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Abstract—Measuring Inconsistency in ontologies is an im- be helpful to have some extra information (such as an

portant topic in ontology engineering as it can provide extra ordering on axioms of the ontology) to decide which
information for dealing with inconsistency. Many approaches one is the best. For example, we can first rank the

have been proposed to deal with this issue. However, the . - . istent ontol b Vi th
main drawback of these algorithms is their high computational axioms In an inconsistent ontology by applying the

complexity. One of the main sources of the high complexity is method in [7], then remove or weaken those axioms
the intractability of the underlying Description Logics (DLs). with lower priority to restore consistency. If the in-
In this paper, we focus on an important tractable DL family, consistency degree is low and repairing it is time-

DL-Lite. We define an inconsistency degree of &@L-Lite
ontology based on a three-valued semantics. We also present an
algorithm to compute this inconsistency degree and show that

consuming or error prone, we can tolerate it and apply
paraconsistent semantics (such as the one given in [8])

its time-complexity is PTime in the size of ABox and TBox. to reason with it.
KeywordsMeasuring; Inconsistency DegreeDL-Lite; ontolo- A.numb(.er of proposals hgve been made for measuring
gies; the inconsistency of ontologies [4], [5], [7], [8].- They can
be roughly divided into the following two categories. The
I. INTRODUCTION first one is to counthe minimal number of formulahich

) ) o _are responsible for an inconsistency [4]. The second one is
Inconsistencies frequently occur within the ontology life- 1, computethe proportion of languagthat is affected by the

cycle, such as ontology construction, ontology evolution,cqnsistencies of ontologies [5], [9]. Our approach belongs
and ontology merging. Handling inconsistencies, especiallyyy the second category.

handling logical inconsistency in ontologies is increasingly Deng et al. [7] provided a method for measuring incon-
recognized as an important research topic. When dea”ngistency of axioms to identify which axioms need to be
with logical inconsistency (or inconsistency for short), we removed or modified to resolve an inconsistency. However,
frequently need extra information that can facilitate us tOthejr algorithm needs exponential time in the worst case
choose a proper strategy to resolve this problem. It has bee[|7]_ Qi and Hunter [4] provided a method for measuring
shown that measuring inconsistency in ontologies can projcoherenceof an ontology based on the computation of
vide valuable information for many different inconsistency g| the minimal incoherence-preserving sub-TBox (MIPS)
handling approaches, such as revising ontologies [1], [Zlwhich is a hard task. For example, it has been shown in
debugging ontologies [3], [4] and evaluating inconsistent; o] that computing all the MIPS of an ontology is NP-hard

ontologies [5]. o _ _ for tractable DLEL™. Ma et al. [5] proposed a method for
There are some applications for inconsistency measurgneasuring inconsistency of a DULC knowledge base on
ments. 4-valued semantics, which can be realized by invoking a DL

« Inconsistency measurements enable us to say how “urreasoner [11]. The above approaches to measuring inconsis-
valued” an ontology is by showing how inconsistent tency are usually based on expressive DLs which suffer from
it is [6]. For example, given two ontologie§; and  worst-case exponential time behavior of reasoning [1]. This
K2, suppose that the inconsistency degreéCopfis less  may hinder their applications to ontologies with over large
than that ofiCy, then we can consider that; is more  amounts of data.
reliable than/C,. Recently, there have been some discussions on inconsis-

« Inconsistency measurements can also give guidance tency handling irDL-Lite (see [12]), an important tractable
resolve inconsistency. When resolving inconsistencypPL family, which can keep all the reasoning tasks tractable,
there often have several alternative solutions. It wouldin particular, with polynomial time complexity with respect



Table |

to the size of the ontology [13]. Like other DLs, inconsisten- SYNTAX AND SEMANTICS OF DL-Lite
cies inDL-Lite can also easily occur because disjoint axioms Syntax Semantics
are allowed. The purpose of our research is to investigate A AT C AT
DL-Lite family to see how to compute the inconsistency 3R {d]3e, (d,e) € RT}
degree of aDL-Lite ontology in a tractable way. -A ?’ \ AT 1

In this paper, we propose an approach to measuring the ﬁfDR PIAG X?Z)AI
inconsistency of @L-Lite ontology based on three-valued = (0.0 | (00) € PTY
semantics. Unlike the approach using the sequence of values "y iAI < A}) \ &I
to measure inconsistency in [5], we use a single value to [ B, C B, Bl C Bl
measure inconsistency of @L-Lite ontology. To compute Ri C Ry RICR]
the inconsistency degree of @L-Lite ontology based on (funct R) || Vd,e,e’,(d,e) € RTA(de)ERT —e=¢
multi-valued semantics, one way is to list all models w.r.t a A(a) al € AT

P(a,b) (al,b7) € PT

specific domain to check preferred models and compute the
number of conflicting assertions in such a model. However,
listing all models is not an easy reasoning task even for
tractable DLs likeDL-Lite. To alleviate the problem of where A and P denote an atomic concept and an atomic
intractability, we propose a polynomial-time algorithm to role respectively;B denotes @asic concepti.e., a concept
compute the inconsistency degree ofDa-Lite ontology  of the form A, 3R); R denotes &abasic role (i.e., a role
based on a three-valued semantics by exploring the specifaf the form P, P~), where P~ denotes the inverse of the
feature ofDL-Lite. The main contributions of our paper can atomic role;C denotes ajeneral concepfi.e., a concept of

be summarized as follows: the form B, —B), whereasE' denotes ayeneral role(i.e., a
« We define a three-valued semantics for two importanconcept of the formz, —R).
DLs in DL-Lite family: DL-Liter and DL-Litex. A DL-Lite.,.. TBoxX is a set of inclusion axioms of the

« Given aDL-Lite ontologyO = (T, A), we show thatit form B C C. A DL-Lite.,,c ABox is a set of mem-
is desirable to consider domaif*(A) and (cln(T), A) bership assertions on atomic concepts and atomic roles:
to measure inconsistency. Then we give a definition of4(a), P(a,b), wherea andb are constants.
the inconsistency degree of2_-Lite ontology. DL-Liter extendsDL-Lite.,.. with the ability of specify-
« An algorithm is presented to compute a preferred modeind inclusion assertions between roles of the fafiC E,
for (cIn(T), A) under the three-valued semantics. weWwhereR and £’ are defined as abovBL-Liter extendsDL-
show the correctness of our algorithm and demonstratéitecorc With the ability of specifying functionality on roles
that its time-complexity is PTime in the size of an Or on their inverses. Assertions used for this purpose are
ontology. of the form (funct R) and called functionality assertions.
The rest of the paper is organized as follows. Sectior| f€reinafter, we use the terL-Lite to refer to eitheiDL-
Il presents some basic notions f@L-Lite. Section Il Litér or DL-Litex, we call assertions of the ford, C By
gives a three-valued semantics f@iL-Lite. Section Iv  ©F of the form 2, C R, positive inclusions (Pls), and
introduces our approach to measuring inconsistency for ¥/€ call assertions of the forn, = -5, or Ry C —R,
DL-Lite ontology. Section V gives an algorithm to compute Negative inclusions (NIs). The sema}nn?sDjI-Ln_e IS given
the inconsistency degree and analyzes its computation& Means of an interpretatioh= (A’, "), consisting of a

. . T ) X
complexity. We conclude our paper in Section VI. non—gmp}ymtgrpr_etaﬂon domainA” and aninterpretation
function-* satisfying the conditions in Table I. The function
Il. PRELIMINARIES I assigns to each concept a subsetC! of A!, and to

DL-Lite is a family of DLs that aims to capture some of each roleR a binary relationR?’ over A’. An interpretation
the most popular conceptual modeling formalisms, such agatisfies aDL-Lite ontology K = (7, A) (i.e., a model of
Entity-Relationship model and UML class diagrams, whilethe ontology) if and only if it satisfies each axiom in both
preserving the tractability of the most important reasoning®Boxand TBox An ontology is satisfiable if it has at least
tasks, such as ontology satisfiability. We mainly consider twgPne model. An ontologyC logically implies an assertion,
important DLs inDL-Lite family: DL-Litex and DL-Liter, ~ Written K |= «, if all models of K are also models of. The
[13]. unique name assumption on constants [14] is adaptéalby

The |anguage ODL_Litecore is the core |anguage fdL- Lite. FUrthermOfeDL'LiteR has the finite model property,
Lite}. andDL_LiteR , in which concepts and roles are formed that iS, if aDL'LiteR is ConSiStent, then it has a classical

according to the following syntax: model whose domain is finite [13], [14]. Howevé_-Liter
B does not have finite model property [13].
B— A|dJR R—P|P Calvanese et al. [13] have given a novel property about a

C — B|-B E— R|-R DL-Lite ontology, that is, eDL-Lite ontology K = (7, .A)



is satisfiable iffdb(.A) is a model of(cin(7), .A), where
db(A) = (AP d(A) js an interpretation aboutd
defined as follows:

A%(A) s the nonempty set consisting of all constants
occurring inA;

a®™(A) = ¢, for each constant;

APA) = 4| Aa) € A}, for each atomic concept;
P®A) = {(ay,az) | P(ar,az) € A}, for each atomic
role P.

cln(T) is the Nl-closure of7 defined as follows:

All negative inclusions irnZ” are also incin(7).

All functionality assertions irZ” are also incln(7).

If BiC Byisin7 andBy C —Bs or B3 C =By is in
cn(T), thenB; C —Bs is in cln(T).

If Ri C Ryisin7 anddRy C —B or B C —3dRy is
in cin(7), then3R,; C =B is in cin(T).

If R{ C Ryisin7 and3R, T -B or BC —~3R; is
in cln(T), then3dRy T —B is in cln(T).

If RR C Ryisin7 andRy C —R3 or R3 C =Ry is in
cn(T), thenRy C —R3 is in cln(T).

In the case in whicl is aDL-lite  TBoX, if one of the
assertionsiR C —3R or 3R~ C —3R~ is in cin(7),
then both such assertions arecim (7).

In the case in whicly is a DL-liter TBoX, if one of
the assertionsR C —3dR, 3R~ C —-dR~ or RC —-R
is in ¢ln(7T), then the three such assertions are all in
cdn(T).

Table Il
THREE-VALUED SEMANTICS OF DL-Lite

Constructor Semantics
C CT = (Cp,Cn)whereCp,Cy C AT and
CpUCpn = AT
R RT = (Rp,Ry) whereRp, Ry C AT x AT and
RpURN = Al x A!
R~ (R7)! = (Rp, Ry).whereR,, Ry represent
the inverse relations oRp and Ry, respectively.
-C (=O) = (Cn,Cp)
R (—R)" = (RN, Rp)
IR AR =({z |3y € Al (z,y) € RL},
{o|vy € AI,(LyI) € RLY ]
-3R (—3R)" = {z |Vy € A%, (z,y) € Ry},
{z |3y e Al (z,9) € RLY)
= (=) = (=p,=n), Where=p, =y€ AT x AT

consisting of a non-emptinterpretation domainA’ and an
interpretation function! satisfying the conditions in Table
II. In Table I, we introduce the three-valued semantics to
“="to represent the three-valued semantics of a functionality
assertion. For any given domaify, we assign to “=" an
extended truth valué=p, =), where “=p" stands for the
set of pairs of constants which are equal aad,” stands for
the set of pairs of constants which are not equal. The UNA
can be expressed &g,y € AP (z,y) € proj—((=)).
Based on the three-valued semantics, there are three truth
values for membership assertions. The three truth values are
true, false and contradictory, and we use the symbols

In fact, cin(7) is a special TBox that does not contain Pls?; f,B to denote them respectively [5]. The corresponding
and is obtained by closing the Nis with respect to the p|§hree-valued semantics for concept assertions is given as

in 7.

I1l. THREE-VALUED SEMANTICS FORDL-Lite

follows:
Definition 1: [8] For any given instancea € A’ and
concept named,

To measure the inconsistency of an ontology, we define a * A’(a) =t, iff a € proj*(A’) anda ¢ proj=(A");

three-valued semantics that allows a third truth vatoe-

o Al(a) = f,iff a ¢ proj*(A!) anda € proj—(Al);

tradictory. In this way, three-valued semantics provides an * A’(a) =B, iff a € proj*(A") anda € proj—(A”).
approach to define the inconsistency degree of an ontology. The corresponding three-valued semantics for role asser-

Since we only aim to analyze inconsistency, there is no nee

tlon (or equality “=") can be defined in a similar way.

to adopt other multi-valued semantics, such as four-valued In Table I, we give the three-valued semantics for axioms
semantics which contains a fourth truth value for expressingn DL-Lite [15], where A \ S denotes the complementary
incomplete knowledge. In contrast, three-valued semanticset of a setS w.r.t a domainA. A three-valued model of a
is easier to be used because it does not consider the fourfblL-Lite ontology K is a three-valued interpretatidhwhich

truth valueunknown

For a given domainA and a concepC' (resp., a role
R), a three-valued interpretation ovArassigns ta” (resp.,
R) an extended truth valu&Cp,Cy) (resp.,(Rp, Rn) ),
where Cp is the subset ofA (resp., Rp is the subset of
A x A) that supportsC (resp.,R) to be true andCy is
the subset ofA (resp., Ry is the subset ofA x A) that
supportsC' (resp., R) to be false [8], and the requirement
CpUCy = A (resp.,RpURy = A x A) must hold under
three-valued semantics. We denpte; ™ ((P, N)) = P and
proj— ({(P,N)) = N [8]. The three-valued semantics Df.-
Lite is given by means of an interpretatidn= (A’,.1)

satisfies each assertion and each axiomiCinA DL-Lite
ontology is three-valued satisfiable (unsatisfiable) if there
exists (does not exist) such a model.

Example1l: Given aDL-Lite ontology X = (7, .A),
where7 ={PhDStudC Stud PhDStud— EmployeeStudC
—-EmployeeStud C JhasTutor (funct  hasTutoy},

A {PhDStuda), hasTutofa, b), hasTutofa,c)}. We
can find that it is an inconsistent ontology. Consider
the following three-valued interpretation = (A, .7),
where A = {a,b,c}, PhDStud = ({a}, {b,c}), Stud
({a}, {b,¢}), Employeé = ({a}, {a,b,c}), hasTutof
{(a, ), (a,b)},{(a,a), (b,a), (b,b), (b, c), (c,a),(c,b), (c,c)



Table Il
THREE-VALUED SEMANTICS FOR AXIOMS IN DL-Lite

Syntax Semantics
BCC projT (BT) C proj T (CT)
R C Ry proj ™ (R]) C proj T (R])
(functr) Yz, y, z, (x,y) € projT(RT) A (z,2) € projT(RY)
— (y,2) € proj T ((=)!)
Ala) al € proj*(AI)
P(a,b) (al,bT) € proj (PT)
a=b (aX,b7) € proj T ((=)))
a#b (aT,b") € proj—((=)))
}>' (:)I = <{(a’ a)7 (b’ b)? (C’ C)7 (b7 C)}’ {(a7 b)’ (a7 C)’ (b7 a)’
(b,0),(c,a),(c,b)}). We can find thatl is a three-

valued model of and PhDStud(a) = t,Stud (a) =
t,Employeé(a) = B and (=)!(b,c) = B. It is easy to

obtain three-valued semantics for other atomic assertions.

Because of the uniqgue name assumption of bhelLite,

ConSet!, K) is the set of conflicting atomic assertionskin
From Definition 2, we can deduce thatDd.-Lite ontology
K is inconsistent if and only iConSet/, K) # 0 for every
three-valued model of K.

Example 3 (Example 1 contd.)itis easy to check that
ConSetl, K) = {Employeéa), =(b, c)}.

In Example 1, if we only change the three-valued inter-
pretation ofPhDStudas({a}, {a,b,c}) and obtain another
three-valued interpretation of K. We can find thatl' is
also a three-valued model df. For I', ConSet/’,K) =
{Employeéu),= (b, c),PhDStuda)}. We can obtain that
|ConSetl’,K)| > |ConSetl, K)|. That is, given an ontol-
ogy K and a domain, there may exist different models of
K with different numbers of conflicting atomic individual
assertions.

Definition 3 (Model Ordering): For a DL-Lite ontol-
ogy K = (7,A), let I,I, be two three-valued models

a three-valued interpretation can be a model only if theof K w.rt a domainD, we say I, is preferred tols,
cardinality of its domain is equal to or greater than theWritten /1 =conset 12 if and only if [ConSet/;, £)| <

number of constants in an ontology [5]. For RL-Lite
ontology K = (7, A), A%A) contains all the constants in

|ConSetl,, K)|.

As usual, I{; <conset o denotesl; =conset I2 and

K. In the following, we only consider those domains whosel2 Zconset I1- I1 =conset Iz denotesl; =conset [ and

cardinalities are equal to or greater than that\jf(A).
Proposition1: Any DL-Lite ontology has the finite
model property under three-valued semantics.
Proposition 1 tells us that anpL-Lite ontology has at

Is =consetl1. In the following, we use the model ordering
to define preferred models.

Definition 4: For a DL-Lite ontology X, suppose3-
Modelp () is the set of all three-valued models of

least a three-valued model whose domain is finite. We willC w.rt a domain D. The set of preferred models

use this property to compute preferred modelsDafLite
ontologies later.

Example2: Consider aDL-Liter ontology £ =
(T, A) with T = {A C 3P, 3P~ C A, (funct P7),B C
dP,B C —-A)} and A = {B(a)}. It is easy to see that

K admits only infinite models under classical semanticsK =

However we can give a three-valued modekbhs follows:
I = (A1), where AT = {a}, Af(a) = B,B(a) = t,
Pl(a,a) =t.

IV. MEASURING INCONSISTENCY

In this section, we will give a formal definition of the in-
consistency degree offaL-Lite ontology. We first give some

of K w.r.t domain D, written preferModeb(K) is de-
fined as follows: preferMod%( ) (I | VI «€
3-Model (K) implies I =< conset] }.

Calvanese et al. [13] have proposed an important fea-
ture aboutDL-Lite ontologies, that is, &L-Lite ontology
(T, A) is satisfiable if and only iilb(A) is a model
of (cin(T), A). Therefore, we can check whethebé-Lite
ontology is satisfiable through checking whethi(.A) is
a model of(cIn(T), A). They have also pointed out that a
contradiction on &L-Liter or aDL-Liter ontology exists
only if a membership assertion in the ABox contradicts a
functionality assertion or a NI that is implied by the closure
cln(T). These results motivate us to define an inconsistency

definitions and theorems which will be used to motivate ourdegree by using the domaitb(.4) and (cin(7), A). Before

definition of inconsistency degree.
Definition 2: Let I be a three-valued model of[BL-
Lite ontology K = (7, A) with domain A’, and let £y

we give the definition of inconsistency degree, we would
like to show why it is reasonable to considé#s(.4) and
(cIn(T), A). We first give some properties about the relation

be the set of atomic concepts and roles in ontology. Theyetween (T, A) and (cIn(T), A) when they are used to

inconsistency set of for K, written asConSetl, K), is
defined as followsConSet/, K) = ConConceptd, £) U
ConRoleél, K) U ConEqu$!, K), where
« ConConceptd,K) = {A(a) | Al(a) = B,A €
E}C, ac AI },
« ConRole$l,K) = { R(ai,az) | R'(a1,a2) = B,R €
ﬁ){,al,ag € Al },
o ConEqu$l,K) = { (=) (a1,a2) =
B,ay,a; € AL}

=(a1,az2) |

define the inconsistency set.

Theorem2: Let K = (7, A) be aDL-Liter ontology.
Supposek’ = (cIn(T), A), I € preferModel .. (K')
and ! = a for each constanz € A%, We have
ConSet/,K') C A.

Based on Theorem 2, we give the following theorem.

Theorem3: Consider aDL-Litep ontology K
(T,A), let A = A\ ConSetl, (cln(T ) A)), where
I € preferModeh ) ({cIn(T),.A)) anda! = a for each



constanta € A%, Let Kyepair = (T, A, thenKrepair 15 € preferModel a . ((cln(Ty), A)).
is satisfiable. In fact, X; in Theorem 5 is theDL-Litex ontology
Proof: (sketch) First we can give a three- obtained from IC by removing all functionality asser-
valued model I, oOf <cln(T),A'> such that tions in 7. So K; will be consistent when removing
ConSetlsemp, (cln(T), A')) = 0. Assume by contradiction ConSetl;, (cin(7;),.A)) from K;. By Theorem 5, we know
that K,epir IS not satisfiable, then through Theorem that for aDL-Liter ontology K = (7, .A), we only need to
15 in paper [13], we can obtain thath(A') is not a compute the conflicting set dkin(7),.A) directly instead
model of (cIn(T),.A’) under classical semantics. By of considering Nis and functionality assertions separately.
construction, db(A') cannot contradict a membership Based on Theorem 3, Theorem 4, Theorem 5, we know
assertion in A, so we can deduce tha1z:lb(A') that for aDL-Liter ontology K = (7, .A), there exist two
cannot satisfycin(7). In this case, we can prove that conflicting sets. One set is caused by Nlscin(7), A is
ConSetlyemy, (cln(T), A')) # 0 which contradicts the consistent with NIs when this set is removed. The other
conclusion of ConSet/;em,, (cln(T), A)) = 0. So the set is caused by functionality assertionscim(7) whose
claim holds. m cardinality is fixed for any domain and it is easy to check

From Theorem 3, we know that@L-Liter ontology/C  that X be aDL-Liter ontology if there is no functionality
will be consistent when we remove frofg the conflicting  assertions. Furthermore, based on Theorem 5, we know these
assertions ofcin(T), A) obtained from a three-valued pre- two sets can be obtained through computing the conflicting
ferred model of(cin(7T), A)) with the domainA®(A), set of (cIn(T), A) directly.

Note that Theorem 2 and Theorem 3 also hold Bxr- Based on the theorems and discussions given in this
Liter without functionality assertions. Now we are ready to section, we have the following definition of an inconsistency
show an important property that holds fBiL-Liter with ~ degree of eDL-Lite ontology.
functionality assertions. Definition 5 (Inconsistency Degree)et K = (7, A)

Theorem4: Consider aDL-Liter ontology X =  be aDL-Lite ontology, and let’ be a three-valued preferred
(T,A), let T; be the set of functionality assertions model of (cIn(T), A) w.r.t A?™A). The inconsistency de-
in 7 and D be a domain wherelD| > |A%(A)| - gree ofC, calledOntolngK), is deflned asontolndK) =

We have: |ConSetl, (77, A))| = |ConSe(tI Ty, A))], ‘Conéefgdgzlg&%"*‘”',whereConSe(tI, (cIn(T), A)) is the set

where I e preferModeka ((77,.A)) and I' € prefer-  of conflicting atomic individual assertions itcin(7), A)

Modely ({77, A)). and GroundSe({) is the collection of all possible atomic
Proof: (sketch) Since(7;,.A) only contains function- individual assertions.

ality assertions, if(7;,.A) is inconsistent, we know that Example4 (Example 1 contd.):

there are some membership assertionslithat contradict We can compute cin(7) = {PhDStud C

some functionality assertions. So the conflict set is only-Employee Stud T -EmployeePhDStud = -Stud
related with those membership assertions and correspondiighDStud = -PhDStud (funct hasTutoj}. A three-
functionality assertions. So the claim holds. m  valued preferred model ofcin(7),A) is as follows:
Theorem 4 tells us that for any three-valued preferred; = (A”',.”1), where At = {a,b, ¢}, PhDStud* =
model I of (7;,.A) w.r.t any domain whose cardinality is ({a},{a,b,c}),Stud" = ({o},{a,b,c}), Employe& =
equal to or greater than that &f*(4), |ConSet!, (73, A))|  ({s}, {a, b, c}), hasTutof* = ({(a,b), (a,c)},{(a,a), (b,a),
is a fixed value. Whilst for any domain whose cardinality is (b, b), (b, c), (c,a), (c,b), (c,c)}), (=) = {{(a,a), (b,b),
less than that oA%*(A) we cannot find a model af7;, A).  (c,¢), (b,¢)}, {(b,a), (c,a), (a,b), (c,b), (a,c), (b,c)}). For
Based on Definition 9 in [13], we also know thgf;, A) is  this model, GroundSe(t]C) = {PhDStucaa), PhDStudb),
equal to(cin(7y), A). So we obtain that the conflicting set PhDStudc), Employeéa), Employeéb), Employeéc),
of |ConSetl, (7, .A))| can be obtained by computing the Studa), Studb), Studc), hasTutofa,a), hasTutofb,a),
conflicting set of(cin(7;), A) with the domainA®(A). hasTutofc, a), hasTutota, b), hasTutotb, b), hasTutofc, b),
Theorem 4 only discusses the conflicting set caused bpasTutofa,c), hasTutofb,c), hasTutofe,c), = (a,a),
functionality assertions iDL-Liter, we give the relation =b,a), =(c,a), ={a,b), = (b,b), =c,b), =(a,c),=(b, ),
between the conflicting set caused by NlIs and the conflictingc, c)}, ConSetl;, {cin(T), A)) = {PhDStuda), =(b, c)},

set caused functionality assertions as follows. so OntoInc(K) = %.

Theorem5: Given aDL-Liter ontology K = (7, .A), From Definition 5, we can show the following properties
let 7; be the set of functionality assertions iif  for DL-Lite ontologies.
and let Ky = (77, A). Let 7, be the set of in- Proposition6: Let K = (7, A), Ky, Ky are DL-Lite
clusion assertions 7 and K; = (7;,A). We have ontologes, we have the following properties:
|ConSetl, (cin(T),A))] = |ConSetl;,(cIn(7;),A))] + (R1) OntoIndK)=0 whenk is consistent.

|ConSetly, (cin(Ty),.A))|, where I € preferMode}asa) (R2) Ontolndk;) < OntolndKy) when GroundSetk;) =
({cIn(T), A)), I; € preferModehasa) ((cin(7T;), A)) and  GroundSetz) and Ky C KCs.



(R3) OntolndX) < OntolndK U S), where S is a set of construction, a NI or a functionality assertiane cin(7)
of membership assertions which are not A but in is applied to a membership assertifre S, so that a new
GroundSe(K). suitable membership assertion is added tahus obtaining
In Proposition 6, R2 says that the inconsistency degree od new setS™ in which « is no longer applicable tg. For
an ontology will not decrease if we add to it new axiomsexample, ifa = A; C — A, is applicable tof = A;(a), the
which do not change its ground set. R3 is a special case ahembership assertion to be addedStas —A45(a), that is,
R2. It says that the inconsistency degree of an ontology willS'=S U —Ay(a). Our construction process about ttiease-
not decrease if we add to it more membership assertions ialn(K) is precisely given below.
its ground set. Definition 8: Given a DL-Lite KB £ = (7,A),
cln(T) is the closure of7. We construct a sequence of
setsS; inductively as follows:
Sp = A S = 0. Sjp1 = S U frew, Where fre,, is
a membership assertion obtained as follows: lfebe a
membership assertion ifi, such that there exists an axiom

V. ALGORITHM FOR COMPUTING INCONSISTENCY
DEGREE

In this section, we give an algorithm to compute a
preferred model of (cln(7T), A) with the domainA (A,
First, we need to extend some definitions in [13]. We will € cln(T) applicable inS; to f.
use the symbol#” to denote all constants in the domain Casea, f of
For example, assume a domath= {a,b, ¢}, then R(a, *) (crl) a -z AL T =As and f = A;(a) then frew = ~As(a)
denotes the seii(a, a), (a,b), R(a,c)}. (cr2) a = 3R C —A and f = R(a,b) then fe., = —A(a)

We start with definingpplicable negative inclusions (NIs) (cr3) a = 3R~ C ~A andf = R(a,b) then fre, = —A(b)
and applicable functionality assertions (FunAsshen we (crd) a = R, E:Rg and f = Ri(a, b)
use applicable NIs and FunAss to construct a chase for then fm;: ~Ro(a, b)

(cln(T), A), written chase-clgC). With the notionchase- cr5) a = R, T -R- andf — Ry(a,b)

cIn(K) in place, we give an algorithm to compute a preferred then fne; _ jRQ(b, a) ’

model of (cin(T), A). _ _ (cr6) a = Ry C ~R, and f = Ry(a, )
Definition 6 (Applicable Negative Inclusions}or then fpew = —Ra(b, a)

a DL-Lite ontology K = (7,A), let S, = Aandz  (7y, _ Ry C Ry an7df — Ri(a,b)

L] S

. S

e« a=3R,C—3R;, f=R;(a,b) andIz,~Rs(z,a) ¢ S; then few = (=(b,z))

o a=3R; E-3R,, f=Ri(a,b) and3z,~Ra(b,2) ¢ S (¢r15) o = (funct R~) and f = R(a, b), Y, R(z,b) € S,

Definition 7 (Applicable Functionality assertion): then frew = (Hz,a)).

For a DL-Lite ontology £ = (7, A), let 5, = A andx In Definition 8, we know that the number of NIs and
be a constant inA™(4). SupposeS is a certain set of FunAss incin(7) is fixed and the number of membership
membership assertions. A FunAss= cln(T) is applicable  assertions irs, is also fixed becauss, = A. Furthermore,

be a constant inA%(A4), SupposeS is a certain set of then frow = ~Ral(a, b)
membership assertions. A Ni € cin(T) is applicable in gy ., _ AC 3R and} ~ Ala)
S to a membership assertighe S, if then fn:w = —R(a, ¥)
o =4, C 4y, f=Ai(a) and—As(a) € S; (cr9) a = AC -3R~ and f = A(a)
e a=3RC A, f=R(a,b) and—-A(a) ¢ S; then frew = —R(, a)
o a=3R"C -A, f=R(a,b) and—=A(d) ¢ S; (cr10) a = 3R, T —3R, and f = Ry (a, b)
e =R C—Ry, f=R; (a, b) and _‘Rg(a, b) % S; then then fpew = —‘RQ((I, *)
e =Ry E Ry, f=Ri(ab) and-Ry(b,a) ¢ S; (crll) o = 3Ry C —-3R; and f = Ry(a,b)
e (X = Rl_ C —|R2, f = Rl(a, b) and —|R2(b, a) ¢ S; then fnew — ﬁPL2(>,<7 b)
o a =R TRy, f=Ri(ab) and—Ry(a,b) ¢ S; (cr12) o = 3R, T —3R; and f = Ry(a,b)
e a=ALC 3R, f = A(a) and3z, - R(a,x) ¢ S; then fpew = ~Ra(*,a)
e« a=AC-3R™, f = A(a) and3z, ~R(z,a) ¢ S; (cr13) a = 3R] T —3R, and f = Ry (a,b)
a=3R; C —3R,y, f=Ry(a,b) andIz,~Ra(a,z) ¢ S; then frew = —Ra(b, %)
a=3Ry L3Ry, f=Ry(a,b) and3z,~Rs(z, b; é . (cr14) a = (funct R) and f = R(a,b),Va, R(a,z) € S,

in S to a membership assertiohe S, if a Nl or a FunAss iriin(7) can be applied at most once to a
e« a = (funct R),f = R(a,b) and 3z, R(a,x) €  membership assertion i, (afterwards, the precondition is
Sp,=(b,z) ¢ S, not satisfied and the NI or FunAss is no longer applicable),
e a = (funct R7), f = R(a,b) and 3z, R(z,b) € S,, and a rule can be applied at mesttimes to some member-
=a,z) ¢ S. ship assertions, where is the number of NIs and FunAss in

Applicable NIs and FunAss can be used to constructin(7). We also know that no new constant is produced in
chase-clifC). Roughly speakingchase-clfX) is a set as- the construction process. So the set of membership assertions
sertion constructed step-by-step frofmandS. At each step  obtained, writtensS,,, is the finite union of allS;, namely,



Sn S

Algorithm 1 Algorithm for computingl.;,,

= U"EN g

Let cﬁase-cln(ﬂC) =S, US,, whereS, equals toA, S, 1
is composed by membership assertions which are obtainec:
through applying NIs or FunAss to membership assertions 3:
in S,. Note thatS, and S,, are both finite, sochase- 4
cIn(K) is finite. Furthermorechase-clfX) is unique because 5:
cn(T) and S, have not been changed in the construction é:
process, and the construction dfase-clgC) only depends  7:

Input: S,,, S\,
Output: I,
Alein = Adb(A)
for each constant occurring inChase-cliC) do
I
x
end for

for each atomic concepd do

cln — x

on cln(7T), S, and all constants occurring i (uses for 8:

obtaining membership assertions of the fornR(x,a) or
- R(a, *)).

Alen = ({a | Ala) € Sp},{b | "A(D) € S.}U
(AP {a | A(a) € Sp}))
9: end for

Example5 (Example 1 contd.)From K, we can ob- 10: for each atomic role® do
tain that A% = {q b,c} and cln(7) = {PhDStudC ~ 11:  Pln = ({(a1,a2) | P(ay,a2) € Sy}, {(b1,b2) |
—EmployeeStud = —EmployeePhDStud = —PhDStud —P(by,by) € Sp} U (AP x AN L(ay,az) |
PhDStudC —Stud (funct hasTutoy}. S, = {PhDStuda), P(a1,a2) € Sp}))
hasTutofa, b), hasTutofa, ¢)}, So = 9. 12: end for
« For PhDStud= —~PhDStud becausePhDStuda) € S,  13: ="“"= ({(a1,a2) | (a1 = a2) € S} U{(a,a) | Va €

and -PhDStuda) ¢ Sy, these would trigger the chase
rule crl, so -PhDStuda) will be added toS, ob-
taining S; = {—PhDStuda)}; In an analogous way,
—Employeéa) will be added toS; obtainingS. and
—Stud(a) will be added toS, obtaining Ss, that is
S; = {PhDStuda), Employeéa), - Stud(a)};

« For(functhasTutoj}, becauséasTutofa,b) € S, and
hasTutofa, c) € S,,=(b,c) ¢ S, these would trigger
the chase rulerl4, so=(b, ¢) will be added toSs ob-
taining S, = {PhDStuda), Employeéa), —Stud(a), =
(b,0)};

So Chase-clfiC) = S, U S,,, whereS, = {PhDStuda),
hasTutofa, b), hasTutofa,c)}, S, = S1 U Sa U S3
{-PhDStuda), ~-Employeéa), —Stud(a),=b,c)}.

In this paper, inclusion axioms are interpretedifter-
nal inclusionswhich propagate contradictory information
forwardly, but not backwardly as it does not allow for
contraposition reasoning (see [8] for definition of interna
inclusion). IndeedsS,, is a result of propagating contradic-
tory information based on internal inclusion througBox
This is because in the process of constructifig only

ALY LDy, by) | Vb, by € APA) and by # by}).

Theorem7: Let K = (7, .A) be aDL-Lite ontology,
then the three-valued interpretatidp,, obtained by Algo-
rithm 1 is a preferred three-valued model @in(7),.A)
with the domainA @A),

Proof: (sketch) We first show thak.;,, is a model of
(cIn(T), A). BecauseA C chase-clfK), so I, satisfies
all membership assertions id. Then, we only need to
prove thatl., = cln(7). Suppose by contradiction that
a NI of the form A; C —-As € cin(7), where A; and
A, are atomic concepts, is not satisfied by,. Then there
exists a constant € A% such that4,(a) € S, and
—Ay(a) ¢ S,. However, such a situation would trigger the
rule crl, thus causing the adding efAs(a) in S, at some

|Step, hence contradicting the assumption. NlIs of other form

can be proved in an analogous way.
Second we show thaf., is a preferred model of
(cIn(T), A). Supposel,, is not a preferred model of

negative inclusions and function assertions are consideredc!(7), A). So there must exist a preferred model of

regardless of positive inclusions. Algorithm 1 gives an al-

gorithm for computing a three-valued interpretatiby, for
{cIn(T), A), written asl.,=(Af»  lan) based orchase-
cIn(K), i.e.,S, andS,,. The returned valué.;,, of Algorithm
1 is a preferred three-valued model &fin(7), A) (see

Theorem 7).
Example 6 (Example 5 continue)By Algorithm 1,
we can obtainl., = (Afan lan) where Alen =

{a,b,c},PhDStud» = ({a},{a,b,c}), Employe&"
0,{a,b,¢c}),Stud<" = (0,{a,b,c}), hasTutofer
{(a,b), (a,c)},{(a,a), (b,a), (b,b), (b, c),(c,a), (c,b), (c, )
}>v (:)Idn - <{(a’a CL), b, b)7 (C’ C)7 (b’ C))}7 {(av b)v (a7 C)a (b7
a), (b,¢), (¢,a), (c,b)}).

(cin(T),.A), namedI, and an atomic assertian such that

alen = B ol # B. Supposea = A(a). By Definition

8 and Algorithm 1, there must exist the following cases:

{C C -A4,C(a),A(a)} or {3R T -A,R(a,b),A(a)}

or {3R~ C —A,R(b,a),A(a)} in {(cIn(T), A). Because

Al(a) # B, so Af(a) = t. According to the three-valued

semantics of internal inclusior, can not satisfy either case

above. That is/ is not a three-valued model ¢fin(7), A),

contradictive with the assumption. Similarly, we can get the

same result for the cases thatis R(a,b) or = (a,b). So

I, is a preferred model ofcin(7), A). [ |
Example 7 (Example 6 continue){GroundSetK)| =

27, ConSetly,, (cin(T), A)) = {PhDStuda), =(b,c)}, so

The following theorem shows the correctness of ourOntolngkK) = 2.

algorithm.

We consider the complexity of computing the inconsis-



tency degree as follows.

Theorem8: Given aDL-Lite ontology K = (7, .A),
the inconsistency degree &f can be computed in PTime in
the size ofK.

Proof: (sketch) Firsteln(7) is polynomially related
to the size of TBox7 [13]. By Definition 8, the time of
computingchase-cliiC) is at mostA|x |cln(T)| x| A%
becausdS,| = |A| and |S,|=|A|x |cIn(T)| x|A®A)] in
the worst case. That i4S,| is polynomial to the size of

K. By Algorithm 1, we know that the time of computing

model I, is ¢ x (|S,|+|Sn |+ AP ) 41 x (IS, + S|+

|A(A)]), wherec andr denote the number of concepts and

roles in K respectively. Sal.;, is obtained in polynomial

time to the size of. From I, the inconsistency degree

can be computed in polynomial time té\’-i»|, which is
polynomially related to the size df. [ ]

VI. CONCLUSION AND FUTURE WORK

[3] A. Hunter and S. Konieczny.

(4]

(5]

(6]

Measuring inconsistency in inconsistent ontologies is an[7]
important problem in ontology engineering. In this paper, we
considered the problem of computing inconsistency degree
for DL-Lite ontologies. We first gave a three-valued seman-
tics for DL-Lite. Then we defined an inconsistency degree [g]
of DL-Lite ontologies. The inconsistency degree is only a
single value, not a sequence. Arguably, this single value is
easier to be used to deal with inconsistencies than a sequence

of values given in [5]. Furthermore, we also proposed ag
polynomial-time algorithm to compute the inconsistency
degree of an ontology. As a future work, we will implement

our algorithm and provide experimental results.
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