establish keywords set

AL Extract limits and constraints

A10: Analyse the domain
A1 Verify AMAS adequacy
A12: |dentify agents

A130 Study interactions

WD WD2
Preliminary (- Final [wo3 [Wh4 [

Analysis Design
requirements requirements

WDS5, WD6
Implementation, Test

A4 Architecture and multi-agent model
A5 Interaction language

A6 Agent design

AT Fast prototyping

AB: Characterise environment
AT: Determine use cases and NCS
AB/9: Elabaorate/validate Ul prototypes

Figure 2. The ADELFE methodology [5]

IEEE
computer
® psouety

Case study*: The stakeholders are TLs and cars. The
AMAS adequacy is verified by answering questions of both
global and local scope. Among others: ’Is the environment
dynamic?’ and ’Is the system linear?’. We identify two NCS:
1) when the horizontal flow is equal to the vertical one, the
TL prioritises one direction; 2) when the number of cars
exceeds a chosen threshold, further cars are prevented from
entering the system.

SPEM: Environmental Description Fragment (A6 — Fig-
ure 3a). DL: an environment definition document and UML
diagrams (scenarios) which describe the situation in the
environment. PC: a requirement set document that defines
the system requirements. GL: determine entities, define the
context and characterize the environment.

X

Enwrcnmem a) b)
Analysis

=N 3

Requlrements Set

/f Character;e\

Environment
Environment

Definition

Environment

Analyst
» Environment
Definition
[Complete]
Functional
-—> @j Definition
Delermlne Model

Use Cases

Environment
Definition

N
@

Scenanos

®

Figure 3. (a) Environment Description Fragment, (b)
Use Cases Description Fragment

Use Cases Description Fragments (A7 — Figure 3b). DL:
a functional description model, and the now completed
environment definition document. PC: the preliminary en-
vironment definition document. GL: draw up an inventory
of the use cases, identify cooperation failures and elaborate
on sequence diagrams.

Adequacy Verification Fragment (A1l — Figure 4a). DL:
the final AMAS adequacy synthesis document. PC: the
preliminary software architecture document, described in the
Adelfe domain description fragment. GL: verify the AMAS
adequacy at local and global level.

Agent
Analyst

Z Venfy the AMAS \ Y
Adequacy ——7

AMAS Adequacy
Synthesis [final]

Software Architecture

[prellmmary] t *

Agent @) b)

Analyst Eﬁ
Software
Architecture
[preliminary]

5

AMAS Adequacy
Synthesis [final]

— Software
= Architecture
[including agents]

)
®

Identify Agents

Figure 4. (a) Adequacy Verification Fragment, (b) Agent
Identification Fragment

Agent Identification Fragment (A12 — Figure 4b). DL: the
software architecture document, including the agents. PC:
the preliminary software architecture document and the final
AMAS adequacy synthesis document. GL: study the entities
in their context, identify the potentially cooperative entities
and define the agents.

4. We used the toolkit on http://www.irit.fr/ADELFE/Download.html

67

4. The Customised Unified Process

The Customised Unified Process (CUP) [1] is an itera-
tive process that provides support for the design of self-
organising emergent solutions in the context of an engineer-
ing process. It is based on the Unified Process (UP), and is
customised to explicitly focus on engineering macroscopic
behaviour of self-organizing systems (see Figure 5).

f‘ A l
\Venhua[\un &
Design \rnplemenlallun - .
Testing /

Scientific

Identify
Macrescopic
Properties

Reuulremen[s\
Analysis /

Feedback

Analysis of
Arcnileclural Detailed Macroscepic
/ _‘D/esw_qn Design Properties

~ Best Prachce
" Experience as Patterns
‘ & Information Flows

cuslomisation te address
macrescopic properties

Figure 5. Customized Unified Process Methodology [1]

Requirement Analysis phase: the problem is structured
into functional and non-functional requirements, using tech-
niques such as use cases, feature lists and a domain model
that reflects the problem domain. Macroscopic requirements
(at the global level) are identified. Design phase: split
into Architectural Design and Detailed Design addressing
microscopic issues. Information Flow (a design abstraction)
traverses the system and forms feedback loops. Locality is
"that limited part of the system for which the information
located there is directly accessible to the entity’ [1]. Activity
diagrams are used to determine when a certain behaviour
starts and what its inputs are. Information flows are enabled
by decentralised coordination mechanisms, defined by pro-
vided design patterns. Implementation phase: the design is
realised by using a specific language. When implementing,
the programmer focuses on the microscopic level of the
system. Testing and Verification phase: agent-based simu-
lations are combined with numerical analysis algorithms for
dynamical systems verification at macro-level.

Case Study: The TLs are defined as agents; cars are
considered as entities. The circles around the TLs define
the localities (Figure 1). The main goal can be decomposed
into sub-goals, which consist of flow optimisation for each
TL. The information needed for each TL is the status of
its light, and the horizontal and vertical flow in its area.
We chose gradient fields as patterns of decentralised coor-
dination mechanism. Traffic flow automatically propagates
information between TLs.

SPEM: The following fragments were extracted from the
architectural design phase of the CUP.

Locality Identification Fragment (Figure 6a). DL: a UML
diagram (e.g. an activity diagram) and a localities model.
PC: a system requirement document that defines the system

requirements given by the users, and an agent model. GL:
determine localities for each agent.

Agent
Agent a) b) = * Analyst
Analyst System =
* ﬁ Requirements ?
System E ' qgu
Requirements ? Agent Model
N, Decompose Behaviour Localities
. T > ' Model
— |
Localities Model b
Identify Localities \y.\ () D —_
-/ "
Identify Information Information Flow
Model

Figure 6. (a) Locality Identification Fragment, (b) Infor-
mation Flow Definition Fragment

Information Flow Definition Fragment (Figure 6b). DL: a
UML diagram (e.g. an activity diagram) and an information
flow model that describes the information flow in the entire
system, starting from each locality. PC: a system require-
ment document that defines the system requirements given
by the users, and the localities model. GL: first decompose
the system behaviour in sub-goals, then determine the infor-
mation flow.

5. MetaSelf

MetaSelf [2] proposes both a system architecture and
a development process. The MetaSelf system architecture
involves loosely coupled autonomous components, reposi-
tories of metadata and executable policies, and reasoning
services which dynamically enforce the policies on the basis
of metadata values. Figure 7 shows the MetaSelf develop-
ment method. Requirement and Analysis phase: identifies the
functionality of the system along with self-* requirements
specifying where and when self-organisation is needed or
desired. Design phase in two steps: (a) the patterns and
mechanisms decision step: choice of architectural patterns
(e.g. autonomic manager or observer/controller architecture)
and adaptation mechanism (e.g. trust, gossip, or stigmergy)
(b) the application system design step: instantiate the cho-
sen patterns for the specific application, architecture and
policies, design the individual components (agents), select
and describe the necessary metadata. Implementation phase:
produces the run-time infrastructure.

Requirement and Analysis

Design Implementation

* Run-time Infrastructure
- Agents

* Architectural Patterns

« Functionality)
« Self-* Requirements » * Self-Org Mechanism

* QoS .
* Agent/Metadata/Policy Models

- Executable Policies

Figure 7. MetaSelf Development Process

Case Study: Components: The TLs are active, and the
cars are passive entities (they can change their state only due
to environmental change). Self-* requirements: Traffic flow
is optimised as a result of self-organisation. Architectural

Pattern: The generic observer/controller is chosen. Each
TL comes with its observer and controller components.
Self-organization mechanism: Gradient Fields (traffic flows)
created by cars movement. Cars follow gradients, TL react
to gradients by changing lights. Coordination mechanism:
TL knows colour of light in both lanes backwards. Policies:
e.g. Green Wave: ‘Keep green light if TL backwards also
has green light’ or ’If horizontal flow is bigger than vertical
flow (gradients fields), switch the horizontal TL to green and
the vertical TL to red’ and the opposite. Metadata: Traffic
flow on each incoming lane for each TL; distance to car in
each outgoing lane for each TL.

SPEM: Identification of Pattern and Mechanism fragment
(Figure 8a). DL: the architectural design pattern and the
adaptation and coordination mechanism. PC: a list of self-*
requirements which represents the required system propri-
eties. GL: define the self-organisation / self-adaptation archi-
tectural design pattern and the adaptation and coordination
mechanism.

System Analyst |=—
b) =

System a)
% Analyst Architectural =
Self." = Self* E ? Design Pattern E

Requirements Requirements Adaptation and
N \ Coordination

- Mechanism

\} 7)
Define Pattern and Mechanism

i

Architectural Adaptation and

Design Pattern Coordination : &
Mechanism \'/

Define Adaptation
Mechanism N
N Policies Model

Metadata Model Agent Model

Figure 8. (a) Identification of Pattern and Mechanism
Frag., (b) Identification of Software Architecture Frag.

Identification of Software Architecture Fragment (Figure
8b). DL: the metadata model, the agent model and the
policies model. PC: the self-* requirements document, the
architectural design patterns document and the adaptation
and coordination mechanism document. GL: define design
phase entities.

6. A General Methodology

The General Methodology [4] provides guidelines for sys-
tem development in five iterative steps (Figure 9). Particular
attention is given to the vocabulary used to describe self-
organising systems.

| Representation ” Modeling H Simulation ” Application ” Ewvaluation |

Figure 9. Methodology steps, adapted from [4]

Representation phase: the designer chooses an appropriate
vocabulary, the abstractions level, granularity, variables, and
interactions that have to be taken into account during sys-
tem development. The representation of the system should

consider different levels of abstraction. Modeling phase:
a control mechanism is defined, which should be internal
and distributed to ensure the proper interaction between
the elements of the system, and produce the desired per-
formance. The designer should prevent the negative inter-
ferences between elements (reduce friction) and promote
positive interferences (promote synergy). Simulation phase:
the developed model(s) are implemented and different sce-
narios and mediator strategies are tested. Application phase:
develop and test model(s) in a real system. Evaluation phase:
measure and compare performance.

Case Study: Requirements: develop a feasible and ef-
ficient traffic light control system. Representation phase:
modelling on two levels: car level and TL level. Cars try
to maximise their satisfaction (traveling freely and without
stopping at intersections). TLs try to maximise the system’s
satisfaction (all cars travel as fast as possible, and are able
to flow through the city without stopping). Modeling and
simulation phases: Find a mechanism to coordinate TLs so
that these mediate between cars and reduce friction. With
several models iteratively refine granularity and add suitable
rules. See [4] for more.

SPEM: Control Mechanism Definition Fragment (Figure
10). Creates a communication model based on how to
optimize the system, which is relevant for self-organising
systems. DL: a UML diagram which describes the commu-
nication protocol of the control mechanism. PC: an agent
model and a list of constraints. GL: divide the labour, to
promote synergies and reduce friction. The two produced
documents define the model of the specified system and help
during the creation of the communication and control model.

Increasing Synergy ~

System @D

* Analyst /’

— Dewde Labor Communication
=) System _ S model

= constraint \\ﬂ 7777777 = R

ynergy & Control Model
~
Agent -~
Model

= Create
®
Figure 10. Control Mechanism Definition Fragment

LDy

Coordination

Mechanism

Reduce Friction Friction model

7. A Simulation Driven Approach

The Simulation Driven Approach (SDA) to building self-
organising systems [3] uses abstractions to describe the
environment: the Agent & Artefact metamodel. Artefacts are
passive, reactive entities providing services and functional-
ities to be exploited by agents through a usage interface.
Environmental agents are responsible for managing artefacts
to achieve the targeted self-* properties. Environmental
agents are different form standard agents (user agents),
which exploit artefact services to achieve individual and
social goals. SDA is situated between the analysis and the
design phase, as an Early design phase. The models are
analysed using simulation, with the goal to describe the
desired environmental agent behaviour and a set of working

69

parameters (Simulation phase). These are calibrated in a
tuning process (Tuning phase).

Case Study: As this approach is very similar to the one
described in section 6, we do not detail it here.

SPEM: Describe the Environment Fragment (Figure 11).
Useful in systems where the environment plays an important
role, but difficult to combine with fragments from other
methods which do not share this view on the environment.
DL: UML diagrams, the agent model, the artefact model
and the environmental agent model. PC: the system require-
ments. GL: first describe the environment by extracting agent
and artefacts, then create the environmental agents which
manage artefacts to achieve the system’s self-* properties.

Agent Analyst

System E z
5 =l) ~

Requirement5
A -
Agent Model

afa

Artifact Model

o

Environmental

I
Agent Model
= Create \}/

- Environmental
Agents

Descrlbe the
Environmet

Figure 11. Environment Fragment

8. Conclusions

SPEM allows us to extract specific method fragments,
to compare and reuse them. See [6] for more fragments, a
second case study, a comparison of the methodologies and
a fragment composition.

References

[1] T. De Wolf. Analysing and engineering self-organising
emergent applications. PhD thesis, Department of Computer
Science, Katholieke Universiteit Leuven, Belgium, 2007.

[2] G. Di Marzo Serugendo, J. Fitzgerald, A. Romanovsky, and

N. Guelfi. Metaself - a framework for designing and controlling

self-adaptive and self-organising systems. Technical report,

BBKCS-08-08, School of Computer Science & Information

Systems, BBK College, London, UK, 2008.

[3] L. Gardelli, M. Viroli, M. Casadei, and A. Omicini. Design-

ing self-organising environments with agents and artifacts: A

simulation-driven approach. Int. Journal of Agent-Oriented

Software Engineering, 2(2):171-195, 2008.

[4] C. Gershenson. Design and control of self-organizing systems.

PhD thesis, Faculty of Science and Center Leo Apostel for

Interdisciplinary Studies, Vrije Univ., Brussels, Belgium, 2007.

[5] G. Picard and M.-P. Gleizes. The ADELFE methodology-

designing adaptive cooperative multi-agent systems. In

F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors, Method-

ologies and Software Engineering for Agent Systems, pages

157-175. Springer US, 2004.

[6] M. Puviani, G. Di Marzo Serugendo, R. Frei, and G. Cabri.

Methodologies for self-organising systems: a spem approach.

Technical report, BBKCS-09-05, School of Computer Science

& Information Systems, BBK College, London, UK, 2009.

