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Abstract—In this paper, we present a collective classification
approach for identifying untrustworthy individuals in multi-
agent communities from a combination of observable features
and network connections. Under the assumption that data are
organized as independent and identically distributed (i.i.d.)
samples, traditional classification is typically performed on
each object independently, without considering the underlying
network connecting the instances. In collective classification, a
set of relational features, based on the connections between
instances, is used to augment the feature vector used in
classification. This approach can perform particularly well
when the underlying data exhibits homophily, a propensity
for similar items to be connected. We suggest that in many
cases human communities exhibit homophily in trust levels
since shared attitudes toward trust can facilitate the formation
and maintenance of bonds, in the same way that other types
of shared beliefs and value systems do. Hence, knowledge
of an agent’s connections provides a valuable cue that can
assist in the identification of untrustworthy individuals who
are misrepresenting themselves by modifying their observable
information. This paper presents results that demonstrate
that our proposed trust evaluation method is robust in cases
where a large percentage of the individuals present misleading
information.

Keywords-collective classification; homophily; agent reputa-
tion and trust

I. INTRODUCTION

Deciding whom to trust in the absence of direct transac-

tional history is a difficult problem [1] for an individual

agent interacting with an open system of self-interested

agents. One oft-used mechanism is the direct solicitation

of reputation information from a trusted source [2], [3], or

multiple, less-reliable sources [4], to avoid deceptions per-

petrated by groups of colluding agents. Yet, what if it is not

possible to directly query an agent’s reputation, either due

to communication constraints or a lack of willingness from

an agent’s fellows to directly testify about past transactions?

Here, we suggest that the structure of the network implicitly

bears witness to the trustworthiness of the connected agents,

regardless of whether the agents directly volunteer reputation

information. Our collective classification framework for trust

evaluation leverages a combination of observable features

and network connectivity to improve performance over non-

relational classification paradigms, in addition to making the

trust evaluation process more robust against the deceptive

efforts of untrustworthy agents.

In this paper, we describe collective classification and

show how it can be used for general trust evaluation

problems such as coalition building in social networks. We

demonstrate that our framework is highly robust to deceptive

agents and generalizes to trust evaluation scenarios in many

types of networks.

II. INFORMATIVE NETWORKS

Network structure can be intrinsically informative when

social forces affect the probability of link formation. Hu-

man networks often possess the property of homophily,

an increased propensity for like-minded individuals to be

connected, colloquially described with the phrase “birds of

a feather flock together” [5]. Homophily in trust levels could

be categorized as a form of value homophily, the tendency

of humans to preferentially connect with people who share

the same attitudes and beliefs. Along with value homophily,

status homophily, preferential linkages created on the basis

of attributes such as age, gender, or ethnicity, is commonly

observed in human social networks [6]. Network research

has shown that the homophily principle creates strong in-

terpersonal network ties in a wide variety of contexts (e.g.,

neighborhoods, communities, schools) and affects the choice

of informal trusted contacts selected for advice and social

support [7]. Clearly, since it is often beneficial for deceptive

agents to maintain connections with a network of “dupes”,

heterophily in trust levels (connections to dissimilar agents)

will also exist in trust networks.

A second factor affecting the probability of link main-

tenance is the agents’ satisfaction with past transactions.

In most situations, it is reasonable to assume that agents

will preferentially maintain connections with trustworthy

agents since those relationships are likely to result in direct

benefits [1]. Additionally, agents will form and maintain

relationships of convenience driven by factors such as

proximity, interaction costs, and supply/demand constraints

that are not simply explained by either link prediction

model [8]. Regardless of these additional factors, we believe

that the network structure remains an informative source of
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information when either value homophily or transactional

satisfaction affect link formation.

An underlying assumption of traditional classification

methods is that the instances are independent of each other.

On the other hand, networks of agents contain instances

of multiple types that are related to each other through

different types of links. To classify, or label the node in

the network, three classification methodologies have been

studied over the last decade. Traditional classifiers, often

referred to as the content-only classifier, ignore the network

and utilize attribute dependencies to predict the label of un-

known instances. Relational classifiers improve classification

performance by taking advantage of dependencies of both

attribute and labels between related labeled instances [9].

Finally, collective classification aims to simultaneously clas-

sify related instances to determine the label of the test

node [10], [11].

III. PROBLEM FORMULATION

Consider the following scenario. An individual agent in

a large, open multi-agent system would like to create the

largest possible coalition of trustworthy agents for a joint

venture. The agent can access the following information:

1) observable features correlated with the agents’ trust-

worthiness;

2) the existence of links connecting agents that have a

history of past transactions (but without weights or

valences denoting the outcome of the transactions);

3) a set of labels containing information about the trust-

worthiness of select members of the community.

Note that each link is meant to serve as summary of past

transactions rather than representing the outcome of a single

transaction. The agent forming the coalition cannot take any

probing actions before making its decision. It is assumed

that deceptive agents in the system attempt to foil the trust

evaluation by two mechanisms:

1) emitting deceptive features;

2) modifying their labels to appear more trustworthy.

For verisimilitude, the network is assumed to follow a

power law degree distribution like many human networks,

and link formation is driven by a combination of value

homophily, transactional satisfaction, and randomness. As

a result, there exists a society of N agents connected by

graph G. In this graph the set of nodes, V = {V1, . . . , Vn},
represents the agents; agents are connected by directed links

based on the underlying interactions between the agents. The

agents’ behavior during interactions is modulated by their

own internal value system or trustworthiness. The true level

of an agent’s trustworthiness is hidden from the other agents

and can assume a label from the set L = {L1, . . . , Ln}.
Each agent i, has two types of attributes: 1) a static feature

vector, Si = {s1, . . . , sm}, of length m; and 2) a dynamic

or relational feature vector, Ri = {r1, . . . , rn}, of length n.

The static feature vector is observable to all the agents and is

related to the agent’s trustworthiness; example features could

include properties such as “returns library books”, “answers

email promptly”, or “reciprocates invitations”. Dynamic,

relational features, are calculated through aggregating any

known labels of connected agents. The set of agents, N ,

is further divided into two sets of agents: X , the agents

for whom we know labels (acquaintances or people known

by reputation), and Y , the agents whose label or trust level

need to be determined (strangers). Our task is to determine

the labels of the unknown agents, Y , from the label set L,

based on their two types of attributes. The ultimate goal of

the observing agent is to recognize the trustworthiness of

other agents in the graph and to form a coalition consisting

of the most trustworthy set of agents.

IV. AGENT NETWORK GENERATION

To evaluate the performance of collective classification on

identifying agents’ trustworthiness in a variety of networks,

we simulate the evolution of agent networks formed by

the combined forces of value homophily and transactional

satisfaction. Since social communities often form a scale-

free network, whose degree distribution follows a power

law [12], we model our agent networks in the same fashion.

Following the Sen et al. [13] network data generation

method, we control the link density of the network using

a parameter, ld, and value homophily between agents using

a parameter, dh. The effects of value homophily is simulated

as follows:

1) At each step, a link is either added between two

existing nodes or a new node is created based on the

link density parameter (ld). In general, linking existing

nodes results in a higher average degree than adding

a new node.

2) To add a link, we first randomly select a node as the

source node, A, and a sink node, B, based on the

homophily value (dh), which governs the propensity

of nodes with similar trustworthiness values to link.

Node B is selected among all the candidate nodes in

the correct class, based on the degree of the node.

Nodes with higher degree have a higher chance to be

selected.

Transactional satisfaction also governs the process of

link formation. Once the link generation process starts, we

add a directed link from node A to node B by default,

under the assumption that the first selected agent initiated

the transaction. The transactional trustworthiness of the

second node governs whether a reciprocal link is formed.

Here, we use an evaluation function Fx(p, t) to map an

observed performance value p in a particular task t to a

binary evaluation of performance (positive or negative). We

assume that all agents use the same evaluation function for

all tasks, which is:
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Table I

(a) Agent Network Generator

Agent Network Generator (numNodes, ld, numLabels, attrNoise,
dh)
i = 0
G = NULL
while i < numNodes do

sample r from uniform distribution U(0, 1)
if r ≤ ld then

connectNode(G,numLabels,dh)
else

addNodes(G,numLabels,dh)
i = i + 1

end if
end while
for i = 1 to numNodes do

Attributes = genAttr(v, Attributes, label, attrNoise)
where v is ith node in G

end for
return G

(b) Agent Task Performance Profile

Trust Level Mean StDev

L1 0.9 0.05
L2 0.6 0.1
L3 0.4 0.1
L4 0.2 0.05

Fx(p, t) =

{
1 : p ≥ 0.5

−1 : p < 0.5

To generate a new node, we first select a trustworthiness

level based on a uniform class distribution and assign that

class label to the node. Then we add links between the

new node and one of the existing nodes as we described

above. Inspired by the model proposed by Burnett et al. [14],

the trustworthiness label (Table I(b)) governs the mean and

standard deviation parameters of a Gaussian distribution

from which simulated performance values are drawn. The

algorithm for simulating the evolution of the agent network

is outlined in Table I(a).

After generating the network, we assign observable static

attributes to each agent by drawing from a set of binomial

distributions based on its trustworthiness. Attributes are

represented as a binary feature vector, which indicates the

existence or absence of a given feature. These features are

meant to represent observable properties that result from

the consistent practice of an agent’s trust value system.

Observable attributes for each class are generated using

a set of binomial distributions. Attributes are represented

by a binary feature vector, length 10, but the maximum

number of attributes that can be true is capped at 5. Random

noise is introduced to the attribute generation process using

the attrNoise parameter. Specifically, with a probability of

attrNoise, each binary feature is independently assumed to

be corrupted, in which case it is set randomly to either 0 or 1

with equal probability. The attrNoise parameter can be used

to model the level of deceptiveness of agents in attempting

to hide observable attributes that provide clues about their

trustworthiness.

V. COLLECTIVE CLASSIFICATION

In this agent network scenario, collective classification

refers to the combined classification of a set of interlinked

nodes using three types of correlations [15]: 1) correlations

between the label of node V and its observed attributes; 2)

correlations between the label of node V and the observed

attributes (including observed labels of nodes in its neigh-

borhood); and 3) the correlations between the label of node

V and the unobserved labels of agents in its neighborhood.

For our experiments, we use the iterative classification

algorithm [16], an approximate inference algorithm that has

shown promise at hyperlink document classification tasks.

Iterative classification was first proposed by [16] and

has since been extended by [17]. In ICA, the training

model is built using both static and relational attributes of

the observed nodes. Since the class labels of the training

nodes are known, the value of the dynamic attributes can

be calculated using aggregation operators such as count,
proportion, or mode. Aggregation operators are different

ways of representing the same information (the labels of

the connected nodes), but alternate representations have

been shown to impact classification accuracy, based on the

application domain [15].

The training model is applied to the test nodes whose

class labels are unknown; in our problem, these are the

stranger agents, for whom no reputation information exists.

Initially, because some of class labels of the related nodes

are unknown, the values of their relational attributes are also

unknown. This problem can be solved by bootstrapping the

classification process. At the beginning, the prediction of

the class labels for all test nodes is obtained using content

features only. Predictions made with high probability are

accepted as valid and are accepted into data as known

class labels. After certain percentage of classification with

highest probability are accepted, the classifier recalculates

the relational attributes using the newly accepted labels and

reclassifies the labels. In each iteration, a greater percentage

of classifications are accepted and new dynamic attributes

are filled in. It is worth noting that the prediction is both

recalculated and reevaluated in each iteration; hence the

prediction about a given node might change over the process

of iteration. Therefore, the label of a node accepted in one

iteration might be discarded in the next iteration if the

probability associated with the prediction is no longer in

the top percentage of acceptance predictions. ICA has the

potential to subsequently improve classification accuracy on

related data after iterations. However, it should be carefully

applied since the incorrect relational features in one iteration

may diminish the classification accuracy. Table II(a) shows

the pseudo-code for ICA.
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In this paper, we explore the use of a reputation-based

aggregation operator. For a rational agent, its reputation in a

trust system is often calculated based on evidence consisting

of its observable positive and negative experiences [18].

This evidence can be collected by an agent locally or via

a reputation agency. We define the agent’s reputation as the

average judgment by its observable direct interactions. We

assume that the agent will receive a positive evaluation only

if its interactors’s trust level is equal or lower than itself’s.

The agent’s reputation is therefore the frequency of positive

opinions. Suppose rNx
x is the number of positive evaluation

agent x received from its observable interactors Nx, and

sNx
x is the number of negative evaluations. We compute

reputation based on rNx
x and sNx

x as

Rx =
rNx
x

rNx
x + sNx

x

. (1)

Note that Rx is a single scalar value, unlike typical

aggregation operators such as count or mode.

VI. EXPERIMENTS

Our experimental methodology can be summarized as

follows. We generate agent networks using the procedure

described in Section IV with the network parameter values

specified in Table II(b). numNodes refers to the total number

of agents in the network, including both agents whose trust

levels are revealed (analogous to the training set) and those

for which trust levels are hidden (corresponding to a test set);

dh denotes the homophily of the network; numLabels is the

number of discrete trust levels, with 1 corresponding to the

most trustworthy agents; numFeatures is the dimensionality

of the binary feature vector; attrNoise controls the probabil-

ity that a given binary feature is randomized (corresponding

to a degree of deception). Unless indicated otherwise, these

parameter values are fixed across experiments and plot

classification accuracy against the link density of generated

networks. For each network instance, we perform three-

fold cross-validation (using disjoint subsets of agents with

revealed and hidden labels) and report averaged results.

To evaluate the performance of collective classification in

defining the trust level of unknown agents, we adopt the ICA

algorithm [17] and employ the Logistic Regression Classifier

(LRC) as the baseline classifier in all the experiments.

We perform a series of experiments to investigate several

key issues in collective classification for trust evaluation.

First, we compare collective classification against a baseline

classifier, both in terms of overall accuracy and on inter-class

misclassification. We then evaluate the impact of a variety of

aggregate operators that represent the relations between trust

levels of connected agents and finally examine the robustness

of collective classification to two forms of deception in agent

networks.

Table II

(a) ICA

Iterative Classification Algorithm
1. Build model on fully labeled training set.
2. Apply trained model to test set of N instances.

For each iteration i : 1 to K
a. Calculate values for dynamic relational attributes
b. Use model to predict class labels
c. Sort inferences by probability
d. Accept m class labels, where m = N × (i/K)

3. Output final inferences made by model on test set

(b) Parameter settings

Parameter Name Value

numNodes 500
dh 0.8
numLabels 4
numFeatures 10
attrNoise 0.2

A. Comparisons against baseline classifier

Figure 1 compares the classification accuracy of ICA

against the baseline classifier (logistic regression) for default

agent network parameter settings. The feature vector for the

baseline algorithm is simply the list of observable binary

features, while that of ICA is augmented by the agent’s

relational attributes expressed using the count operator. The

latter is a histogram over trust levels of the agents connected

to the given agent, computed in both directions (i.e., an

additional 8-dimensional feature). As can be seen from the

graph, ICA improves over the baseline in a small number of

iterations and converges rapidly. Based on this, we use the

same value of K = 10 for the number of ICA iterations.

More importantly, we observe that ICA dramatically im-

proves the classification accuracy from a baseline of 73% to

95%, showing that collective classification is able to exploit

significant information about agent trust levels encoded

in the network, beyond that expressed in the observable

features alone.

Tables III(a) presents the confusion matrices for the base-

line (LRC) and collective classification (ICA) approaches.

We can make several observations about the misclassifica-

tions. First, collective classification virtually eliminates the

possibility of misclassifying an agent as very untrustworthy

(L4). Second, the classification accuracy for L1–3 agents

improves dramatically. Finally, although the classification

accuracy of L4 agents remains unchanged, we see that ICA

is much less likely to misclassify L4 agents as trustworthy

(L1).

B. Aggregation Operators

Aggregation operators summarize the visible trust levels

in a given agent’s network neighborhood. In this set of

experiments we explore the degree to which classification

accuracy is affected by the choice of operator. We consider

the following operators, each detailed below: count, propor-
tion, mode and reputation.
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Figure 1. Collective classification (ICA) clearly outperforms the baseline
(LRC) and converges in a few iterations. Note that the baseline classifier
is non-iterative and thus its performance reaches the maximum during the
first iteration. (ld=0.4, dh=0.8, attrNoise=0.2).

Table III
CONFUSION MATRICES FOR BASELINE AND COLLECTIVE

CLASSIFICATION WITH PARAMETER SETTING ld=0.4, dh=0.8,
attrNoise=0.2

(a) Baseline

L1 L2 L3 L4
L1 80.0 14.3 5.7 0
L2 16.3 60.5 20.9 2.3
L3 2.6 5.1 74.4 17.9
L4 6.0 0 6.0 88.0

(b) Collective Classification

L1 L2 L3 L4
L1 97.1 0 2.9 0
L2 9.3 90.7 0 0
L3 0 2.6 97.4 0
L4 2.0 2.0 8.0 88.0

As described earlier, count aggregates trust level labels

of neighbors into a histogram of raw counts. Proportion is

a normalized version of the count histogram. Mode retains

only the most popular trust level, ranging from 1–4. Finally,

reputation (as given in Equation 1) summarizes the agent’s

neighborhood in a single scalar quantity and can also be

employed as an aggregation operator.

Figure 2(a) compares the classification accuracy of collec-

tive classification using the different aggregation operators

against the LRC baseline. From the results, we make the

following observations. First, compressing the relational

information as a single scalar-valued reputation does not

improve accuracy over the baseline. The mode operator is

a little better, slightly but consistently outperforming the

baseline. However, losing the richness of the visible trust

levels (retaining only the most popular) is clearly inferior to

the complete histogram of proportion or count. In fact, the

unnormalized counts give the best results, and are therefore

used as the default aggregation operator.
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(b) dh=0.8, ld=0.4

Figure 2. Classification accuracy using (a) different aggregation operators;
and (b) different noise values on synthetic trust dataset (attrNoise)

C. Robustness to Deception

So far, we have enforced a completely positive correla-

tion between the agent’s feature and its class label (trust

level). However, in reality, cases may exist when certain

untrustworthy individuals misrepresent themselves by mod-

ifying their observable information. In order to evaluate

the performance of our model when this assumption is

relaxed, we conduct two series of experiments. In the first

experiment, we deliberately assign an increasing percentage

of the deceptive nodes into the training dataset.

Here, the deceptive agent modifies its class label to appear

more trustworthy (i.e., changing from L4 towards L1). Con-

sequently, we select deceptive agents from classes L2, L3,

and L4. We run 20 trials for each deception experiment with

variable link density. Figure 3 shows the averaged results.

Collective classification (ICA) shows great robustness in

this test (see Figure 3 and Table IV). In a network with a

modest amount of homophily, even when a large fraction

of the population is deceptive (25% deceivers) ICA can

continue to provide reliable results. It is important to note

that employing collective classification on even a highly de-

ceptive network is better than ignoring network information

(ICA outperforms baseline of 75% in all conditions).
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Figure 3. Deception experiment using collective classification with the
number of deceivers changing from 1% to 25%.

Table IV
EVEN WITH A HIGH FRACTION OF DECEIVERS, USING RELATIONS

IMPROVES OVER THE LRC BASELINE (75%).
(ld=0.4,dh=0.8,attrNoise=0.2)

Deceivers (%) 1 5 10 15 20 25

Accuracy (%) 91.2 90.3 89.5 88.7 87.6 84.2

We also seek to explore the robustness of collective

classification to a second form of deception: where the agent

corrupts its observable features, generating a noisy observa-

tion vector. In our network generation model, the attrNoise
parameter precisely captures the effect: each binary feature

is randomized i.i.d. with a probability of attrNoise. As

in earlier experiments, we compare collective classification

(ICA) against the baseline (LRC), as shown in Figure 2(b).

We make several observations. First, unlike in previous

experiments, we confirm that the baseline accuracy decreases

steadily as attrNoise rises, reaching chance level (25%) when

attrNoise = 1. This is because an agent’s observable features

become an increasingly unreliable predictor of its trustwor-

thiness. Second, by contrast we see that ICA’s accuracy

degrades surprisingly little, even when observable features

become completely non-informative. This is because collec-

tive classification is still able to rely on network relations to

predict an agent’s trustworthiness based solely upon that of

other agents in the neighborhood. Clearly, this can happen

only when the network exhibits sufficient homophily and

density.

VII. RELATED WORK

Trust evaluation has been applied to many diverse do-

mains including peer-to-peer networks [19], [20], online

social networks [21]–[23], e-business [24], [25] and mobile

ad-hoc networks [26]. Identifying non-trustworthy agents

in multi-agent systems and coping with the problem of

cheating is important especially for the web and in electronic

marketplaces. [27], [28] and [29] have proposed techniques

to cope with cheaters and sneakers respectively. In our

work, we are not only interested in identifying untrust-

worthy agents, but also finding highly trustworthy agents.

Our approach uses local network information to perform a

trust evaluation of other agents. In previous work, Sabater

et al. [30], [31] developed a reputation model based on

the existing social network among agents in a simulated

e-commerce environment. Similar to our approach, they

utilize the network neighbors of the target agent to calculate

reputation. However, in contrast to our work, they directly

query the neighbors rather than utilizing trust levels of

known agents in the network for trust evaluation.

Other authors have examined the relationship between

trust and homophily in human social networks. Prisel and

Anderson [32] observe that perceived homophily is posi-

tively related to feelings of safety and is negatively related to

the level of uncertainty in groups. Evans and Wensley [33],

[34] showed a direct link between homophily and trust;

higher levels of status and value homophily increase the

level of trust. They also note that homophily results in in-

creased knowledge/information sharing activities across the

group which are often a precursor to trust. However, status

homophily has also been found to be negatively related to

trust. In [35], the authors found no significant effect of

status homophily on benevolence-based trust; age similarity

was found to have a negative effect on competence-based

trust. Overall, we believe that the link between trust and

homophily is an interesting problem worthy of further study.

Our proposed trust evaluation approach identifies the

correct label for all of the unlabeled agents in the network;

this is the fundamental task of within-network classification

techniques [36], [37]. Previous authors have looked at the

problem of classifying nodes in social networks (e.g., [38],

[39]). In these approaches, both network structure informa-

tion and node class labels are combined to provide new

features to improve classification [40]. Much of the previous

work on using machine learning to identify the reputation

or trust level of agents in a multi-agent system has used

more traditional Bayesian methods (e.g., [41], [42]) and
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ignored the valuable information in the network structure

information. We refer to the surveys of Macskassy et al. [37]

and [43] for within-network classification techniques that

have been used in social networks. Although within-network

classification has been used in fraud detection applications,

such as call networks [44], [45], to detect the fraudulent or

legitimate entities in the network, it has not been applied

to problems of trust and reputation before. We believe that

fraud-detection is another potential application for our trust

evaluation approach, due to its robustness to fraudulent

information.

VIII. CONCLUSION

In this paper, we have demonstrated that when homophily

in trustworthiness is a driving factor in the evolution of an

agent network, collective classification is an effective mech-

anism for leveraging the informative powers of the network,

even in the presence of other link generation forces such as

transactional satisfaction. Although other types of supervised

classifiers [46] and relational models of trust [47] have

been explored, they do not propagate information across

multiple instances to perform trust evaluation. Preserving the

distribution of labels through more expressive aggregation

operators such as count and proportion is shown to be more

effective than the use of the single reputation feature that

encodes the value differential between the trustworthiness of

a node and its neighbors. In future work, we are particularly

interested in applying this framework toward two types of

problems: 1) using trustworthiness levels to perform link

prediction in agent networks; 2) learning multi-dimensional

models of trust from performance data.
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