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Abstract — Given the overwhelming information appearing in 
the current web environment, recommendations have been 
increasingly applied to assist users in handling with the 
information overload and locating items that interest them. As 
a different way to generate and display recommendations, the 
organization interface has been found being more effective in 
building users’ trust. In this paper, we propose a novel 
approach to generating the organization of recommendations, 
with the goal of making it dynamically adaptive to different 
conditions of user preferences (i.e. “incomplete preferences” 
and/or “preference conflicts”), so as to optimally support 
users’ preference construction process and accurate decisions.    

Keywords - web recommendations, organization interface, 
preference elicitation 

I.  INTRODUCTION 
The recommender system has emerged as an important 

research area in the web environment over the last decade 
[1]. It is a software application that aims to support users in 
efficiently locating their desired items when interacting with 
large information spaces. Most of related systems have been 
oriented to products with low-risks such as music, movies 
and books, for which users’ preferences can be built 
according to their prior usage experiences. However, as for 
products with complex structures and high financial risks 
(e.g. digital cameras, computers, and cars), it is unlikely to 
infer the user’s needs up front given that few people would 
have experienced them before they search for a new one. 
Essentially, the user’s preferences in such product domains 
have been often defined as multi-objective preferential 
decision problems [4,8], since they inherently consist of 
multiple criteria to be satisfied (e.g. the criteria on the 
computer’s price, processor speed, memory, etc.).  

A more intelligent and personalized preference elicitation 
tool is hence necessarily required to help users build 
accurate preference models and maximally improve their 
decision accuracy. According to adaptive decision theory 
[7], human decision process is in nature highly constructive 
and adaptive to the current decision task and decision 
environment, especially when s/he is confronted with an 
unfamiliar product domain or overwhelming information. 
Most of traditional preference elicitation tools nevertheless 
neglect that users’ initial preferences can be uncertain and 
erroneous. They ask users to answer a list of fixed need or 
preference assessment questions to which users may lack 
the knowledge and motivation to respond correctly. On the 

other hand, when a user has established a certain set of 
criteria while they have conflicting values (e.g. higher 
processor speed and cheaper price), a “nothing found” 
message is usually returned as in most of existing e-
commerce websites because the system simply retrieves 
products that exactly match all of the user’s criteria.  

In fact, the two phenomena, “incomplete preferences” 
and “conflicting preferences”, commonly appear at different 
stages of the user’s preference construction process [10]. It 
hence poses the question of how to effectively guide users 
to establish accurate preferences via appropriate and 
informative recommendations. Some approaches, such as 
case-based conversational recommenders and example-
critiquing systems [6,8,11], unfortunately, are limited in 
adapting the generation of their recommendations to the 
variety of user preferences in nature.    

In this paper, we propose a novel approach, called 
adaptive recommendations organization, with three 
principal objectives: 1) personalization and adaptability. 
The recommendation computation is personalized to treat 
different preference conditions separately, considering 
individual requirements and being adaptive within the single 
user’s whole decision session. For instance, when the user’s 
preferences are incomplete, preference suggestions will be 
presented to stimulate users to reveal hidden needs. In 
another condition that no available item is satisfactory with 
all of the user’s current criteria, a partial satisfaction set will 
be returned with suggested tradeoff directions so as for the 
user to adjust her preferences’ weights; 2) organization. 
Recommended items are organized into categories in terms 
of their similar and shared properties, given that the 
structured and organized view has been found to more 
effectively enhance users’ subjective trust constructs and 
have higher potential to increase their decision performance 
[3,9], compared to the list view where items are purely 
listed one by one; 3) explanation. We use explanations not 
only to provide system transparency, but more importantly 
to educate users about the incompleteness and/or conflicts 
appearing in their specified preferences.  

II. ADAPTIVE RECOMMENDATIONS ORGANIZATION 
Owing to the constructive nature of user preference 

establishment, our algorithm is developed to dynamically 
adjust to the user’s current preferences and accordingly 
evoke the appropriate component. More concretely, during 
each recommendation cycle, it first analyzes the user’s stated 
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preferences by far and then determines whether to produce 
recommendations to stimulate users to uncover hidden needs, 
or guide them to revise preferences (if there are conflicts), or 
act with both purposes. The user’s reactions to those 
recommendations will be used by the system to 
automatically refine the user’s preference model and 
compute a new set of recommendations in the next cycle. 
This incremental preference elicitation and recommendation 
process can continue till the user’s preferences are 
maximally complete and precise, at which point the best 
matching product would be the user’s ideally targeted choice. 
In the following, we in detail describe how recommendations 
are computed and organized respectively in “incomplete 
preferences” and “conflicting preferences” conditions.   

A. Modeling User Preferences 
We first model the user preferences over all products 

according to the Multi-Attribute Utility Theory (MAUT) 
under the additive independence assumption [4]. This 
MAUT-based user model is inherently in accordance with 
the most normal and compensatory decision strategy, the 
Weighted Additive Rule (WADD) that explicitly resolves 
conflicting value preferences by considering tradeoffs [7]. 
Each user’s preference model is formally defined as a set of 
pairs {(V1, w1), (V2, w2), …, (Vn, wn)}, where Vi is the value 
function for each participating attribute Ai (normalized 
within the range of [0..1]), and wi is the importance (i.e., 
weight) of Ai relative to other attributes. A utility score of 

each product ( 1 2, ,..., na a a〈 〉 ) (where ai is the product’s 
value on Ai) can be hence calculated with the formula (1), 
which represents its weighted satisfying degree: 
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B. Stimulating Hidden Preferences 
According to adaptive decision theory as well as 

observations from our previous user studies [7,8], the user’s 
preferences are often incomplete and uncertain, especially 
during her initial interaction cycles when she is unfamiliar 
with the product catalog or has not formed strong objectives 
for what she is truly interested in. Our algorithm constantly 
captures such incompleteness through both of the 
preferences the user already stated and the reaction she did 
to the displayed items. Specifically, during one interaction 
cycle, assuming that the user has already stated criteria over 
attributes A* = (Ai1, Ai2, …, Aim), while not on other 
attributes A’ = {Aj, Aj ∈A and Aj ∉A*} (A is the set of all 
attributes), default preferences on the attributes A’ will be 
incorporated for the recommendation computation. For 
example, if the user stated a price range initially but did not 
specify any requirement on the processor speed of PCs 
(either due to unfamiliarity with such feature or lack of 
knowledge about its association with other attributes), the 
system will integrate the default preference on the processor 

speed (e.g. the higher, the better) and then suggest to the 
user for her consideration.  

As indicated by [5], adding default preferences saves the 
user’s effort by allowing her to provide fewer preferences 
initially. We believe that except for this benefit, it could also 
help users become more knowledgeable about the product 
domain and stimulate them to reveal hidden needs when 
concrete example products with such suggestions are 
shown. Furthermore, the cold-start problem, a typical 
phenomenon encountered by related recommender systems 
[1], can be avoided in our approach since even none of 
criteria was specified by the user in the beginning, a set of 
recommendations will be still returned with suggested 
preferences on participating attributes. These suggestions 
are additionally organized by discovering frequently 
associated attributes among the retrieval set and presented in 
the form as “these products have higher processor speed and 
bigger memory that you may like”.    

Formally, we discover association rules between un-
stated attributes, based on which suggestions are made on 
them. The Apiori algorithm (a typical data mining tool to 
discover association rules) has been applied to fulfill this 
task [2]. Each product in the retrieval set (that matches the 
user’s currently stated preferences) is converted into a vector, 
indicating its properties on the un-stated attributes 
(“improved” denoted as ↑ or “compromised” denoted as ↓) 
by comparing each of the attribute values with its average 
across all retrieved products. As an example, one product can 
be formalized as {(processor speed, ↑), (weight, ↑), (memory, 
↓)} (where the three attributes are with un-stated criteria), 
meaning that this product has higher processor speed, lighter 
weight but smaller memory relative to their average values in 
the retrieval set. These product vectors are then inputted to 
the Apriori algorithm so as to identify how different attribute 
properties are associated between one another. The discovery 
of associative properties can hence help the user realize what 
additional benefits she could obtain in the displayed products 
(see the sample interface in Figure 1). 

 
Figure 1. Organization of recommendations to stimulate hidden 

preferences.   
 

Manufacturer = Toshiba  
Price <= 3500

Display size: larger, better 
Installed memory: more, better; 
etc. 

+
User’s current preferences Default preferences on un-stated attributes
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C. Solving Preference Conflicts 
Compete preferences do not mean that they are accurate 

enough. It sometimes happens that there are conflicting 
attribute preferences, so no available item exactly satisfies 
all of them, which indeed also occurs in the condition of 
incomplete preferences where conflicts exist in the user’s 
stated criteria. At this point, the system should be able to 
help the user revise the relative importance (i.e. the weight 
wi in the formula 1), which is in nature a tradeoff process. 
Thus, it can be seen that during this step, the main purpose 
is to adjust weight values, while in section B it is to elicit 
value functions (i.e. Vi(ai) in the formula (1)) on un-stated 
attributes.     

Tradeoff-making involves increasing weights on 
attributes that are more important for the user, while 
accepting compromises with the decreased weights on less 
important ones. We propose different tradeoff directions for 
the user to consider in order to help them decide which 
attribute constraints they would be willing to relax in return 
for ideal matching on more important ones.  

Specifically, a partial satisfaction set is first retrieved 
(which are best nearly satisfying the user’s current 
preferences) and tradeoff relations between conflicting 
attributes among these retrieved products are to be 
discovered. The Apriori algorithm is again employed here to 
determine the association rules, but the inputs to it is 
different from the ones in section B.  That is, each product is 
formally converted into a tradeoff vector containing the 
information of which attribute preferences it satisfies and 
which it does not. For example, one product is formalized 
like {(display size, ↑), (weight, ↑), (processor speed, ↓)} 
(here ↑ means “satisfactory” and ↓ “unsatisfactory”), 
representing that “this product satisfies your preferences on 
display size and weight, but not on processor speed”. All of 
the tradeoff vectors are then transferred into Apriori so as to 
mine the recurring and representative association rules with 
the form of X => Y. Each rule infers that X (with satisfying 
attributes) is frequently associated with Y (dissatisfying 
ones) in the retrieved products. With the presence of these 
rules (see Figure 2), the user could decide the tradeoff she 
would like to accept, e.g. decreasing weights of less 
important attributes (i.e. Y in one rule) and emphasizing on 
more important ones (i.e. increasing weights of attributes in 
X).  

Therefore, such association rules reveal to the user the 
conflicting relations being in her stated preferences and 
indicate different tradeoff directions that she may choose, 
which will result in the refinement of her preference model 
in terms of weight adjustment. Our method can be hence 
regarded as an improvement on purely presenting partially 
satisfied products, through showing the association 
knowledge and revision suggestions.     

The conflicting phenomenon can be easily captured by 
the system when few or no available product is matching to 
the user’s stated preferences. It may also appear 
simultaneously with the observation of “incomplete 

preferences” as described in section B, at which point both 
of preference and tradeoff suggestions will be presented, e.g. 
“these products satisfy your preferences on price, weight, 
but not on processor speed. In addition, they have bigger 
hard capability”. The user can then decide whether to take 
such tradeoff (e.g. lower processor speed for cheaper price 
and lighter weight) and indicate additional interests on other 
previously un-considered attributes (e.g. hard capability). 

 
Figure 2. Organization of recommendations to solve preference 

conflicts. 

D. Organizing and Explaining 
Since a number of association rules will be likely 

returned by the Apriori, it then comes to the step of 
selecting the most prominent ones. Being different from 
standard ranking strategy that simply selects ones with 
lower supports (i.e. lower percentage of products that satisfy 
the rule) [11], our approach is to favor rules with higher 
relative gains (against losses) according to the user’s 
preferences. The score is concretely determined by two parts 
(see the formula (2)): one is the weighted value of the rule, 
and another is the average utility of products satisfying it. 
Formally, each association rule is a set of (attribute, tradeoff) 
pairs, where the “improved”/“compromised” property 
assigned to attribute (in section B) or “satisfactory”/ 
“unsatisfactory” property (in section C) are all unified under 
the term “tradeoff”. Thus, the score of each association rule 
is computed as:     

∑ ∑
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where C denotes the rule (a set of (attribute, tradeoff) pairs) 
and SR(C) is the set of products that satisfy C.  
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 hence computes the weighted sum 

of tradeoff properties involved in C. ( )iw attribute is the 
weight of attributei (default as 3, the middle  point of the 
range from 1 to 5 for attributes without explicitly stated 

Manufacture = Toshiba, Price <= 3500, battery life >= 5 hours, display 
size >= 12 in, hard drive capacity >= 80 GB, etc. 

User’s current preferences: 
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weights) and tradeoffi is default as 0.75 if “improved” or 
“satisfactory”, or 0.25 if “compromised” or “unsatisfactory”. 

| ( ) |1 ( )
| ( ) | ( )

SR C
U r

SR C r SR C
∑

∈  is the average utility (from formula 
(1)) of all the products that satisfy the rule C.  

Diversity is further incorporated in order to avoid 
returning categories of products too similar to each other. 
Concretely, each remaining un-selected category (i.e. one 
association rule with its satisfying products) is computed 
with a diversity degree which indicates its dissimilarity to 
the so-far selected categories. The one with the highest 
unified score (combined with the RuleScore as in the 
formula (3)) will be then selected: 

),()()( SCCDiversityCRuleScoreCF ×=  (3) 
where SC denotes the set of categories selected thus far. 

Thus the first selected category should be the one with the 
highest RuleScore (since its SC is empty), and the 
subsequent category is selected if it has the highest value of 
F(C) in comparison with the current SC set. The selection 
process ends when the desired k categories have been 
determined. The diversity degree of C is calculated as the 
minimal local diversity of C with all categories in the SC set. 
The local diversity of two categories (C and Ci in SC) is 
further defined by two factors (see the formula (4)): the 
diversity between rules themselves and the diversity 
between their associated products (i.e. SR(C) and SR(Ci)).  
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Once the desired k categories have been selected, each 
category containing a group of products sharing the same 
association rule (e.g. {(price, ↑), (weight, ↑), (memory, ↓)}), 
a pre-designed set of explanation templates is used to 
explain the rules in a conversational language so that the 
user may easily understand. Specifically, during this 
explanation step, the property (i.e. ↑ and ↓) assigned to each 
attribute is concretized in terms of its actual meaning. For 
instance, if it is “improved” on an attribute (e.g. processor 
speed), it means it is a suggested preference on this attribute 
and the explanation is hence generated like “higher 
processor speed” by correlating it with the appropriate 
phrase in the pre-designed explanation base. In another case, 
if it is “satisfactory” referring to an attribute value satisfying 
the user’s stated criterion (e.g. on price), the explanation 
outcome will be like “satisfy your preference on price”. The 
explanations of a whole association rule will be displayed as 
a category title to represent its associated products (see 
Figure 1&2).   

III. CONCLUSION 
In this paper, we proposed a new approach to generating 

and organizing recommendations taking into account of 
users’ adaptive preference construction in nature. At 
different stages of the construction process, the preferences’ 
completeness and certainty degrees may vary. They will be 

incomplete in terms of un-stated attributes that the user may 
lack of knowledge. The phenomenon of preference conflicts 
will also appear when no product satisfies all of the user’s 
stated criteria. An adaptive recommender method that can 
dynamically respond to the variety of preference conditions 
should be hence meaningful to help users establish accurate 
preferences accordingly, especially when they are searching 
for less experienced and high involvement products (e.g. 
computers and cars) that standard collaborative filtering and 
content-based recommender systems can not ideally fit for.  

Our algorithm is essentially based on the association rule 
mining technique to discover association rules dependent on 
the current condition of the user preferences. Preference 
suggestions on un-stated attributes are identified to stimulate 
hidden needs, or explanations of partial satisfaction set are 
returned to show tradeoff relations among users’ conflicting 
attribute preferences. We descried the algorithm steps in 
these conditions and illustrated the interface design 
respecting its organization and explanation characteristics. 
For the future work, we will verify our method’s practical 
benefits through both of empirical experiments and user 
evaluations, and will attempt to integrate it in real online 
websites in order to test its stability and scalability.   
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