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Abstract—We propose a syntactic possibilistic belief-change
operator, which operates on a belief base represented as a
fuzzy set of formulas. Such a set may be regarded as a finite
and compact encoding of a possibility distribution over a
possibly infinite set of interpretations. The proposed operator
is designed so that it behaves like a semantic possibilistic
belief-change operator for BDI agents recently proposed in
the literature. The equivalence of the semantic and syntactic
operators is then proved.
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I. INTRODUCTION

Several approaches have been proposed for representing
uncertainty in the BDI (Beliefs Desires and Intentions) com-
ponents of an agent. The main goal of such approaches is to
extend the traditional BDI model of agency to make it more
suitable to represent real situations in which uncertainty is
omnipresent. There are essentially two ways for dealing
with uncertainty. By using probabilistic-based models which
are suitable when information about past experiences is
available, and by using possibilistic-based models which
in their turn are more suitable when we lack statistical
data but a notion of order on the events is available. This
latter uncertainty model for representation has demonstrated
its usefulness in representing uncertainty on beliefs since
the seminal work by Dubois and Prade [1]. In that work,
the authors pointed out the close relationships between the
theory of belief revision developed by Gardenförs based on
the notion of epistemic entrenchment, and possibility theory
applied to automated reasoning under uncertainty.

Other proposals have followed. For example, Dragoni and
Giorgini [2] presented a model for belief revision in which
they integrate symbolic and numerical methods into a BDI
architecture. Casali and colleagues [3] proposed a general
model for graded BDI agents and an architecture for model-
ing the agent’s graded mental attitudes. Like Casali, Blee and
colleagues [4] introduce levels in all the mentalistic notions
of BDI, as well as using numeric, possibilistic-type functions
in its semantics. We have recently presented an integrated
theoretical framework, grounded in possibility theory, to
account for all the aspects involved in representing and
changing beliefs for cognitive agents [5]. In that framework,

graded beliefs are represented by means of a possibility dis-
tribution over interpretations, and a belief-change operator
is proposed which obeys a possibilistic formulation of the
AGM revision rationality postulates K∗1–K∗8 [6], and is a
generalization of the possibilistic conditioning operator of
Dubois and colleagues [7].

Although our framework looks interesting and promising,
the use of a possibility distribution to represent beliefs, while
allowing us to model most of the intuitive properties in
an elegant and natural way, poses computational problems.
Indeed, for a propositional language, the interpretations are
2 to the power the number of atomic propositions; with more
than a few dozen atomic propositions, a direct representation
of a possibility distribution would require more memory
space than available on most state-of-the-art computers. For
more expressive languages, the set of interpretations may
even be infinite.

Obviously, equivalent, but less demanding, strategies to
encode and manipulate beliefs should be devised if such
an approach is to be adopted in a realistic setting. In this
paper, we propose one strategy to work around the direct
representation of beliefs as a possibility distribution, which
consists of adopting a syntactic representation, whereby the
beliefs of an agent are represented by means of a fuzzy set
of formulas in the language of choice. However, to achieve
full equivalence with the direct, semantic representation, the
belief-change operator has to be reformulated in terms of
the syntactic representation.

To this aim, we devise a syntactic belief-change operator
that works on a belief base, i.e., a fuzzy set of formulas in the
language of choice, where mebership degrees are regarded
as necessity degrees, and transforms it to account for the
arrival of new information from a partially trusted source.
Then we prove that the syntactic operator is equivalent to
the semantic operator.

The paper is organized as follows: Section II briefly
reviews background notions required to follow the paper.
Section III discusses the semantic and the syntactic repre-
sentation, showing their equivalence. Section IV reviews the
semantic belief-change operator, then proposes a syntactic
belief-change operators, and proves its equivalence. Finally,
Section V concludes.



II. PRELIMINARIES

In this section, we briefly review the essential background
and definitions on fuzzy set theory and possibility theory.

A. Fuzzy Sets

Fuzzy sets [8] are a generalization of classical (crisp) sets
obtained by replacing the characteristic function of a set
A, χA, which takes up values in {0, 1} (χA(x) = 1 iff
x ∈ A, χA(x) = 0 otherwise) with a membership function
µA, which can take up any value in [0, 1]. The value µA(x)
or, more simply, A(x) is the membership degree of element
x in A, i.e., the degree to which x belongs in A.

A fuzzy set is completely defined by its membership
function. Therefore, it is useful to define a few terms
describing various features of this function, summarized in
Figure 1. Given a fuzzy set A, its core is the (conventional)
set of all elements x such that A(x) = 1; its support,
supp(A), is the set of all x such that A(x) > 0. A fuzzy set
is normal if its core is nonempty. The set of all elements x
of A such that A(x) ≥ α, for a given α ∈ (0, 1], is called
the α-cut of A, denoted Aα. Sometimes it is convenient to
define also the notion of a strict α-cut, A>α, as the set of
all elements x of A such that A(x) > α.

Figure 1. Core, support, and α-cuts of a set A of the real line.

A convenient notational convention we will adopt
throughout this paper for fuzzy sets, when the universe of
discourse is discrete is, for fuzzy set A,

A =
A(x1)

x1
+
A(x2)

x2
+ . . . =

∑
i

A(xi)

xi
. (1)

This notation is nothing more than a formal device and the
fractions do not have to be interpreted as divisions but just
as ordered pairs, while the + does not stand for algebraic
sum but rather for a function-theoretic union.

The usual set-theoretic operations of union, intersection,
and complement can be defined as a generalization of their
counterparts on classical sets by introducing two families
of operators, called triangular norms and triangular co-
norms. In practice, it is usual to employ the min norm
for intersection and the max co-norm for union. Given two

fuzzy sets A and B, and an element x,

(A ∪B)(x) = max{A(x), B(x)}; (2)
(A ∩B)(x) = min{A(x), B(x)}; (3)

Ā(x) = 1−A(x). (4)

Finally, given two fuzzy sets A and B, A ⊆ B if and only
if, for all element x, A(x) ≤ B(x).

B. Possibility Theory

The membership function of a fuzzy set describes the
more or less possible and mutually exclusive values of one
(or more) variable(s). Such a function can then be seen as
a possibility distribution [9]. Indeed, if F designates the
fuzzy set of possible values of a variable X , πX = µF
is called the possibility distribution associated to X . The
identity µF (v) = πX(v) means that the membership degree
of v to F is equal to the possibility degree of X being equal
to v when all we know about X is that its value is in F . A
possibility distribution for which there exists a completely
possible value (∃v0;π(v0) = 1) is said to be normalized.

Definition 1 (Possibility and Necessity Measures): A
possibility distribution π induces a possibility measure
and its dual necessity measure, denoted by Π and N
respectively. Both measures apply to a crisp set A and are
defined as follows:

Π(A) = max
s∈A

π(s); (5)

N(A) = 1−Π(Ā) = min
s∈Ā

{1− π(s)}. (6)

In words, the possibility measure of set A corresponds to
the greatest of the possibilities associated to its elements;
conversely, the necessity measure of A is equivalent to the
impossibility of its complement Ā.

III. REPRESENTING GRADED BELIEFS

A. Language and Interpretations

Information manipulated by a cognitive agent must be
somehow represented. For the sake of simplicity, we use
here perhaps the simplest symbolic representation, in the
form of a classical propositional language.

Definition 2 (Language): Let A be a finite1 set of atomic
propositions and let L be the propositional language such
that A∪ {⊤,⊥} ⊆ L, and, ∀ϕ, ψ ∈ L, ¬ϕ ∈ L, ϕ∧ ψ ∈ L,
ϕ ∨ ψ ∈ L.

As usual, one may define additional logical connectives
and consider them as useful shorthands for combinations of
connectives of L, e.g., ϕ ⊃ ψ ≡ ¬ϕ ∨ ψ.

We will denote by Ω = {0, 1}A the set of all inter-
pretations on A. An interpretation I ∈ Ω is a function
I : A → {0, 1} assigning a truth value pI to every atomic

1Like in [10], we adopt the restriction to the finite case in order to use
standard definitions of possibilistic logic. Extensions of possibilistic logic
to the infinite case are discussed for example in [11].



proposition p ∈ A and, by extension, a truth value ϕI to all
formulas ϕ ∈ L.

Definition 3: The notation [ϕ] denotes the set of all mod-
els (namely, interpretations satisfying ϕ) of a formula ϕ ∈ L:

[ϕ] = {I ∈ Ω : I |= ϕ}.

Likewise, if S ⊆ L is a set of formulas,

[S] = {I ∈ Ω : ∀ϕ ∈ S, I |= ϕ} =
∩
ϕ∈S

[ϕ].

B. Syntactic and Semantic Representations

Two alternative ways for representing graded beliefs can
be obtained by following two distinct lines of reasoning.

The first line of reasoning starts from the logical idea
of a belief set, like the one used in the AGM theory of
revision [12]. In the literature on non-graded belief revision,
the agent’s belief state may be represented in different ways.
As belief sets, which are sets of sentences closed under
logical consequence, like in [12], or, alternatively, as belief
bases, which are sets of sentences that are not logically
closed [13] and contain the sentences that represent the
explicit beliefs from which all the other beliefs can be
derived. The representation based on belief sets has some
advantages, but is not computationally adequate. On the
other hand, a belief base may be regarded as a finite and
compact representation of a belief set, and is, therefore,
much more suited to computation.

As for the representation of graded beliefs, one can allow
some formulas of the base to be believed only to a given
degree, thus obtaining a fuzzy belief base, which is a fuzzy
set B of formulas. The degree to which a given formula
ϕ ∈ L is believed can be calculated as

B(ϕ) = max{α : Bα ⊢ ϕ}. (7)

This is the syntactic representation of graded beliefs.
Alternatively, one may regard a belief as a necessity

degree induced by a normalized possibility distribution π
on the possible worlds I ∈ Ω [14]:

π : Ω → [0, 1]; (8)

where π(I) is the possibility degree of interpretation I. In
this case, the degree to which a given formula ϕ ∈ L is
believed can be calculated as

B(ϕ) = N([ϕ]) = 1−max
I̸|=ϕ

π(I), (9)

where N is the necessity measure induced by π. This is the
semantic representation of graded beliefs.

This latter was our choice in the original proposal of the
theoretical framework [5].

C. Equivalence

A direct consequence of a fundamental result on the
equivalence between sets of necessity-values formulas and
possibility distributions [15], is that the syntactic and the
semantic representations of graded beliefs are equivalent.
Therefore, they may be used interchangeably as convenience
demands.

This means that, given a fuzzy belief base B such that,
for all α, Bα is consistent, one can construct a possibility
distribution π such that, for all ϕ ∈ L, N([ϕ]) = max{α :
Bα ⊢ ϕ}, where Bα is the α-cut of fuzzy belief base B.

In particular, π may be defined as follows: for all I ∈ Ω,

π(I) = min
ϕ:I̸|=ϕ

{1−B(ϕ)} = 1− max
ϕ:I̸|=ϕ

B(ϕ), (10)

or, equivalently,

π(I) = 1−max{α : Bα ⊢ ¬ϕI}, (11)

where ϕI denotes the minterm of I, i.e., the formula satisfied
by I only.

Notice that π is normalized. Indeed, since, by hypothesis,
for all α, Bα is consistent, there exists an interpretation
I∗ ∈ Ω, such that, for all α ∈ (0, 1], I∗ |= Bα; therefore,
π(I∗) = 1, because no formula ϕ exists such that I∗ ̸|= ϕ
and B(ϕ) > 0.

D. Properties of Graded Beliefs

Straightforward consequences of the properties of pos-
sibility and necessity measures are that B(ϕ) > 0 ⇒
B(¬ϕ) = 0, this means that if the agent somehow believes
ϕ then it cannot believe ¬ϕ at all; and, for all ϕ, ψ ∈ L,

B(⊤) = 1, (12)
B(⊥) = 0, (13)

B(ϕ ∧ ψ) = min{B(ϕ),B(ψ)}, (14)
B(ϕ ∨ ψ) ≥ max{B(ϕ),B(ψ)}. (15)

Another straightforward property is that, for all ϕ ∈ L,
B(ϕ) ≥ B(ϕ).

The idea of a syntactic representation of beliefs is that it
should be parsimonious, and ideally minimal with respect
to (fuzzy) set inclusion, i.e., the belief base does not need
to include explicitly formulas whose degree of belief can
be derived from it. In particular, this means that if formula
ϕ is already a member of B with degree B(ϕ), then, if
α ≤ B(ϕ),

B ∪ α

ϕ
= B.

In general, if α ≤ B(ϕ), which is equivalent to saying that
Bα ⊢ ϕ, adding α

ϕ to B would be redundant, and may be
dispensed with. Since all tautologies are always believed
to degree 1, adding a tautology to a belief base is always
redundant, and may thus be avoided.



IV. BELIEF CHANGE

In this section we begin by briefly reviewing the semantic
belief-change operator proposed in [5], then we propose a
syntactic belief-change operator and prove its equivalence
with the semantic operator.

A. Semantic Operator
Agents update their possibility distribution π in light of

new information ϕ ∈ L coming from a source trusted to a
certain extent τ ∈ [0, 1] by means of the following belief
change operator [5], which is formulated in terms of the
semantic representation of beliefs.

Definition 4 (Belief Change Operator): The possibility
distribution π′ which induces the new belief set B′ after
receiving information ϕ from a source trusted to degree τ
is computed from possibility distribution π relevant to the
previous belief set B (B′ = B ∗ τ

ϕ , π′ = π ∗ τ
ϕ ) as follows:

for all interpretation I,

π′(I) =


π(I)

1−B(¬ϕ) , if I |= ϕ and B(¬ϕ) < 1;

1, if I |= ϕ and B(¬ϕ) = 1;
min{π(I), 1− τ}, if I ̸|= ϕ.

(16)
The condition B(¬ϕ) < 1 in Equation 16 is equivalent to
∃I ′ : I ′ |= ϕ ⇒ π(I ′) > 0, i.e., Π([ϕ]) > 0; likewise,
the condition B(¬ϕ) = 1 is equivalent to Π([ϕ]) = 0,
which implies π(I) = 0 ∀I |= ϕ. Therefore, The second
case in Equation 16 provides for the revision of beliefs that
contradict ϕ. In general, the operator treats new information
ϕ in the negative sense: being told ϕ denies the possibility of
world situations where ϕ is false (third case of Equation 16).
The possibility of world situations where ϕ is true may only
increase due to the first case in equation 16 or revision
(second case of Equation 16). If information from a fully
trusted source contradicts an existing proposition that is fully
believed, then revising with the above operator leads the
agent to believe the more recent information and give up
the oldest to restore consistency.

It has been proved [5] that the belief change operator ∗ of
Definition 4 obeys a possibilistic formulation of the AGM
revision rationality postulates K∗1–K∗8 [6].

It is easy to verify that the ∗ operator is a generalization
of the possibilistic conditioning operator of Dubois and
colleagues [7].

After recalling that the expansion of a crisp set of formulas
K with a formula ϕ ∈ L is K+ϕ = {ψ : K∪{ϕ} ⊢ ψ}, let
us define the expansion of a fuzzy set of formulas B with
a formula ϕ ∈ L from a source trusted to degree τ , for all
ψ ∈ L, as(

B+
τ

ϕ

)
(ψ) = max

{
α :

(
B ∪ τ

ϕ

)
α

⊢ ψ
}
. (17)

In terms of possibility distribution, this corresponds to(
π +

τ

ϕ

)
(I) = min{π(I), ϕI + (1− ϕI)(1− τ)}. (18)

B. Syntactic Operator

First of all, it is reasonable to require that a syntactic belief
change operator produces a new belief base B′ = B + τ

ϕ ,
starting from B, by using only formulas that are in supp(B)
and ϕ.

Four examples of increasing difficulty will help us to bet-
ter frame the problem of how to express the semantic belief-
change operator in terms of the syntactic representation.

Example 1: Let B = 1
p + 0.2

p⊃q , and let us calculate
B′ = B ∗ 0.6

¬q . The α-cuts of B are

Bα =

{
{p}, for 0.2 < α ≤ 1;
{p, p ⊃ q}, for 0 < α ≤ 0.2. (19)

Since we only know the semantic belief-change operator, we
have to transform the beliefs represented by B into the cor-
responding possibility distribution π, by using Equation 11.
The set of interpretations Ω contains the following four
interpretations, listed with their corresponding minterms:

I0 = {p 7→ 0, q 7→ 0}, ϕI0 = ¬p ∧ ¬q,
I1 = {p 7→ 0, q 7→ 1}, ϕI1 = ¬p ∧ q,
I2 = {p 7→ 1, q 7→ 0}, ϕI2 = p ∧ ¬q,
I3 = {p 7→ 1, q 7→ 1}, ϕI3 = p ∧ q.

Therefore,

π(I0) = 1−max{α : Bα ⊢ p ∨ q} = 0,
π(I1) = 1−max{α : Bα ⊢ q ⊃ p} = 0,
π(I2) = 1−max{α : Bα ⊢ p ⊃ q} = 0.8,
π(I3) = 1−max{α : Bα ⊢ ¬p ∨ ¬q} = 1.

Now, we apply the semantic belief-change operator to obtain
π′ = π∗ 0.6

¬q , by keeping in mind that B(q) = 1−0.8 = 0.2:

π′(I0) = π(I0)
1−B(q) =

0
0.8 = 0,

π′(I1) = min{π(I1), 0.4} = 0,

π′(I2) = π(I2)
1−B(q) =

0.8
0.8 = 1,

π′(I3) = min{π(I3), 0.4} = 0.4.

From possibility distribution π′ we may compute the degree
to which all relevant formulas are now believed:

B′(p) = 1−maxI̸|=p π
′(I) = 1,

B′(p ⊃ q) = 1−maxI̸|=p⊃q π
′(I) = 0,

B′(¬q) = 1−maxI̸|=¬q π
′(I) = 0.6.

Therefore, we may conclude that a reasonable candidate for
B′ should be the fuzzy set 1

p + 0.6
¬q . Indeed, it is easy to

verify that its corresponding possibility distribution is π′, as
expected: the α-cuts of B′ are

B′
α =

{
{p}, for 0.6 < α ≤ 1,
{p,¬q}, for 0 < α ≤ 0.6, (20)

and applying Equation 11 to compute the corresponding
possibility distribution yields π′.

What this example tells us is that, in this case, the belief
base has been changed by removing formula p ⊃ q, which



contradicts the new information ¬q and was believed to
degree 0.2 only, and by adding the new formula ¬q with
membership degree τ = 0.6. ⋆

It is interesting to observe what happens when the initial
belief base contains formulas that have nothing to do with
incoming information. The following example is a variation
of the previous one, where another formula using atom r,
completely independent of both p and p ⊃ q, is introduced
into the initial belief base.

Example 2: Let B = 1
p+

0.2
p⊃q+

0.3
r , and let us calculate,

just like in the previous example, B′ = B ∗ 0.6
¬q . The α-cuts

of B are now

Bα =

 {p}, for 0.3 < α ≤ 1;
{p, r}, for 0.2 < α ≤ 0.3;
{p, p ⊃ q}, for 0 < α ≤ 0.2.

(21)

The set of interpretations Ω contains the following eight
interpretations, listed with their corresponding minterms:

I0 = {p 7→ 0, q 7→ 0, r 7→ 0}, ϕI0
= ¬p ∧ ¬q ∧ ¬r,

I1 = {p 7→ 0, q 7→ 1, r 7→ 0}, ϕI1 = ¬p ∧ q ∧ ¬r,
I2 = {p 7→ 1, q 7→ 0, r 7→ 0}, ϕI2

= p ∧ ¬q ∧ ¬r,
I3 = {p 7→ 1, q 7→ 1, r 7→ 0}, ϕI3 = p ∧ q ∧ ¬r,
I4 = {p 7→ 0, q 7→ 0, r 7→ 1}, ϕI4 = ¬p ∧ ¬q ∧ r,
I5 = {p 7→ 0, q 7→ 1, r 7→ 1}, ϕI5 = ¬p ∧ q ∧ r,
I6 = {p 7→ 1, q 7→ 0, r 7→ 1}, ϕI6 = p ∧ ¬q ∧ r,
I7 = {p 7→ 1, q 7→ 1, r 7→ 1}, ϕI7 = p ∧ q ∧ r.

Applying Equation 11 yields the possibility distribution π
corresponding to belief base B:

π(I0) = 1−max{α : Bα ⊢ p ∨ q ∨ r} = 0,
π(I1) = 1−max{α : Bα ⊢ p ∨ ¬q ∨ r} = 0,
π(I2) = 1−max{α : Bα ⊢ ¬p ∨ q ∨ r} = 0.7,
π(I3) = 1−max{α : Bα ⊢ ¬p ∨ ¬q ∨ r} = 0.7,
π(I4) = 1−max{α : Bα ⊢ p ∨ q ∨ ¬r} = 0,
π(I5) = 1−max{α : Bα ⊢ p ∨ ¬q ∨ ¬r} = 0,
π(I6) = 1−max{α : Bα ⊢ ¬p ∨ q ∨ ¬r} = 0.8,
π(I7) = 1−max{α : Bα ⊢ ¬p ∨ ¬q ∨ ¬r} = 1.

Now, we apply the semantic belief-change operator to obtain
π′ = π∗ 0.6

¬q , by keeping in mind that B(q) = 1−0.8 = 0.2:

π′(I0) = π(I0)
1−B(q) =

0
0.8 = 0,

π′(I1) = min{π(I1), 0.4} = 0,

π′(I2) = π(I2)
1−B(q) =

0.7
0.8 = 0.875,

π′(I3) = min{π(I3), 0.4} = 0.4,

π′(I4) = π(I4)
1−B(q) =

0
0.8 = 0,

π′(I5) = min{π(I5), 0.4} = 0,

π′(I6) = π(I6)
1−B(q) =

0.8
0.8 = 1,

π′(I7) = min{π(I7), 0.4} = 0.4.

From π′, we compute the degree to which all relevant
formulas are now believed:

B′(p) = 1−maxI̸|=p π
′(I) = 1,

B′(p ⊃ q) = 1−maxI̸|=p⊃q π
′(I) = 0,

B′(r) = 1−maxI̸|=r π
′(I) = 0.125,

B′(¬q) = 1−maxI̸|=¬q π
′(I) = 0.6.

Therefore, we may conclude that B′ must be the fuzzy
set 1

p + 0.6
¬q + 0.125

r . We may verify that its corresponding
possibility distribution is π′.

What this example tells us is that formulas like r, that
are believed to a larger degree than the negation of new
information, must be “weakened” to a certain extent by the
arrival of new information that contradicts currents beliefs.
The amount of such weakening appears to be inversely pro-
portional to the degree to which new information contradicts
current beliefs. In the case of r,

B′(r) = 1− 1−B(r)

1−B(q)
= 1− 1− 0.3

1− 0.2
= 1−0.875 = 0.125.

⋆

Things get even more complicated with the following
example, which demonstrates the need of including “novel”
formulas created as a disjunction of previously held beliefs
and incoming information that contradicts current beliefs, to
replace formulas removed from the initial belief base.

Example 3: Let B = 0.6
¬p + 0.4

q , and let us calculate
B′ = B ∗ 0.2

p . The α-cuts of B are

Bα =

 ∅ for 0.6 < α ≤ 1;
{¬p}, for 0.4 < α ≤ 0.6;
{¬p, q}, for 0 < α ≤ 0.4.

(22)

The set of interpretations Ω contains the following four
interpretations, listed with their corresponding minterms:

I0 = {p 7→ 0, q 7→ 0}, ϕI0 = ¬p ∧ ¬q,
I1 = {p 7→ 0, q 7→ 1}, ϕI1 = ¬p ∧ q,
I2 = {p 7→ 1, q 7→ 0}, ϕI2 = p ∧ ¬q,
I3 = {p 7→ 1, q 7→ 1}, ϕI3 = p ∧ q.

Applying Equation 11 yields the possibility distribution π
corresponding to belief base B:

π(I0) = 1−max{α : Bα ⊢ p ∨ q} = 0.6,
π(I1) = 1−max{α : Bα ⊢ q ⊃ p} = 1,
π(I2) = 1−max{α : Bα ⊢ p ⊃ q} = 0.4,
π(I3) = 1−max{α : Bα ⊢ ¬p ∨ ¬q} = 0.4.

Now, we apply the semantic belief-change operator to obtain
π′ = π ∗ 0.2

p , by keeping in mind that B(¬p) = 0.6:

π′(I0) = min{π(I0), 0.8} = 0.6,
π′(I1) = min{π(I1), 0.8} = 0.8,

π′(I2) = π(I2)
1−B(q) =

0.4
0.4 = 1,

π′(I3) = π(I3)
1−B(q) =

0.4
0.4 = 1.



From π′, we may compute:

B′(p) = 1−maxI̸|=p π
′(I) = 0.2,

B′(¬p) = 1−maxI̸|=¬p π
′(I) = 0,

B′(q) = 1−maxI̸|=q π
′(I) = 0.

However, belief base B′ cannot be 0.2
p , as one would expect

based on the two previous examples, because that would
give

1−max{α : Bα ⊢ p ∨ q} = 0.8 ̸= π′(I0).

The only way of obtaining the correct result by using only
formulas that either were in the initial base or in incoming
information is by observing that B′(p ∨ q) = 0.4 and thus
by letting B′ = 0.2

p + 0.4
p∨q .

In other words, formula q that had to be given up because
it was not believed more than ¬p must be replaced by its
disjunction with incoming information p, giving p∨ q, with
the same degree of membership as q in the initial base.

Why did not this feature show up in the previous ex-
amples? The reason is that the disjunction with incoming
information would give a tautology, which is always fully
believed: its inclusion in B′ would be redundant and could
thus be dispensed with. ⋆

From the last example, it is not completely clear whether a
formula of the form ψ∨ϕ, where ϕ is the incoming formula,
must be added to replace formulas that got deleted only, or
it must be added for all formulas ψ in the initial base. The
following example helps us to clarify this issue.

Example 4: Let us use the same Ω as in the previous
example, and, given

B =
0.9

p ⊃ q
+

0.7

p ∨ q
+
0.7

q
+

0.25

¬(p ∧ q)
+

0.25

p⊕ q
+
0.25

¬p
+

0.25

¬p ∧ q
,

where p⊕ q ≡ (¬p∧ q)∨ (p∧¬q) represents the “exclusive
or” logical operator, let us calculate B′ = B ∗ 0.6

p .
The possibility distribution π corresponding to belief base

B may be determined as usual, by applying Equation 11:

π(I0) = 1−max{α : Bα ⊢ p ∨ q} = 0.3,
π(I1) = 1−max{α : Bα ⊢ q ⊃ p} = 1,
π(I2) = 1−max{α : Bα ⊢ p ⊃ q} = 0.1,
π(I3) = 1−max{α : Bα ⊢ ¬p ∨ ¬q} = 0.75.

Now, B(¬p) = 0.25 and the semantic belief change yields

π′(I0) = min{π(I0), 0.4} = 0.3,
π′(I1) = min{π(I1), 0.4} = 0.4,

π′(I2) = π(I2)
1−B(q) =

0.1
0.75 = 0.1333,

π′(I3) = π(I3)
1−B(q) =

0.75
0.75 = 1,

from which we must infer that

B′ =
0.8667

p ⊃ q
+

0.7

p ∨ q
+

0.6

p
+

0.6

q
.

Notice that B′ must be obtained by adding formulas ψ ∨ p
for all the formulas originally in B to the contracted belief

base. What happens then is that all of those ψ ∨ p either
reduce to p ∨ q or to a tautology:

(p ⊃ q) ∨ p = ¬p ∨ q ∨ p = ⊤ ∨ q = ⊤,
(p ∨ q) ∨ p = p ∨ q,

¬(p ∧ q) ∨ p = ¬p ∨ ¬q ∨ p = ⊤ ∨ ¬q = ⊤,
(p⊕ q) ∨ p = (¬p ∧ q) ∨ (p ∧ ¬q) ∨ q = p ∨ q,

¬p ∨ p = ⊤,
(¬p ∧ q) ∨ p = (¬p ∨ p) ∧ (p ∨ q) = ⊤ ∧ (p ∨ q) = p ∨ q.

Had not 0.7
p∨q been included in B′, the term 0.6

p∨q , resulting
from B′(p ∨ q) = 1− 0.3

0.75 , would have been there instead,
giving

1−max{α : Bα ⊢ p ∨ q} = 0.4 ̸= π′(I0).

This means that ψ∨ϕ must be included in B′ for all formulas
ψ in B. ⋆

One of the oldest ideas in belief revision theory, due to
Isaac Levi, is that changing your beliefs given some new
information should proceed in two steps: first, give up old
beliefs contradicted by new information; second, add the
new information [16].

The syntactic expansion operator +, equivalent to the
semantic expansion operator of Equation 18 may be defined
as

B +
τ

ϕ
= B ∪ τ

ϕ
. (23)

Notice that, if ϕ is already in B at least to degree τ , B∪ τ
ϕ =

B.
As for the syntactic contraction operator, it is not obvious

how it should be defined. A first guess at it might be what
we may call simple contraction,

B − ϕ = B ∩B>B(ϕ), (24)

i.e., B with all formulas belonging to it up to the degree
to which ϕ is believed removed. However, for reasons that
should be clear from our discussion of the examples, we
prefer to resort to the following normalized contraction
operator: for all ψ ∈ L,

(B .− ϕ)(ψ) =

{
0, if B(ψ) ≤ B(ϕ),
1− 1−B(ψ)

1−B(ϕ) , if B(ψ) > B(ϕ), (25)

which is almost the same as Equation 24, except that it
redistributes between 0 and 1 the degree of membership of
all the formulas that do not get removed.

A syntactic belief-change operator may now be defined
as a two-stage operator, which first contracts the belief
base by the negation of the information communicated by a
partially trusted source, and then expands it with such new
information.

Definition 5 (Belief Change Operator): The belief
base B′ which induces the new belief set B′ after receiving



Figure 2. A flow chart of the syntactic belief change operator, showing
how B(ψ), given as input, is changed into B′(ψ).

information ϕ from a source trusted to degree τ is computed
from belief base B relevant to the previous belief set B
(B′ = B ∗ τ

ϕ , B′ = B ∗ τ
ϕ ) as follows:

B′ = (B .− ¬ϕ) + τ

ϕ
+
∑
ψ

B(ψ)

ϕ ∨ ψ
. (26)

An interesting feature of the above definition is that
Equation 26 may be regarded as a fuzzy generalization of
the well-known Levi identity K ∗ ϕ = (K − ¬ϕ) + ϕ.

An alternative way of writing Equation 26, which empha-
sizes the way individual membership degrees change, is, for
all ψ ∈ L,

B′(ψ) =


max{τ, B(ϕ)}, ψ = ϕ,
max{B(ξ), B(ψ)}, ψ = ϕ ∨ ξ,
0, ψ ̸=, B(ψ) ≤ B(¬ϕ),
1− 1−B(ψ)

1−B(¬ϕ) , if ψ ̸=, B(ψ) > B(¬ϕ),
(27)

where “ψ ̸=” is a shorthand writing for “ψ ̸= ϕ and ψ ̸=
ϕ ∨ ξ”, i.e., any other formula ψ.

Notice the striking formal symmetry between this equa-
tion and Equation 16. The flow chart shown in Figure 2
makes it clear how the membership values of formulas
in the belief base change as the consequence of applying
Equation 27.

In the special case where B(¬ϕ) = 1, B ∗ τ
ϕ = τ

ϕ ; when
B(¬ϕ) = 0, B ∗ τ

ϕ = B + τ
ϕ , i.e., belief change reduces to

simple expansion.

C. Equivalence

Equivalence between the semantic and syntactic operators
will be proved by showing that the syntactic operator applied

to a belief base B corresponding to possibility distribution
π yields a revised belief base B′ whose corresponding pos-
sibility distribution is exactly the distribution π′ one would
obtain by applying the semantic operator to distribution π.
This is summarized in the following commutative diagram:

π ∗sem τ
ϕ → π′

↑ ↑
B ∗syn τϕ → B′

, (28)

where ∗sem symbolizes the semantic belief-change operator
of Definition 4 and ∗syn stands for the syntactic belief-
change operator of Definition 5.

Theorem 1: Let B be a belief base and πB its correspond-
ing possibility distribution. For all ϕ ∈ L and τ ∈ (0, 1],
let B′ = B ∗ τ

ϕ and πB′ be the possibility distribution
corresponding to B′. Then,

πB′ = πB ∗ τ
ϕ
. (29)

Proof: According to Equation 10, for all I,

πB(I) = 1− max
ψ:I̸|=ψ

B(ψ). (30)

For convenience of notation, let π′
B = πB ∗ τ

ϕ . Applying
the semantic belief-change operator to πB yields, by Defin-
ition 4, for all I,

π′
B(I) =


1−maxψ:I̸|=ψ B(ψ)

1−B(¬ϕ) , I |= ϕ,B(¬ϕ) < 1;

1, I |= ϕ,B(¬ϕ) = 1;

min

{
1− max

ψ:I̸|=ψ
B(ψ), 1− τ

}
, I ̸|= ϕ.

(31)
On the other hand, according to Equation 10, for all I,

πB′(I) = 1− max
ψ:I̸|=ψ

B′(ψ). (32)

Therefore, in order to prove that π′
B = πB′ , we must prove

the following three theses, corresponding to each of the three
conditions of Equation 31: for all I,

1) if I |= ϕ and B(¬ϕ) < 1,

1− max
ψ:I̸|=ψ

B′(ψ) =
1−maxψ:I̸|=ψ B(ψ)

1−B(¬ϕ)
; (33)

2) if I |= ϕ and B(¬ϕ) = 1,

max
ψ:I̸|=ψ

B′(ψ) = 0; (34)

3) finally, if I ̸|= ϕ,

1− max
ψ:I̸|=ψ

B′(ψ) = min

{
1− max

ψ:I̸|=ψ
B(ψ), 1− τ

}
.

(35)



To prove Thesis 1, it suffices to substitute the left-hand
side of Equation 33 with its definition:

1− max
ψ:I̸|=ψ

B′(ψ) = 1− max
ψ:I̸|=ψ

{
1− 1−B(ψ)

1−B(¬ϕ)

}
=

= min
ψ:I̸|=ψ

1−B(ψ)

1−B(¬ϕ)
=

=
1

1−B(¬ϕ)
min
ψ:I̸|=ψ

{1−B(ψ)} =

=
1−maxψ:I̸|=ψ B(ψ)

1−B(¬ϕ)
.

To prove Thesis 2, we simply observe that since, by
hypothesis, B(¬ϕ) = 1, B(ψ) ≤ B(¬ϕ) for all ψ; therefore,
for all ψ ̸= ϕ, B′(ψ) = 0 (third case of Equation 27).

As for Thesis 3, Equation 35 may be rewritten as

1− max
ψ:I̸|=ψ

B′(ψ) = 1−max

{
max
ψ:I̸|=ψ

B(ψ), τ

}
.

Therefore, we have to prove that, if I ̸|= ϕ,

max
ψ:I̸|=ψ

B′(ψ) = max
ψ:I̸|=ψ

{B(ψ), τ} . (36)

Notice that ϕ is among the formulas not satisfied by I
and, by the first case of Equation 27, maxψ:I̸|=ψ B

′(ψ) ≥
B′(ϕ) ≥ τ and maxψ:I̸|=ψ B(ψ) ≥ B(ϕ), whence

max
ψ:I̸|=ψ

B′(ψ) ≥ max
ψ:I̸|=ψ

{B(ψ), τ} .

On the other hand, if we exclude ϕ from the maxima of
the B′(ψ) and the B(ψ), we get

max
ψ ̸=ϕ
I̸|=ψ

B′(ψ) ≤ max
ψ ̸=ϕ
I̸|=ψ

B(ψ),

because, apart from the first case of Equation 27, the
syntactic operator has no way of assigning to a formula a
belief degree that is higher than a belief degree already in
the original base.

Therefore, equality in Equation 36 must hold.

V. CONCLUSION

Starting from a possibilistic belief-change operator pro-
posed in the literature which was defined in terms of a
semantic representation of beliefs, we have devised its syn-
tactic counterpart, i.e., a possibilistic belief-change operator
that works on a syntactic representation of beliefs in the
form of a fuzzy belief base, and that behaves exactly like
the semantic operator.

The advantages of being able to work directly on a
syntactic representation should be quite obvious: a semantic
representation of beliefs in terms of a possibility distribution
is well-suited to a theoretical treatment of the matter, but
does not constitute a serious candidate for an implementation
of any cognitive agent framework adopting possibility theory
for reasoning about beliefs. Implementations with any am-
bition to tackle real-world applications will have necessarily

to resort to a syntactic representation, and thus will have
to use a belief-change operator that works directly on that
representation.
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