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Abstract—Recent work has provided tantalizing hints that
small amounts of cooperation may actually hurt a group’s
performance rather than help it. In this paper, we take a
systematic look at the value of cooperation. Using a simple
cooperative task where agents can act effectively individually
but where high levels of cooperation will intuitively lead to
better behavior, we investigated when and how cooperation
helped overall performance. We systematically varied prop-
erties of the environment, e.g., the amount of uncertainty,
and how much of what sort of cooperation the agents would
perform, e.g., information sharing, resource allocation etc.
Our experimental results show that, even if communication
were free, and while typically coordination helps the team,
under some circumstances, the team may be better off not
coordinating at all than coordinating a little bit. We show
that the level of uncertainty the agents face and their initial
understandings of the environment determine whether a small
amount of coordination is useful.
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I. INTRODUCTION

Recently, some work has appeared in the literature suggest-
ing that doing only a little cooperation can actually harm
overall performance. Taylor et al [4] showed that distributed
constraint optimization with cooperation on value choices
between small numbers of agents could actually make the
optimization process worse. In other work, Velagapudi et
al [6] showed that when agents were cooperatively path
planning, there were some messages about obstacles that
negatively influenced performance, if sent, despite being
accurate. These results show that cooperation might not be
helpful at all, let alone worth any costs of performing the
cooperation. In this paper, we start an effort toward a better
understanding of exactly when cooperation is useful and
when it is not.

To investigate the value of cooporation, we developed a
simulation model where agents can act independently but
where overall performance will intuitively be better if the
agents cooperate. The key result of extensive experimentation
with the simulation is that there are a variety of cases
where a small amount of cooporation or shared informa-
tion can actually decrease overall performance, even when
the information was correct. If the agents were able to
cooperate extensively, performance was always better than

acting individually, but it requires significant amounts of
communication.

II. AGENT DECISION AND COOPERATION

Model: We call the task Treasure Hunt in which each agent
is assigned an item to acquire. After the item is acquired,
the agent will be assigned another item. Items are randomly
placed at different locations which are connected by routes.
Each item can have multiple instances at different locations.
Once an item is collected, it is relocated randomly. If not
collected, an item can only stay in its location for certain
time, then it is relocated randomly. Agents need to travel
from location to location in order to find the items they
are assigned. The cost of traveling a route is probabilistic.
Agents form a social network which might not depend on
their physical locations. Agents can communicate with their
neighbors. The goal for each individual agent is to collect as
many items as possible and for the team to collect as many
items as possible. The agents are completely selfless, having
exactly as much desire for the team to collect items as to
collect them individually.

In this section we describe the individual decision-making
and the cooperation that the agents perform. It is intuitively
expected that each type of cooperation helps overall perfor-
mance.

Agent individual decision: Random: agents pick a nearby
location randomly to explore. Path Planning: if the agent
has information about the location of the assigned item, it
calculates the shortest path to the assigned item using all
information available. Since information might change while
agent is moving, we use A* algorithm to generate optimal
paths. If the agent has no information about the location
of the assigned item, it pick a nearby location randomly to
explore or pick one location that has not been explored by
other agents.

Ways to Cooperate: Next, we describe the possible ways
an agent could cooperate. Notice that a team may employ
multiple types of cooperation for better performance.

o Share information about item locations: whenever an
agent moves to a new location, he broadcasts what
items are at this location to all his neighbors. His
neighbors may pass this information to their neighbors
until a fixed depth limit is reached.



o Sharing route costs: when an agent travels a route, it
broadcasts the cost to all its neighbors, and its neighbors
may pass the information on to their neighbors until a
fixed depth limit is reached.

e Coordination of exploration: agents help with each
other to explore unknown locations. Whenever an agent
is going to explore a new location, he tells all his
neighbors what he is going to explore and the neighbors
may pass this information to all their neighbors until
a fixed depth limit is reached. Whenever an agent
receives such kind of information, he doesn’t need to
explore that location and he may chose to explore other
locations

« Global knowledge: As an upper bound on performance,
we created an centralized, all-knowing algorithm. This
algorithm approximates perfect, complete cooperation,
but without the high cost

Agent’s Prior Beliefs: The cost of a route r is a probabilistic
function ¢, > 0 which is the absolute value of a normal
distribution with mean w,., variance o, and u, = d, + m,.,
d, is the physical Euclidean distance of the route, m, > 0
is a mean shift, and it is the absolute value of a randomly
generated number from a normal distribution with mean 0
and variance h, where h is a constant. The variance o, is
randomly generated from 0 to o where o is a constant. It
turns out that agent’s initial beliefs about uncertain route
information are important in determining whether some
information sharing is helpful. We consider three different
models covering a spectrum of assumptions.

o Optimistic: optimistic agents assume a lower limit of
the cost, which is the physical Euclidean length of the
route, ¢, = d,

o Pessimistic: pessimistic agent assume an upper limit of
the cost, ¢, = d(r) + 3h + 30

o Rational: rationall agents assume route cost to be

the expected value, ¢, = (d, + \/gh)(l
VST e ) 2o,
III. RESULTS

Treasure Hunt simulator first generates a map consisting of
500 locations, which are randomly placed in a 200 x 200
area. Each location is connected to an average of 4 other
nearby locations. 500 different types of items, 3 items
per type, are allocated randomly to those locations. 500
agents form a social network and are randomly deployed
at those locations. We assume the broadcasting information
and planning altogether takes 1 unit of time.

Broadcasting Depth: When agents broadcast information to
their neighbors, their neighbors can pass the information to
their neighbors,until a predefined number of hops is reached.
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Figure 2.  Performance versus number of agents, degree of uncertainty
and agent prior assumptions.

We vary the number of hops from 1 to 6 in our experiment.

As Figure 1 shows, the system’s performance increases
dramatically first, then gradually increases as the number of
hops gets higher. When it reaches about 3, or 4, depending
on the number of agents, the increase is not very obvious.
When the number of agents is low, after 3 hops, the higher
hops does not gain very much. When the number of agents is
high, 4 hops is good enough to get maximum performance.

Degree of cooperation: In this experiment, we study six
different cases: agents move randomly, agents plan individu-
ally without communication, agents share information about
items at locations, agents share information about items at
locations and cost of routes, agents share information about
items at locations and cost of routes and exploration of
unknown sites, agents share all information with all other
agents which is called global knowlege.

Results in Figure 2 show that more cooperation generally
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results in better performance. But there are few exceptions.
There are cases in which sharing route costs actually de-
grades performance of neutral agents and there are cases
in which coordination of exploration worsens team perfor-
mance too. Global knowledge improves system performance
in all cases, but the value of global knowledge depends
on the uncertainty, agent’s prior beliefs and the number of
agents. It has more value when there are more agents, higher
uncertainty.

Cooperation With High Uncertainty: We expect that sharing
too few route cost information in a highly uncertain world
might hurt team performance. We set up two experiments
to verify our hypothesis. First experiment investigates the
value of cooperation versus time and the second experiment
investigates the value of cooperation versus number of
agents.

In this experiment, agents are optimistic. All locations are
placed in a square with length 10, shift variation h = 10,
and variation o = 200, which means the uncertainty is high.
We divide the game into 10 stages, with 200 units of time
each. So in earlier stages, there is little information being
shared. As shown in Figur 3, agents without sharing route
cost outperform agents sharing road cost in the first two
stages, after 3rd stage, agents sharing route cost begin to
perform better. Which agrees with our hypothesis.

In this experiment, the number of agents varies from 25 to
500. All locations are in a 20 x 20 square, shift variation
h = 20 and o = 50, time span is 1000 units. As in Figure 4,
when the number of agents is few, the cooperation worsens
the system performance, but when the number of agents
increases, the value of broadcasting route cost increases.
This verifies our hypothesis since when the number of agents
is low, the amount of information being shared is low.

Degree of uncertainty: We expect that the value of sharing
cost of routes decreases when the uncertainty of the route
cost increases. In this experiment, all locations are in a
10 x 10 square, shift variation » = 10 and short game length
at 500 units of time. The number of agents is 500. The
degree of uncertainty is represented by o, the variation of
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Figure 5. Value of sharing route cost and uncertainty of route cost

route cost. We vary o from 1 to 200. As in figure 5, when
the degree of uncertainty increases, the value of cooperation
decreases, and eventually, it will make system performance
worse. Sharing route cost suffers more performance drop
than not sharing route cost when uncertainty increases, and
when the uncertainty reaches a certain level, it is better not
to share route cost. As for optimal agents, sharing route
cost outperforms not sharing, until ¢ = 100, and after
that, sharing route cost make system performance worse.
As for pessimistic and neutral agents, sharing route cost
stops helping at a very early stage, 0 = 30. In this sense,
optimistic agents are more robust against uncertainty, while
pessimistic and neutral agents are much more sensitive to
uncertainty.

Coordination of Exploring Unknown Locations:
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Figure 7. Sharing item at locations versus not sharing when items at
location unceratainty varies

Hypothesis: The value of coordination of exploring un-
known locations decreases as the number of agents in-
creases. In order to verify our hypothesis, we vary the
number of agents from 50 to 1000, and we can see from
Figure 6, that the value of coordination gradually decreases
when the number of agents increases, until it does not help
at all.

Uncertainty of Item Locations:

Hypothesis: The value of broadcasting items at locations
decreases when the uncertainty of item locations increases.
We define the uncertainty of item locations as the time that
an item stays in certain location before it moves to another
location. We vary the stay interval from 500 to 10000. The
length of the experiment is 10000. As in Figure 7, the value
of sharing items at locations increases when the stay interval
increases, or the uncertainty of item locations decreases.

IV. RELATED WORK

Teamwork has been widely studied in Distributed Al, [2],
[3]. Coordination among cooperative agents is a major chal-
lenge in MAS (Multi-Agent System). Much work focuses on
defining theoretical foundations to guide agent cooperation
and coordination, [5],[6]. It is not realized until recently

that the cooperation may not increase team performance, or
even worsen it under certain circumstances. [1] studied the
effectiveness of teamwork when the level of cooperativeness
or the size of local cooperation group varies. They show that
increased cooperation may not always increase performance.
Taylor et al [4] also concluded that cooperation among
team members may actually degrade the system performance
sometimes even the cost associated with the coordination is
free.

V. CONCLUSIONS

In this paper, we used a simple game to systematically
explore the value of cooperation. As with some previous
work, we found cases where a small amount of cooperation
actually hurts performance. This is strongly influenced by
the prior beliefs of the agents, specifically how their prior
beliefs relate to incoming information. This result should
make developers think carefully when adding cooperation
to a system — the impact may not be as expected. In
future work, we plan to analytically show when and how
cooperation can be unhelpful.
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