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Abstract—Dynamic Pricing (DyP) is a form of Revenue
Management in which the price of a (usually) perishable good
is changed over time to increase revenue. It is an effective
method that has become even more relevant and useful with
the emergence of Internet firms and the possibility of readily
and frequently updating prices. In this paper a new approach
to DyP is presented. We design adaptive dynamic pricing
strategies and optimize their parameters with an Evolutionary
Algorithm (EA) offline while the strategies can deal with
stochastic market dynamics quickly online. We design two
adaptive heuristic dynamic pricing strategies in a duopoly
where each firm has a finite inventory of a single type of
good. We consider two cases, one in which the average of a
customer population’s stochastic valuation for each of the goods
is constant throughout the selling horizon and one in which the
average customer valuation for each good is changed according
to a random Brownian motion. We also design an agent-based
software framework for simulating various dynamic pricing
strategies in agent-based marketplaces with multiple firms
in a bounded time horizon. We use an EA to optimize the
parameters for each of the pricing strategies in each of the
settings and compare the strategies with other strategies from
the literature. We also perform sensitivity analysis and show
that the optimized strategies work well even when used in
settings with varied demand functions.

I. INTRODUCTION

Dynamic Pricing (DyP) is a form of Revenue Manage-
ment (RM) that involves changing the price of goods or ser-
vices over time with the aim of increasing revenue. Revenue
management is a much broader term that refers to various
techniques for increasing revenue of (usually) perishable
goods or services. RM particularly became popular within
the airline industry after the deregulation of the industry in
the United States in the late 1970’s [18].

Today, the Internet provides exceptional opportunities
for practicing RM and particularly DyP. This is due both
to the amount of data available and the restructuring of
price posting procedures. Thus, the Internet can facilitate
offering different prices for different customers and posting
new prices with minimum extra costs. This also allows for
the increased use of intelligent autonomous agents in e-
commerce, agents designed for automatically buying, sell-
ing, price comparison, bargaining, etc..

Most RM methods exploit the differences in different cus-
tomers’ valuations of a good or changes in these valuations
in time to boost revenue. This has led to different methods of

distinguishing between customers based on their valuation
for the goods, such as fare class distinction, capacity control,
dynamic pricing, auctions, promotions, coupons, and price
discrimination methods such as group discounts [18].

Here we focus on dynamic pricing [7]. By changing prices
in time, firms can ask for the price that yields the highest
revenue at each moment. This allows them to distinguish
between customers in cases where customers with different
utilities buy at different times, as well as exploit the changes
of valuation of the same customers in time. Many RM
methods can be categorized as dynamic pricing, be it the
end-of-season markdown of a fashion retailer, or the inflated
last-minute price of a business-class flight ticket. The main
question is when and how to change the prices in order
to obtain the most revenue. This depends on the market
structure and dynamics, most importantly, on the customer
demand rate and how it changes in time.

In this paper we study dynamic pricing of a limited supply
of goods in a competitive finite-horizon market. We design
and implement an interactive agent based marketplace where
the agents are the firms who wish to increase their revenue
using dynamic pricing strategies. We study two cases, one
in which the customers’ valuation for the products follow
the same valuation throughout the selling horizon and one
in which the average of their valuations follow a random
Brownian motion over time.

We design two adaptive pricing strategies and use learning
to optimize them. The execution of the strategies is not
computationally intensive (O(1) complexity) and they are
understandable from a practical perspective. The strategies
use only the observed market response to set new prices at
each point in time. The parameters used in each strategy
are then optimized using an Evolutionary Algorithm (EA)
[3]. A simulation software has been implemented that can
generate and simulate dynamic pricing strategies in various
oligopolistic markets. The EA uses this simulator as a black
box, and optimizes the parameters for a given strategy using
the obtained revenue as the fitness criteria. So on one hand,
the strategies are capable of very fast adaptive decision
making in run-time, and on the other hand their parameters
are optimized offline to tune them for a more specific setting.

In many real world applications, some general knowledge
of the market dynamics exists beforehand, although it may
be different from what will actually happen, both because



of inaccuracies in the estimations and predictions and unex-
pected changes to the market. Using our proposed approach,
this knowledge can be used for offline learning, to optimize
the parameters of the strategies before the actual selling
starts. Also, because of the adaptiveness of the proposed
pricing strategies, any deviations from the expected dynam-
ics of the market will be detected quickly and accounted
for by the strategy online, and thus the strategies also work
reasonably well in various market settings different from
what they have been tuned for.

In the strategies we present, the selling agents do not
assume the demand to have an a priori structure, though the
EA uses the market simulation with a particular structure to
optimize the performance of the strategy over the space of
its parameters. Thus, information of the demand structure is
passed to the selling agents implicitly through the parame-
ters. The strategies are adaptive in the sense that they detect
changes in the market and adjust their prices accordingly.
Hence they can effectively deal with market changes.

In order to evaluate our strategies’ performance, we com-
pare them to a number of strategies previously studied in
the DyP literature. We show that our strategies outperform
a fixed price (FP) strategy that is optimized offline. This
is significant, because FP strat egies perform very well in
many configurations [9]. It should be noted here that in most
other models a FP strategy is actually the optimal strategy
and DyP is used to find this optimal fixed price, but in our
case no fixed price is optimal due to the combination of
competition, finite inventory, and a finite time horizon. This
can also be shown by the fact that our strategies outperform
the offline-optimized FP (that is very close to the actual best
possible fixed price). The same features make the analytical
computation of the best solution in our model intractable,
requiring experimentation to evaluate our strategies. In fact,
a benefit of using simulations is that we are able to tackle
more complicated models that are too difficult to approach
theoretically.

Furthermore, the strategies also perform better than the
optimized versions of the derivative follower (DF) learn-
ing algorithm that change the price in the same direction
(increasing or decreasing) as long as the revenue keeps
increasing, and then changes the price change direction.
Such algorithms have previously been used successfully in
DyP settings [4], [6], [14]. Our proposed strategies are also
compared to the Goal Directed (GD) strategy of [6] which is
particularly similar to one of our strategies. Both strategies
outperform the GD strategy for which the only parameter,
the initial price, is optimized for the given setting.

Finally, we show that optimized adaptive strategies still
perform reasonably well when various changes are made
to the market configuration after the learning phase. For
this means, we evaluate the performance of a strategy
with parameters optimized for a given configuration, on a
stochastically varied configuration. The obtained revenue

is then compared with the revenue obtained by using the
same strategy with parameters optimized for the varied
setting. This can give us the regret of wrongly estimating
the market structure. The variations in configuration that we
study include altering the demand function by changing the
customer/good ratio.

II. RELATED WORK

DyP has been a very active research area in recent
years. Many studies try to learn the demand structure, or
the parameters for a known demand function, on the fly.
They typically use part of the selling horizon for exploring
the market, trying out the demand rate for different prices
in a systematic way, and another portion of the time for
exploiting the market, using the best price(s) based on their
estimates [2], [8]. Others use statistical learning methods and
heuristics based on mathematical estimations of the optimal
price [1]. While most DyP models are monopolies, there
are some that model competitors in the marketplace as well
[14], [15], [16]. In this work we deal with a duopoly market,
though the firm does not model a competitor explicitly.

Works that are similar to ours in experimenting with
heuristic strategies by simulation are fewer. The Information
Economics group at IBM has investigated the effect of
interacting pricing agents which they call pricebots in a
number of works (see [14] for a survey). In some, they use
use game-theoretic analysis and experiment with heuristics
that aim at achieving the optimal equilibrium price [11].
They focus on the market dynamics and pricing patterns
that arise when using these strategies against each other.
They also study shopbots [10], strategic buyer agents, and
pricing where agents may be differentiated horizontally or
vertically based on their preferences for different attributes
of a product. Some of the algorithms discussed in these
works rely on more information than can be obtained from
the market simulations only, but we have compared our work
to the FP and a few versions of the DF strategies, both of
which are used in these works.

Multi-attribute DyP is also discussed in [5] and [13]. In
[13] a heuristic method for dynamic pricing is presented
which consists of a preference elicitation algorithm and a
dynamic pricing algorithm. The method is then compared to
a DF algorithm and the GD algorithm from [6], their model
differs from the one we use in the existence of multiple
attributes (we consider a single attribute here, the price) and
also because they have a finite number of identifiable buyers
(compared to our infinite population of one-time buyers).
Their algorithms, although similar to ours in fast online
decision making and the use of simulation for the evaluation,
were not directly comparable to the strategies in our current
model due to the strong dependence on these differences,
the simplification of which would significantly undermine
the strengths of their strategies.



In [4], a heuristic Model Optimizer (MO) method is
designed and compared to a DF pricing strategy. The MO
strategy uses information from the previous time intervals
for a more detailed model of the demand, and solves a
non-linear equation in each time step using a simplex hill-
climbing approach. This heuristic strategy differs from ours
in its online computational complexity, which is much higher
than ours due to the online optimization.

In [6] a DF algorithm and an inventory-based GD algo-
rithm are used in a number of simulations to show how they
actually behave in a market and in which scenarios each
one is useful. We compare our strategies with both of these
strategies, because they are both compatible with our model
and comparable with our strategies in their computational
intensity and the information they use.

In [17], a few different EA methods are used to solve a
dynamic pricing problem. Their approach is not comparable
to ours since they use their optimizer to optimize actual
prices for a dynamic pricing model for a small number
(less than 10) of time steps. A method similar to [17]
is not useful in our stochastic model because optimizing
prices using an EA would lead to an over-fitted solution
that works better than the adaptive strategies only for the
instances (see definition 2 in section IV) it is optimized for
and considerably worse on average. It is also far more time-
consuming when considering a larger number of time steps.

III. MODEL

We have a market with two competing firms. The revenue
(sum of price of items sold) of one of the firms is optimized
using DyP. Each firm can change the price of its goods at
the start of equi-distant time intervals.

A. Firms

We have a finite number, m, of firms, {0, 1, . . . ,m− 1}.
We refer to firm j’s good type as gj . The firm starts off with
an initial inventory Yj of its product and the capacity left of
the good at time t is denoted by yj(t) (the t can be omitted
if there is no chance of ambiguity).

The model is a finite horizon model, the goods left at the
end of each time step are transferred into the next and all
goods are lost at the end of the whole time span. Each firm
announces a selling price, pj(t), for each good type in each
time interval t. A cost for each good type, crj , serves as a
reserve price for goods of that type.

B. Customers

1) Preferences: The customers specify their preferences
using non-negative cardinal utilities that are exchangeable
with monetary payments. Each customer has a valuation
function that determines these utilities. Customers are unit-
demand, they only have preferences on sets consisting of one
item, so their valuation functions are defined as v : G→ R+.
Thus, customers have to specify only a single number for

each good type and its valuation for getting more than one
item is always zero. Thus, a customer’s utility for getting an
item is equal to the difference between its valuation for the
item and the item’s price, which is uj(t) = v(gj) − pj(t)
for firm j’s good at time t.

2) Population: We model the customer populations as an
unbounded population. This means that the distribution of
customers does not change after an item is sold. Also, the
valuations of all of the customers for each unit of each of the
good types follow the same distribution. This distribution,
which is denoted by Prj,t for firm j’s good at time t, may
or may not change in time.

These distributions are all normal distributions. We con-
sider two settings, in the first setting the normal distribution
is the same for each good type and customer segment
pair throughout the time horizon (so the t can be omitted
from Prj,t). In the second setting, which we refer to as
the Brownian setting, the mean of the each of the Prj,t
distributions changes over time, following a basic model
of Brownian motion: the mean increases by a constant
amount (b), decreases by the same constant amount, or does
not change, each of these cases happening with equal ( 13 )
probability. This allows for some structured dynamism in
the demand pattern in the model.

3) Customer arrival: The number of customers that ar-
rive in each time step follows a Poisson process with a con-
stant intensity a. The firms may be aware of the parameter
of this process when making their pricing decisions. In each
time interval, the customers arrive consecutively after the
firms have set their prices. They may or may not buy a
product based on their choice function and, in any case,
leave the market afterwards.

4) Choice Model: At any time t that a customer has to
make a purchase decision, it will buy one of good g∗ offered
by firm f∗ ∈ arg maxj{uj(t)|uj(t) > 0}, if it exists, i.e.
the item for which it has the highest utility if all items are
not priced higher than he is willing to pay, with probability
1 − λ and does not purchase anything with probability λ.
The λ factor is to model a general chance for a purchase not
occurring, this is close to the natural behavior of customers
in many contexts. Note that the effect of the λ can also be
achieved by changing the arrival rate when we are using
a Poisson arrival process, but it is not so with all arrival
models. If g∗ does not exist, the customer will not make a
purchase. Ties are broken randomly.

As is evident from the model, the customers are myopic
(greedy) and purchase only based on current utilities, not
any prediction of what will happen next.

C. Modeling Time

In any dynamic pricing model, by definition, the firms
should be able to adjust their prices in time. While changing
prices at any particular moment may become more plausible,
particularly with internet firms, it is still more common in



the literature for the change of prices to occur in fixed
time intervals. We suppose that there are T time intervals,
numbered from 1 to T successively. At the start of each time
interval, all firms set the prices for their goods.

IV. MARKET SIMULATION

We have developed software for simulating a marketplace
described in the previous section. The software uses an event
queue to keep track of two types of events: pricing events,
firms setting the price for each of their item types at the
beginning of each time period, and customer arrival events.

Some notation that helps describe the experiments in the
following section is defined here.

Definition 1 (Configuration): A configuration is a model
where all parameters are set. These parameters consist of the
properties of the firms (costs of goods, initial stock, etc.) and
the valuation distributions and arrival rate of the customers.

Definition 2 (Instance): An instance of the problem is
a specific configuration together with samplings for the
stochastic variables (i.e. a fixed random seed for the pseudo
random generator in the software).

Definition 3 (Pricing Strategy): A pricing strategy, or
simply strategy, is a function that given a fixed number of
parameters, sets a new price for a unit of the firm’s good in
each time step. The function can also depend on the previous
events that have occurred in the market. We assume here that
the firm is aware of the previous customers’ behavior and
previous prices, and that the firm knows the customer arrival
rate, but nothing about the customers’ valuation functions.
All strategies are deterministic.

Based on the above definitions, an instance of the problem
is deterministic given the firms’ strategies, i.e. will yield the
same results when the firms use the same strategies, while
a configuration alone does not contain enough information
to determine an outcome.

Definition 4 (Simulation): By a simulation, we designate
a single execution of a particular instance of the problem
with fixed strategies for the firms.

Definition 5 (Batch run): By a batch run, or simply
batch, consisting of n simulations, we mean the simulation
of n different instances of the problem that share the same
configuration and use the same strategy for each of the firms
throughout the n instances.

V. ADAPTIVE HEURISTIC STRATEGIES

We present two heuristic pricing strategies in this section.

A. The Inventory Based (IB) Strategy

The first strategy is one that adaptively adjusts the prices
for a firm based on the number of goods it has left and
the number of goods that it has sold in the previous time
interval, we call it the Inventory Based (IB) strategy.

In each time step, the strategy retains the previous price
if the rate of items sold in the previous time interval is

Algorithm 1 InventoryBasedStrategy(initialPrice,
noChangeThreshUp, noChangeThreshDown, maxIncPer-
cent, maxDecPercent)

1: if time = 0 then
2: price← initialPrice
3: return price
4: if numLeft = 0 then
5: return lastPrice
6: if pastCustomers = 0 then
7: pastCustomers← 1
8: pastSold← pastSold× aveCustomers

pastCustomers

9: α← pastSold×timeLeft
numGoodsLeft

10: if α < 1 then
11: ∆ = α− 1
12: else
13: ∆ = 1− 1

α
14: if |∆| < 0 then
15: if ∆ < noChangeThreshDown then
16: price← lastPrice
17: else
18: price← lastPrice(1 + ∆×maxDecPercent)
19: else
20: if ∆ < noChangeThreshUp then
21: price← lastPrice
22: else
23: price← lastPrice(1 + ∆×maxIncPercent)
24: return price

close to the rate needed to sell all the items by the end of
the time horizon (this “closeness” is controlled by the pa-
rameters noChangeThreshUp noChangeThreshDown).
It increases the price if too many items have been sold
in the previous interval and decreases it if too little have
been sold. The maxDecPercent and maxIncPercent
parameters along with the distance that the sales rate has
from the expected sales rate control the amount of change
in price in each time step. The other parameter used in this
strategy is intialPrice, the price the firm uses in the first
time interval. The details of the algorithm of this strategy
can be seen in algorithm 1.

In algorithm 1, pastSold is the number of items sold
in previous time step, and numGoodsLeft is the number
of items left in the inventory. timeLeft is the number of
time steps left in the selling horizon, and pastPrice is
the price of a unit of the good in the previous time step.
Finally, pastCustomers is the total number of customers
in the previous time step and aveCustomers is the average
number of customers per time step (same as a).

In line 8, the number of items sold in the past time interval
is normalized by the average number of customers arriving
in each time step and the number of goods left to factor
out the stochasticity as much as possible. Note that this is



a dynamic indicator updated in the beginning of each time
step, so it will take into account the current state of the
agent. In line 9, α is defined as an indicator for determining
how fast the inventory would be exhausted if the sales would
go on with the current rate. If α is smaller than one, then
the sales rate is too slow, and if it is larger than one, the
the inventory would be exhausted sooner than the end of
the time horizon, so there is an opportunity for increasing
the price. The parameter ∆ is then (in the if-then statement
starting from line 10) defined as a normalized version of α
that is negative if the sales rate is too low and positive if it is
too high. The if-then statement starting from line 14 is where
the final pricing decision is made. If the absolute value of
∆ is smaller than the respective threshold for positive or
negative threshold parameter, i.e. if the sales rate is close
enough to the desired rate, then the price is not changed
otherwise it is changed proportional to ∆, and with regards
to the maximum allowable change rate.

B. The Revenue Based (RB) Strategy

The Revenue Based (RB) strategy uses an estimation of
a desirable price to estimate the price in each time step.
It uses the revenue per customer (RPC) criterion (which
considers all customers, even the ones that did not buy
from the firm) to assess the revenue obtained when using
a particular price and compares that to the RPC needed to
finish the inventory by the end of the selling horizon. The
algorithm for this strategy can be seen in algorithm 2. The
additional parameters used in this strategy are expPrice,
the expected price used in the estimation of the expected
RPC, and the maximum amount the price can change per
time step. These variables are also used: RP , the revenue
per customer in the previous time step, and the expected
RPC, used as a control parameter, expRPC.

Algorithm 2 RevenueBasedStrategy(initialPrice, expPrice,
maxDelta)

1: if time = 0 then
2: price← initialPrice
3: return price
4: expRPC ← numGoodsLeft×expPrice

timeLeft×aveCustomers
5: if numLeft = 0 then
6: return lastPrice
7: if pastCustomers = 0 then
8: pastCustomers← 1
9: RPC ← pastSold×lastPrice

pastCustomers

10: α← RPC
expRPC

11: if α ≤ 1 then
12: ∆← α− 1
13: else
14: ∆← 1− 1

α
15: price← lastPrice+ ∆×maxDelta
16: return price

In this algorithm, the expRPC (defined in line 4) variable
is the expected revenue per customer for the rest of the
selling horizon, provided that the firm sells with the ex-
pected price, expPrice, that is one of the input parameters.
Then the RPC parameter is the revenue obtained for each
customer in the previous time step (regardless of whether
they make a purchase or not). In this algorithm, α is defined
as the ratio between the expected RPC and the RPC from
the previous time step. Here, also, ∆ is a normalization of
α, positive if the expected revenue is higher than expected
and negative if it is lower (line 11), and the price changes
proportional to the magnitude of ∆. Note that here the lower
than expected revenue is attributed to a price that is too high,
thus prohibiting many customers form making a purchase.
This is not always the case though, but this can be a safe
assumption when the initial price and expected price are
chosen properly, as we can see from the experimental results.

Note that both strategies depend only on information from
the sales in one previous time step. Also, the parameters
are designed as to sustain a certain amount of stability in
the price. This is both a means to control the effects of the
stochastic noise causing sudden jumps in the price (specially
since the changes depend on one previous time step only),
and because too much price fluctuation is not desirable from
the customers’ perspective. Also, in all strategies reported
in this work, the previous price is kept if there are no
more goods to be sold. This has no effect on the simulation
because customers will not be given the option to buy from
firms that have no goods left.

C. Computing the Parameters

We want to have settings for the parameters of the strate-
gies that we have defined such that the strategies perform
well. The numerical optimization task associated with this is
generally not easy because it is the outcome of a non-trivial
simulation that we want to optimize. The problem at hand
can thus be seen as a black-box optimization problem with
unknown difficulty. We therefore need black-box optimiza-
tion algorithms that are capable of tackling a large class of
problems effectively. The algorithm of our choice is called
AMaLGaM. AMaLGaM is essentially an Evolutionary Al-
gorithm (EA) in which a normal distribution is estimated
from the better, selected solutions and subsequently adapted
to be aligned favorably with the local structure of the search
space. New solutions are then constructed by sampling the
normal distribution. A parameter-free version of AMaLGaM
exists that can easily be applied to solve any optimization
problem. This version was recently found to be among the
most competent black-box optimization algorithms [3], [12].

In order to tune the experiments for the EA, which is
not designed to handle stochasticity on one hand, and not
to over-fit a single instance of the problem on the other,
we use the following method. The fitness used in the EA
is the average revenue obtained from a batch run of 100



0’s strategy 0’s profit 1’s profit
FP(9.895) 80.896 61.921
IB(10.021, 2.245, 1.506, 0.224, 0.210) 90.045 61.041
RB(9.999, 10.195, 0.173, 0.121) 89.323 60.477

Table I
COMPARISON OF PROFITS OBTAINED FROM STRATEGIES WITHOUT

BROWNIAN MOTION.

different instances. The parameters of the heuristic strategies
defined in section V are optimized for firm 0, given that firm
1 follows a fixed price strategy. All evaluations in the EA
are executed on the same 100 instances, thus making the
optimization problem non-stochastic.

VI. EXPERIMENTAL RESULTS

We ran the EA in this way multiple times for each
strategy, both for the case where the customers’ valuation
distribution does not change with Brownian motion, and
for the case in which it does. For each of these cases, the
parameters obtained from each of the the experiments were
evaluated on an evaluation set consisting of 104 instances
and the parameter set that achieved the highest result on the
evaluation set was then selected as the optimized parameter
set for the given strategy and configuration and then cross
evaluated using a test set of 104 instances on which no
experiments were performed before.

For these experiments (and others in this paper, unless
stated otherwise) the parameters of the configuration are as
follows: T = 50, as previously stated, m = 2 and each of the
firms has one good type, cr0 = 9 and cr1 = 10, Y0 = Y1 =
100. Also, S = 1 and the Prs,g0,t is a normal distribution
with mean 10.5 and Prs,gj ,t is normal with mean 11.5, both
distributions with standard deviations of 1. Furthermore a =
5 and λ = 0.1. When using Brownian motion, b = 0.1.
These parameters are selected so that there is a reasonable
competition between firms. It also illustrates a case where
firm 1 has a slightly more “expensive” good, its cost, price
and the customers’ valuation for it are higher than firm 0’s
good. In any case, the specific choices of the variables are
for illustration and are not essential for the overall results.

In addition to the two strategies presented in the previous
section and an FP strategy, we have implemented various
versions of the DF algorithm and the GD strategy from [6]
and compared them to the heuristic strategy in the Brownian
case. These algorithms have also been optimized by the EA.
The most basic DF has two parameters, the first the initial
price and the second the step, or amount of price change in
each time step, which is constant in this basic DF algorithm.
The range for which the second parameter was optimized is
[0.001, 1]. The other other DF algorithms, namely the ADF
strategy in [4] and the DF strategy in [6], had similar results
as the simple DF, all of them that were very close to the FP
result. The basic Df had the best results and is reported here.

0’s strategy 0’s profit 1’s profit
FP(9.712) 51.178 2.361
DF(9.710, 0.008) 51.224 3.053
GD(9.204) 68.971 5.699
IB(10.067, 3.357, 2.503, 0.018, 0.239) 84.954 17.993
RB(10.001, 10.009, 0.298, 0.206) 83.411 16.99

Table II
COMPARISON OF PROFITS OBTAINED FROM STRATEGIES WITH

BROWNIAN MOTION.

The results of the experiments with 20 runs of the EA
for each strategy for the non-Brownian and Brownian cases
can be seen in tables I and II respectively. Note that firm
1’s revenue is always higher than firm 0’s because its good
is generally more expensive, it has a higher cost and the
customers value it higher on average. Firm 1’s profit is lower
than firm 0 in most of these cases.

These results show that the IB and RB strategies consis-
tently outperform the FP and DF strategies. The IB strategy
has an 11.3% increase in profit compared to the fixed price
strategy, and the RB strategy has an increase of 10.4%. In
the Brownian case, the IB strategy has a 66% increase in
profit and the RB algorithm has a 63% increase compared
to the fixed price strategy, with similar results for the DF
strategy. An interesting observation is that although there is
not much difference between the change in the competitor
firms’ profits in the non-Brownian case, in the Brownian
case, the IB and RB strategies also result in much better
profits for firm 1, so the strategies have resulted in a kind
of win-win situation in this case.

As for the GD strategy, its performance falls between
the DF and our strategies. The algorithm is similar to
our strategies (specially IB) in that both algorithms aim
to finish the inventory in the last time step. However, the
estimation of the number of items that need to be sold
in each time step as made in GD is always based on the
initial, complete time interval. Contrary, in our strategies,
such estimates are based on the number of time steps left.
Another important difference is that in our strategies there
are limits on the amount of price change per time step. GD
lacks such limits or dampening factors, which ultimately
result in larger fluctuations in price, especially in situations
where the stochastic behavior of the environment is non-
negligible, as is the case here. An illustrative example of this
behavior is presented in figure 1. A last difference is that
GD uses less information and the only parameter of GD is
the initial price. GD still yields an almost %35 profit gain
compared to the FP, which is pretty good for an algorithm
that is using only one parameter to adjust the price.

Pairwise comparisons of the strategies are also performed
and can be seen in table III for the Brownian case (non-
Brownian results are similar). We use revenues from the 104

instances obtained from the cross evaluation (the average
of which is reported in tables I and II) for comparison.
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Figure 1. Illustration of the prices set by strategies in a single instance.
’brw’ is the average valuation of the customer population for firm 0’s good
which follows a Brownian motion.

Strategy FP DF GD IB RB

FP
33.01 37.71 19.99 21.77
-0.07 -17.82 -33.80 -32.26
-1.02 -11.02 28.54 -27.07

DF
66.99 38.42 20.25 22.28

0.07 -17.75 -33.73 -32.19
1.02 -10.14 -27.81 -26.36

IB
62.30 61.58 16.03 13.42
17.82 17.75 -14.44 -15.98
11.02 10.14 -15.59 -17.00

IB
80.01 79.75 83.97 62.32
33.80 33.73 14.44 1.54

-28.54 27.81 15.59 1.58

RB
78.23 77.72 86.58 37.68
32.26 32.19 15.98 -1.54
27.07 26.36 17.00 -1.58

Table III
PAIRWISE COMPARISON OF THE STRATEGIES WITH BROWNIAN MOTION.

In each cell of these tables, the first number (from top)
shows the percentage of instances in which the first (row)
strategy performs better than the other (column strategy).
The second number is the mean of the differences (row
strategy minus column strategy), and the third is the median
of this difference. Note that the parameters used for these
strategies in the pairwise comparison are the optimized ones
which can be seen in table II. We have used the Sign test
to asses the statistical significance of these results. This test
checks whether the distribution of the revenue differences in
each of these pairwise comparisons significantly differs from
zero statistically. Due to the large number of instances, all of
results in table III are shown to be statistically significant.
Thus, the adaptive strategies are indeed performing much
better than the FP, DF, and GD strategies, and so are any
other strategy that is shown to outperform another.

VII. SENSITIVITY ANALYSIS

In this section we study the robustness of the optimized
strategies by computing the amount of revenue loss suffered

a profit opt profit std profit loss (%)
4 (80%) 50.873 46.818 7.971
6 (120%) 131.166 122.664 6.482
7 (140%) 158.259 145.018 8.367
8 (160%) 176.953 161.207 8.898

Table IV
COMPARISON OF RESULTS USING THE PARAMETERS OPTIMIZED FOR

THE STANDARD CASE AND CASES IN WHICH DEMAND CHANGES
BETWEEN 80% AND 140% OF THE STANDARD DEMAND; THE ‘PROFIT
OPT’ COLUMN SHOWS THE AVERAGE PROFIT OBTAINED WHEN USING

THE OPTIMIZED PARAMETERS FOR EACH CASE, AND THE ‘PROFIT STD’
COLUMN SHOWS THE AVERAGE REVENUE OBTAINED USING THE
PARAMETERS OPTIMIZED FOR THE STANDARD CASE. THE LAST

COLUMN SHOWS THE AMOUNT OF PROFIT LOSS.

a Profit opt profit std profit loss (%)
4 (80%) 42.883 38.939 9.197
6 (120%) 123.447 120.108 2.705
7 (140%) 147.55 143.394 2.817
8 (160%) 166.514 161.012 3.304

Table V
SIMILAR TO TABLE IV, BUT WITH BROWNIAN MOTION.

in case of wrong assumptions about the market configura-
tion. To do this, we run the best performing strategy that
we have designed up to now, IB, for some configurations
that vary with our default Brownian and non-Brownian
configurations (see section VI).

We consider a class of varied configurations where the
customer arrival rate, a, is changed compared to the standard
non-Brownian configuration discussed above. We have run
the EA 10 times for configurations with a taking each of
the values in the set {4, 6, 7, 8} (corresponding to 80%,
120%, 140%, and 160% of the standard average customer
population) and compared the result of using the parameters
obtained from optimizing the standard case (in table II) with
the results for these varied configurations. The aim is to
compute how much revenue will be lost by falsely assuming
that the market is of the standard configuration (and learning
the parameters accordingly) when it is indeed following one
of the varied configurations. Note that cases with a lower
customer arrival rate are not considered because the total
number of customers will become so low that the firms
cannot obtain a positive profit no matter how they price their
goods, thus the cases become too extreme to be interesting.

The results of this experiment can be seen in tables IV
The results show that even in the most severe cases in
our experiments less than 10% of the profit can be lost by
incorrectly predicting the model.

VIII. CONCLUSIONS AND FURTHER WORK

We have presented a framework for implementing dy-
namic pricing in an interactive agent-based marketplace.
Additionally, we presented two heuristic pricing strategies
for the selling agents and a method for offline optimization
of their parameters that can be used within agents or outside



of them. We showed that for the cases we study, the
heuristics yield revenues that are consistently better than that
of the best offline-optimized fixed price and the results of
various derivative follower algorithms.

Our method is applicable in situations where there is some
general information about the market configuration before-
hand, so that offline optimization may become possible. The
strategies are also adaptive and robust to market dynamics.
This is particularly evident by observing that the strategies
perform even better compared to an optimized fixed price
strategy when more (structured) stochasticity is introduced
to the model by random fluctuations in the customer demand
function throughout time (Brownian motion case). The adap-
tive strategy can pick up the changes and adjust the prices
accordingly in reasonable time.

Another type of robustness is illustrated by using the
strategies in cases where the parameters have been optimized
with incorrect assumptions about the demand function. In
both the Brownian and non-Brownian cases, our IB strategy
can still perform well with the same optimized parameters
when the demand is increased up to 160% of the original
configuration, compared to when the parameters are specif-
ically optimized considering the demand change.

This approach to dynamic pricing is, to the best of our
knowledge, a new one. Some possible extensions to the
model are having a larger number of firms on the market,
firms with multiple good types, customers wishing to buy
combinations of goods, etc.. Also, following up on similar
research, it would be interesting to study our approach with
a multi-attribute model, either using generalized versions of
the current strategies or by designing new strategies.

Another important future extension is to use more com-
petitors and competitors that have intelligent and adaptive
pricing strategies as well. In the current work, the competitor
always has a fixed price strategy, but by giving the option
of more varying strategies to the competitor as well, more
complex market dynamics can arise.
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