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Abstract—Most tagging systems support the user in the tag
selection process by providing tag suggestions, or recommenda-
tions, based on a popularity measurement of tags other users
provided when tagging the same resource, like a web-page.
In this paper we investigate the influence of tag suggestions
on the emergence of power-law distributions as a result of
collaborative tag behavior. Although previous research has
already shown that power-laws emerge in tagging systems, the
cause of why power-law distributions emerge is not understood
empirically. The majority of theories and mathematical models
of tagging found in the literature assume that the emergenceof
power-laws in tagging systems is mainly driven by the imitation
behavior of users when observing tag suggestions provided
by the user interface of the tagging system. This imitation
behavior leads to a feedback loop in which some tags are
reinforced and get more popular which is also known as the
‘rich get richer’ or a preferential attachment model. We present
experimental results that show that the power-law distribution
forms when tag suggestions are not presented to the users, and
the power-law distribution does not hold when there are tag
suggestions presented to the user. Furthermore, we show that
the real effect of tag suggestions is rather subtle; the power-law
distribution that would naturally occur without tag suggestions
is ‘compressed’ if tag suggestions are given to the user, resulting
in a shorter long tail and a ‘compressed’ top of the power-law
distribution. The consequences of this experiment show that tag
suggestions by themselves do not account for the formation of
power-law distributions in tagging systems.

Keywords-Distributed information systems; Information re-
trieval; User interfaces

I. I NTRODUCTION

During the last decade the Web has become a space
where increasing numbers of users create, share and store
content, leading it to be viewed not only as an “information
space” [1] but also a “social space” [2]. This new step in
the evolution of the Web, often referred to as the “Web
2.0,” was shaped by the arrival of the different services
that came into existence to support users to easily publish
content on the Web, such as photos (Flickr), bookmarks
(del.icio.us), movies (YouTube), blogging (Wordpress), and
so on [3]. Almost simultaneously with the growth of user-
generated content on the Web came a need create order in
this fast growing unstructured data. Tagging has become the
predominant method for organizing, searching and browsing

online web-pages, as well as any other resource.1 Tagging
refers to the labeling of resources by means of free-form
descriptive keywords. With tagging users themselves anno-
tate resources by tags they freely chose and thus forms a
‘flat space of names’ without the predefined and hierarchical
structure characteristic of classic ‘ontologies’ in knowledge
engineering.

Empirical studies of del.icio.us show that the number of
tags needed to describe a resource consistently converges to
a power-law distribution as a function of how many tags it
receives [4]. We refer to the highest ranked frequencies of
the power-law distribution as the ‘top’ of the distribution, as
opposed to the long tail. Furthermore, we can consider the
formation of a power-law distribution to be ‘stable’ known
as scale invariance. A power-law distribution produced by
tagging is a good sign of stability since, due to scale
invariance, increasing the number of tagging instances only
proportionally increases the scale of the power-law, but does
not change the parameters of the power-law distribution.
Thus, the first step in determining if users have reached a
stable consensus in tagging is the detection of a power-law
distribution from the frequencies of tags [5]. The reasons
behind the emergence of a power-law distribution in tagging
systems are yet unknown, although explanations fall into
two general categories. The first of these explanations is
relatively simple: the tags stabilize into a power-law because
users are imitating each other via tag suggestions put forward
by the tagging system [4]. The second and more recent ex-
planation is that in addition to imitation, the users share the
same background knowledge [6]. However, drawing these
two influences apart has not yet been tested scientifically.
We will proceed to attempt do this after reviewing in detail
the various explanations of the emergence of power-laws in
tagging.

II. M ODELS OF COLLABORATIVE TAG BEHAVIOR

A. Formalizing Tagging

The traditional tripartite model of tagging is well-known.
In essence, in atagging instancea useru appliesn tags
(t1...tn) in order to categorize a given resourcer. There are

1A resource is anything that can be given a URI (Uniform Resource
Identifier, including but not limited to web-pages [1].



three metrics that are often used to describe tagging systems.
The first is thetag-resource distribution, which inspects the
frequency that each tagt1....tn has been applied to a given
resource (such as a web-page)r by a number of distinct users
u1...ux. In general, when we are referring to a distribution
we are referring to the tag-resource distribution. This distri-
bution is graphed by ordering the tagst1...tk in descending
rank order on thex axis against their frequency on they axis.
Further metrics that are of interest to researchers aretag-
growth distributions, which counts the number of distinct
tag assignments over some period of time over all users and
resources in a tagging system. Another distribution is the
tag-correlation distributions, which is the tag frequency for
two tagsti and tj occurring in the same tagging instance.

B. A simple model: The Polya Urn

The most elementary model of how a user selects tags
when annotating a resource is simple imitation of other
users. Note that ‘imitation’ in tagging systems means that the
tags are being reinforced via a ‘tag suggestion’ mechanism,
and so the terms “imitation”, “reinforcement”, “feedback”,
and ‘tag suggestion’ can be considered to be synonymous
in the context of tagging systems. The user can imitate
other users precisely because the tagging systems tries to
support the user in the tag selection process by providing tag
suggestions based on tags other people used when tagging
the same resource. There are minor variants of this theme,
such as the possibility of using a combination of tags of other
users in combination with a user’s own previously used tags.
In most tagging systems like del.icio.us these tag suggestions
are presented as a list of tags that the user can select in
order to add them to their tagging instance. The selections of
tags from the tag recommendation forms a positive feedback
loop in which more frequent tags are being reinforced,
thus causing an increase in their popularity, which in turn
causes them to be reinforced further and exposed to ever
greater numbers of users. This simple type of explanation
is easily amendable to preferential attachment models, also
known as ‘rich get richer’ explanations, which are well-
known to produce power-law distributions. Intuitively, the
earliest studies of tagging observed that users imitate other
pre-existing tags [4]. Golder and Huberman proposed that
the simplest model that results in a “power-law” would be
the classical Polya urn model [4]. Imagine that there is urn
containing balls, each of some finite number of colors. At
every time-step, a ball is chosen at random. Once a ball is
chosen, it is put back in the urn along with another ball of
the same color, which formalizes the process of feedback
given by tag suggestions. As put by Golder and Huberman,
“replacement of a ball with another ball of the same color
can be seen as a kind of imitation” where each color of a
ball is made equal to a natural language tag and since “the
interface through which users add bookmarks shows users
the tags most commonly used by others who bookmarked

that URL already; users can easily select those tags for use in
their own bookmarks, thus imitating the choices of previous
users” [4]. Yet, this model is too limited to describe tagging,
as it features only reinforcement of existing tags, not the
addition ofnew tags.

C. Imitation and The Yule-Simon Model

The first model that formalized the notion of new tags
was proposed by Cattuto et al. [7]. In order for new tags to
be added, a single parameterp must be added to the model,
which represents the probability of a new tag being added,
with the probabilityp̄ = (1− p) that an already-existing tag
is reinforced by random uniform choice over all already-
existing tags. This results in a Yule-Simon model, a model
first employed by Yule [8] to model biological genera and
later Simon to model the construction of a text as a stream
of words [9]. This model has been shown to be equivalent
to the famous Barabasi and Albert algorithm for growing
networks [10]. Yet the standard Yule-Simon process does
not model vocabulary growth in tagging systems very well,
as noticed by Cattuto et al. as it produces exponents “lower
than the exponents we observe in actual data” [7].

Cattuto et al. hypothesize that this is because the Yule-
Simon model assumes users are choosing to reinforce (p̄)
tags uniformly from a distribution ofall tags that have been
used previously, so Cattuto concludes that “it seems more re-
alistic to assume that users tend to apply recently added tags
more frequently than old ones” [7]. This behavior could be
caused by the exposure of a user to a feedback mechanism,
such as del.icio.us tag suggestion system. This suggestions
exposes the user only to a subset of previously existing tags,
such as those most recently added. Since the tag suggestion
mechanism only encourages more recently-added tags to be
re-enforced with a higher probability, Cattuto et al. addeda
memory kernel with a power-law exponent to standard Yule-
Simon model. This means that the weight of a previously
existing tag being reinforced is weighted according to a
power-law itself, so that a tag that has been appliedx steps
in the past is chosen with a probabilitȳp(x) = a(t)/(x+τ),
wherea(t) is a normalization factor andτ “is a characteristic
time scale over which recently added words have comparable
probabilities” [7]. While the parameterp controls the prob-
ability of reinforcing an existing tag, this second parameter
τ , controls how fast the memory kernel decays and so over
what time-scale a tag may likely count as ‘new’ and so
be more likely to be reinforced. As Cattuto et al. notes,
“the average user is exposed to a few roughly equivalent
top-ranked tags and this is translated mathematically intoa
low-rank cutoff of the power-law” [7]. This model produces
an “excellent agreement” with the results of tag-correlation
graphs [7]. It should be clear that the original Yule-Simon
model simply parametrizes the probability of the imitation
of existing tags. The modified Yule-Simon model with a
power-law memory kernel also depends on the imitation of



existing tags, where the probability of a previously-used tag
is decaying according to a power-law function.

D. Adding Parameters and Background Knowledge

Although Cattuto et al.’s model is without a doubt an
elegant minimal model that captures tag-correlation distribu-
tions well, it was not tested against tag-resource distributions
[7]. Furthermore, as noticed by Dellschaft and Staab, Cattuto
et al.’s model also does not explain the sub-linear tag
vocabulary growth of a tagging system [6]. Dellschaft and
Staab propose an alternative model, which adds a number
of new parameters that fit the data produced by tag-growth
distributions and tag-resource distributions better thanCat-
tuto et al.’s model [6]. The main points of interest in their
model is that instead of a new tag being chosen uniformly,
the new tag is chosen from a power-law distribution that is
meant to approximate “background knowledge.” So besides
“background knowledge” (̄p), their model also features the
inverse of “background knowledge,” i.e. the “probability
that a user imitates a previous tag assignment” (p) [6]. In
essence, Dellschaft and Staab have added (at least) two new
parameters to a Yule-Simon process, and these additional
parameters allows the reinforcement of existing tags to be
more finely tuned. Instead of a single power-law memory
kernel with a single parameterτ , these additional parameters
allow the modeling of “an effect that is comparable to the
fat-tailed access of the Yule-Simon model with memory”
while keeping tag-growth sub-linear [6]. The model pro-
posed by Cattuto et al. kept the tag-growth parameter equal
to 1 and so makes tag growth linear top [7]. Yet for us, most
important advantage of Dellschaft and Staab over Cattuto et
al.’s model is that their added parameters lets their model
match the previously unmatched observation by Halpin et
al. of the frequency rank distribution of resources being
a power-law [5]. The match is not as close as the match
with vocabulary growth and tag correlations, as resource-
tag frequency distributions vary highly per resource, with
the exception of the drop in slope around rank 7-10 [5].

E. Research Questions

What unifies all of these models is that they assume that
imitation, usually assumed to be tag suggestions from the
tagging system, has a major impact on the emergence of a
power-law distribution. With concern to the modified Yule-
Simon model and the more highly parametrized model that
takes into account ‘background knowledge,’ different claims
are made of where the imitated tags come from. Cattuto
et al. proposes that they come from a random uniform
distribution of tags while Dellschaft and Staab propose a
more topic-related distribution that itself has a power-law
distribution [6]. However, just because a simple model based
on imitation of tag suggestions can lead to a power-law
distribution does not necessarily mean that tag suggestions

are actually the causal mechanism that causes the power-
law distribution to arise in tagging systems. The research
question posed then is: Is the tag suggestion mechanism,
the main force behind the observed power-law distributions
in tagging systems?

III. E XPERIMENTAL DESIGN

In order to measure the effects of tag suggestions on the
tag behavior of users we developed a Web-based experiment
in which users were asked to tag 11 websites, with two
varying conditions: the ‘tag suggestion’ condition (Condition
A) in which 7 tag suggestions were presented to the user,
and a ‘no tag suggestion’ condition (Condition B) in which
no tag suggestions were presented to the user.

In this experiment we focus on del.icio.us which is the one
of the earliest and well-known tagging systems. Del.icio.us
was the first to introduce a tag based collaborative bookmark
system. Del.icio.us has more than five million users and
150 million tagged URIs and so provides a vast data-set.
The user interface used in our experiment presented the
tag suggestions in a similar way to del.icio.us to avoid
confusion.

The 11 websites used in the experiment were selected
according to two criteria. First, the topics of the websites
needed to appeal to the general public. Second, the website
needed to have over 200 tagging instances. The appeal to the
general public was operationalized by randomly choosing
sites that were tagged with the tag “lifestyle” on del.icio.us.
The tag “lifestyle” is a popular tag with 72,889 tagged
web-pages as of October 2008. This was chosen in order
to not bias our study to one particular specialized subject
matter, and so exclude web-pages on del.icio.us that have a
highly technical content. Specialized content may not lead
to normal tagging behavior from users in the experiment
who might not be familiar with the specialist subject matter.
The second criteria of using only web-pages with over 200
tagging instances was chosen since it has been shown that
stable power-law tag distributions emerge around the 100-
150th tagging [4]. We did not want the tag suggestions to be
from non-stable tag distributions, as it has been shown that
the variance between the top popular tag could vary widely
before 100-150th tag. The 11 websites selected for this
experiment, with the popular tags provided from del.icio.us
and the number tags. Note that while the number of URIs 11
may appear to be small, it is larger than previous experiments
over tag suggestions [11] and was enough to give the
experiment enough power to be statistically significant. It
was far more critical for this experiment to get enough
subjects in order for power-law distributions to be given
the chance to arise without tag suggestion, and this would
require at least 100 experimental subjects tagging each URI.

Figure 1 shows the experimental design. In the ‘no tag
suggestion’ condition (Condition A), as shown in Figure 1, a
user is presented the 11 websites he needs to tag without any



Figure 1. Experimental Design

form of tag suggestions. In the ‘tag suggestion’ condition
(Condition B), also shown in Figure 1, a user is presented the
11 websites with 7 suggested tags. While the details of the
tag suggestion algorithm applied by del.icio.us is unknown,
for our experiment the suggested tags in condition B were
aggregated from del.icio.us and the 7 suggested tags given
by del.icio.us for each of the 11 websites. For the experiment
the 7 popular tags were aggregated and presented to the
participants in manner similar to how tags are suggested to
users of del.icio.us, being shown to the user before they
commence their tagging. Each of the 300 participants was
randomly assigned to either the ‘tag suggestion’ or ‘no tag
suggestion’ condition. Of these 300 users, 78 did not tag
any website (37 in the ‘tag suggestion’ condition, 41 in
the ‘tag suggestion’ condition) and are therefore excluded
from further analysis. The users were randomized over age,
gender, computer, Internet and their past tagging usage.

IV. RESULTS

In total the 222 participants applied 7,250 tags over all
websites in both conditions, with 3,694 tags applied in
the ‘tag suggestion’ condition and 3,556 in the ‘no tag
suggestion’ condition. On average every user in the ‘tag
suggestion’ condition applied32.69 (S.D. = 9.77) tags over
all 11 URIs and for the no tag suggestion conditions32.61
(S.D. = 6.80) tags over 11 URIs.

A. Detecting Power-Law Distributions

The power-law distribution is defined by the function:

y = cx−α + b (1)

in which c and α are the constants that characterize the
power-law andb being some constant or variable dependent
on x that becomes constant asymptotically. Theα exponent
is the scaling exponent that determines the slope of the
distribution before the long tail behavior begins. A power-
law function can be transformed to a log-log scale as in the
following equation:

log(y) = −αlog(x) + log(c) (2)

This equation shows the characteristic property of power-
law function is that when transformed to a log-log scale the
power-law distribution takes the shape of a linear function
with slope α. So transforming a function to a log-log
scale and determining the slopeα is one of the first steps

in examining whether a distribution has a power-law. We
averaged the tag-resource distributions for all 11 web-pages,
and this distribution in log-log space is given in Figure 2.
In a log-log scale,bothconditions appear visually to exhibit
power-law behavior.
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Figure 2. Averaged tag-resource distributions for both experimental
conditions on a log-log scale. The solid line depicts the ‘tag suggestion’
condition, the dotted line the ‘no tag suggestion’ condition.

1) Parameter Estimation via Maximum-Likelihood:The
most widely used method to check whether a distribution
follows a power-law is to apply a logarithmic transformation,
and then perform linear regression, estimating the slope of
the function in logarithmic space to beα. However, this
least-square regression method has been shown to produce
systematic bias, in particular due to fluctuations of the
long tail [12]. To determine a power-law accurately requires
minimizing the bias in the value of the scaling exponent
and the beginning of the long tail via maximum likelihood
estimation. See Newman [13] for the technical details. To
determine theα of the observed distributions, we fitted the
data using the maximum likelihood method recommended
by Newman [13]. Figure 3 shows the differentα parameters
for the ‘tag suggestion’ and ‘no tag suggestion’ conditions,
as well as theα determined via aggregation of tagging
data from del.icio.us for the 11 URIs. Overall, for the
‘no tag suggestion’ condition, the averageα was 2.1827
(S.D. 0.0799) while for the ‘tag suggestion’ condition the
averageα was 2.0682 (S.D. 0.0941). Theα values for
both conditions and the aggregated data from del.icio.us are
situated in the interval[1.732391 < α < 2.249359]. Figure 3
shows that both experimental conditions and the aggregated
data from del.icio.us have similar exponents. Our results
shows that a similarα holds for both the ‘tag suggestion’ and
‘no tag suggestion’ condition. Further updates to determine
if there is an actual difference between the two conditions
as regards if a power-law distribution actually holds.

2) Kolmogorov-Smirnov Complexity: Determining
whether a particular distribution is a ‘good fit’ for a power-



Figure 3. X axis depicts the URI used in the experiment, Y axisdepicts
the differentα values

law is difficult, as most goodness-of-fit tests employ some
sort of normal Gaussian assumption that is inappropriate
for non-normal power-law distributions. However, the
Kolmogorov-Smirnov Test (abbreviated as the ‘KS Test’)
can be employed as a ‘goodness-of-fit’ test for any
distribution without implicit parametric assumptions and
is thus ideal for use measuring goodness-of-fit of a given
finite distribution to a power-law function. Intuitively,
given a reference distributionP (perhaps produced by
some well-known function like a power-law) and a sample
distribution Q of size n, where one is testing the null
hypothesis thatQ is drawn from P , then one simply
compares the cumulative frequency of bothP and Q and
then the greatest discrepancy (theD-statistic) between the
two distributions is tested against the critical value forn,
which varies per function.

For a power-law distribution generating function, we can
get a criticalp-value by generating artificial data using the
scaling exponentα and lower-bound equal to those found
in the supposed fitted power-law distribution. A power-law
is fit to this artificial data, and then the KS test is then
done for each distribution that was artificially generated
comparing it to itsown fitted power-law. Thep-value is
then just the fraction of the amount of times theD-statistic
is larger for the artificially-generated distribution thanthe
D-statistic of the empirically-found distribution. Therefore,
the larger thep-value, the more likely a genuine power-law
has been found in the empirical data. According to Clauset,
“once we have calculated ourp-value, we need to make a
decision about whether it issmall enough to rule outthe
power-law hypothesis” (emphasis added) [12]. The power-
law hypothesis is simply that the distribution was generated
by a power-law generating function. The null hypothesis is
that by chance a function would generate the power-law
distribution observed in the empirical data. We shall also
usep ≤ 0.1.

The KS test for all 11 tagged web-pages, testing both
the ‘tag suggestion’ and ‘no tag suggestion’ condition, is
given in Figure 4. The average D statistic for the ‘no

tag suggestion’ condition is 0.0313 (S.D. 0.0118) with
p = .48(p > .1, power-law found). For the ‘tag suggestion’
condition the averageD-statistic is 0.0724 (S.D. 0.0256)
with p = .08(p ≤ .1, no power-law found). These results
show that the power-law function exhibitedonly in the ‘no
tag suggestion’ conditions is significant, the fit is closer for
the ‘no tag suggestion’ condition than the ‘tag suggestion’
condition. TheD-statistic showed a range from 0.0170 to
0.0552 for ‘no tag suggestion’ condition yet a range of
0.0428 to 0.1318 for ‘tag suggestion.’ Thus, the power-
law only significantly appears without tag suggestions, and
with tag suggestions a power-law cannot be reliably found.
This is surprising, as tag suggestions do not onlynot cause
the power-law to form, but they seems that they somehow
prevent it from being formed. On the other hand, the ‘no
tag suggestion’ condition results in a significantly good fit
to a power-law. Therefore, the result is somewhat counter-
intuitive, as according to our experimental data a simple
tag-based suggestion mechanism is unlikely the main cause
of the power-law formation.
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Figure 4. X axis depicts the URI used in the experiment, Y axisdepicts
the different D Statistics from the KS Test. The dotted line is the ‘no tag
suggestion’ condition, while the solid line is the ‘tag suggestion’ condition.

B. Influence of tag suggestion on the tag distribution

Given that the KS test shows that there is a significant and
perhaps counter-intuitive difference in the emergence of the
power-law distributions between the conditions, we need a
more fine-grained way to tell what the differences are in the
distributions for the two conditions. A number of differing
techniques will be deployed to answer this question.

1) Kullback Leibler Divergence:The Kullback-Leibler
divergence (also known asrelative entropy), which we
abbreviate as ‘KL divergence,’ can be used an intuitive
information-theoretic measure of the distance between two
distributionsP andQ. Unlike many other methods, it takes



the entire distribution (in our case, the long tail is of
particular interest) into account. Note that it is not a true
metric as it is an asymmetric, however, it is a useful measure
of the difference between two distributions as it is a non-
negative, convex function with well-known properties. The
KL divergence is zero if and only if the two distributions
are the same, otherwise a positive distance results that is
larger the greater the divergence between the distributions.
Intuitively in information theory, the KL divergence is the
expected difference in bits required to encode to distribution
Q when using a code based on distributionP . The KL
divergence betweenP andQ is given as:

DKL(P ||Q) =
∑

x

P (x)log(
P (x)

Q(x)
) (3)

The KL divergence (using the ‘tag suggestion’ condition
for P and the ‘no tag suggestion’ condition forQ) for
each URI in the experiment are given in Figure 5. While
some URIs (like number 6 and 7) have almost no difference
between the ‘tag suggestion’ and ‘no tag suggestion’ con-
ditions, other URIs like number 11 have large differences.
This average KL divergence between the ‘tag suggestion’
condition and ‘no tag suggestion’ condition is 0.1617 (S.D.
0.0820 ). This is small but not insubstantial. As shown
in the observation of Figure 2, the long tail of the ‘tag
suggestion’ condition is often shorter than the ‘no tag
suggestion’ condition, while the top of the ‘tag suggestion’
distribution has a higher frequency than the top of the ‘no tag
suggestion’ distribution. The KL divergence takes this into
account, while merely finding theα does not. The effect on
the top of the distribution should be investigated further.

Figure 5. X axis depicts the URI used in the experiment, Y axisdepicts
the different KL Divergence values

2) Ranked frequency distribution:In order to observe
the micro-behavior of the ‘tag suggestion’ and ‘no tag
suggestion’ distributions, we investigate whether or not the
tag suggestion tags are ‘forced’ higher in the distribution,

so leading to a more sparse long tail and an exaggerated top
of the distribution in the ‘tag suggestion’ condition. In order
to provide a measurement of the number of suggested tags
in the top of the distribution, the percentage of suggested
tags that were found in the top 7 and top 10 tags were
calculated. We compared the percentage of suggested tags
in the top 7 and top 10 ranks for both conditions with
del.icio.us. For this we assume that the 7 suggested tags
provided by del.icio.us represent the top 7 tags in the
ranked frequency distribution so that the percentage of
suggested tags in the top 7 and top 10 ranks for del.icio.us
is equal to 100%. We averaged the percentages for all URIs
per experimental condition.

Figure 6. Ranked Frequency Distribution Repeating Suggested Tags

Figure 6 shows that for the percentage of suggested tags
available in the top 7 rank for the ‘tag suggestion’ condition
is 80.51% and for the ‘no tag’ suggestion condition51.93%.
This means that only half of the suggested tags can be
found in the top 7 of the ranked frequency distribution
in the ‘no tag suggestion’ condition. So unsurprisingly, in
the ‘tag suggestion’ condition, we observed more of the
suggested tags than in the ‘no tag suggestion’ condition.
There is an influence of tag suggestions on the ranked
position and the frequency of the suggested tags. Tag
suggestions do influence the tag-resource distribution, as
tag suggestion causes a net gain of nearly one in three tags
being imitated that would otherwise not be. However, when
users are not guided by tag suggestions and tag freely they
still choose for themselves half of the tags that would have
been otherwise suggested had they had a ‘tag suggestion’
mechanism available. Further we look at the availability of
suggested tags in the top 10 as an indication how dispersed
the suggested tags are in the ranked frequency distribution
for both conditions. For the top 10 rank figure 6 shows that
the percentage of suggested tags in the ‘tag suggestion’
condition is 88.30% and for the “no tag suggestion”
condition is61.03%.



3) Imitation Rates: Another metric that measures the
influence of tag suggestion on the tag distribution is the
matching and imitation rate as proposed by Suchanek et
al. [11]. The matching rate measure the proportion of
applied tags that are available in the suggested tags. This
metric provides insight in how the user is influenced by
the tag suggestion provided by the tagging system. For our
experiment thematching rate(mr) is being defined as:

mr(X) =

∑n

i=1
| T (X, i) ∩ S(X) |∑n

i=1
| T (X, i) |

(4)

X denotes the tag suggestion method that is being used in
both our conditions. The ‘tag suggestion’ condition provides
7 suggested tags while the ‘no tag suggestion’ condition
provided no suggested tags. For a given URI,T (X, i)
denotes the set of tags at theith tag entry andS(X) denotes
the suggested tags for that URI. For a tagging instance in
which all tags are given by the suggested tags the matching
rate will be 1.

The matching rate for the 11 URIs in the experiment
and over the both conditions was calculated. The resulting
matching rates can be found in Table I. The ‘no tag sug-
gestion’ condition serves as a reference point. The resultsin
Table I show that users in the ‘tag suggestion’ condition are
being influenced by the appearance of tag suggestions. The
average matching rate for the ‘tag suggestion’ condition is
0.57 (S.D. 0.086) and for the ‘no tag suggestion’ condition
0.35 (S.D. 0.068). The main drawback of the matching rate
is that it can’t account for the application of suggested tags
when tag suggestion is absent.

Table I
MATCHING RATE

URI No. Tag Suggestion No Tag Suggestion
1 0.47 0.31
2 0.57 0.34
3 0.53 0.32
4 0.65 0.48
5 0.45 0.29
6 0.52 0.29
7 0.58 0.38
8 0.65 0.38
9 0.74 0.46
10 0.63 0.30
11 0.59 0.31

This ability to account for tag repetition even when the
tag is missing is given by theimitation rate (ir), defined as
[11]:

αn(S) =
precn(X, S) − precn(NONE, S)

1 − precn(NONE, S)
(5)

With precn(X, S) defined as:

precn(X, S) =

∑n

i=1
| T (X, i) ∩ S | [S(X, i) = S]∑n

i=1
| T (X, i) | [S(X, i) = S]

(6)

The termprecn(X, S) defines the proportion of applied tags
that are available in the single tag suggestion setS. Since
the tagsS in our experiment is always static,precn(X, S)
is equal to the calculation of the matching rate for the
tag suggestion condition in Equation 4.precn(NONE, S)
defines the proportion of suggested tags that are available in
the tags applied by the user when no tag suggestion is given.
This is similar to the calculation of the matching rate for the
‘no tag suggestion’ condition. Therefore we can rewrite the
imitation rate as:

ir =
mr(ConditionA) − mr(ConditionB)

1 − mr(ConditionB)
(7)

Table II shows the imitation rates for the different exper-
imental URIs. An imitation rate of1 will denote full imi-
tation. The results show that users tend to select suggested
tags when the are available with a chance of 1 out of 3 with
a mean imitation rate of 0.36 (S.D. 0.097).

Table II
IMITATION RATE

URI No. Imitation Rate
1 0.22
2 0.35
3 0.29
4 0.35
5 0.20
6 0.34
7 0.31
8 0.42
9 0.50
10 0.48
11 0.43

Combining this insight with our previous work in KL
divergence and looking at Figure 2, it appears that ‘tag
suggestion’ condition ‘compresses’ the distribution thatnat-
urally arises without tag suggestions. This ‘compression’of
the distribution that the ‘no tag suggestion’ generates canbe
defined as highly frequent tags being reinforced more and
less frequent tags reinforced less or not used at all, leading to
more imitation in the top of the distribution and a ‘shorter’
long tail. It is because of this ‘compression’ caused by tag
suggestions that the averaged ‘tag suggestion’ distributions
does not significantly fit power-law distributions while the
averaged ‘tag suggestion’ distribution does fit a power-law
distribution. Taking a ‘scale-free’ power-law as an ideal
stable tag distribution, rather counter-intuitively a simple tag
suggestion scheme based on frequency may actually hurt
rather than help the stabilization of tagging as a power-law
distribution.

V. CONCLUSION

The research presented in this paper provides a first step
that leads to a new interpretation of the accepted theories and
models that explain the emergence of power-laws in tagging
systems. Common wisdom in tagging suggested that the



power-law was unlikely to form without tag suggestions. As
put by Marlow, Boyd, and others, “a convergent folksonomy
is likely to be generated when tagging is not blind,” blind
tagging being tagging without tag suggestions [14]. The
results show that the tags of userswithout tag suggestions
converge into a power-law distribution. Moreover, a power-
law function fits more closelythe behavior of users when
the users arenot given tag suggestions than when the users
are given tag suggestions. This means that tag suggestions
distorts the power-law function that would already naturally
occur when users tag blindly without tag suggestions. These
results are not unexpected. After all,words in natural
language naturally follow a power-law, and there exists
purely information-theoretic arguments why this is the case
[15].

This helps clarify a number of experimental results from
previous experiments in tagging. First, this result clarifies
how the power-law distribution was observed by Cattuto et
al. even before del.icio.us began using tag suggestion via
the tag interface [7]. Second, it also helps explain how the
majority of users in Suchanek et al.’s experiment had a high
matching rate, even when in their report-back most of them
said they didn’t use or even notice tag suggestions [11]. Our
experiment does have a number of limitations, in particular
our experiment should be extended to deal with more web-
pages as well as expert and non-expert users dealing with
different kinds of expert subject matters. In this situation,
tag suggestions may have more of an influence on tagging
behavior. Although the presented results indicate that some
of the previous assumptions underlying the emergence of
power-laws do not hold, a power-law distribution alone does
not provide the necessary information needed to determine
the role of tag suggestion on tag behavior. One line of
research that seems promising is to understand how human
categorize in general, which could easily influence how they
decide which tags to use to annotate web-pages. While the
large amount of tagging data on the web made it easy to
develop simple mathematical models of human behavior, it
seems that a more detailed understanding of what users are
actually doing is needed.
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