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Abstract—To increase realism of virtual agents in serious 

gaming applications, computational models of human cognitive 

processes can play an important role. This paper presents a 

computational agent model that integrates models for situation 

awareness and surprise. The crucial element in the integration 

of both models is a mechanism that matches beliefs about the 

situation from the situation awareness model with expectations 

about the world from the surprise model. To evaluate the 

integrated model, it has been implemented within an existing 

simulator for F16 pilots, and four variants of the model were 

tested within a domain-specific scenario. The results indicate 

that the model has promising capabilities to enhance realism of 

virtual agents. 

Keywords - cognitive modelling, serious gaming, situation 

awareness, surprise. 

I.  INTRODUCTION 

An important requirement for applications of serious 
gaming for simulation-based training is to provide realistic 
virtual characters displaying human-like behaviour; e.g., 
[16]. To achieve this, a useful source is found in cognitive 
and neurological areas addressing human possibilities and 
limitations. Often knowledge of a specific human 
phenomenon is taken as a point of departure to design a 
biologically plausible agent model for this phenomenon. In 
this way agent models can and actually have been developed 
displaying, for example, human-like forms of attention, 
decision making, emotion, fatigue, mindreading (or Theory 
of Mind), situation awareness (SA), surprise (e.g., [6, 7, 
12]). In some application areas such ‘single-phenomenon’ 
agent models may be useful. However, in other application 
areas multiple phenomena play a role. For such applications 
different models have to be integrated. 

This paper addresses agent models for the domain of 
simulation-based training for combat flight, and in particular 
the role of both situation awareness and surprise. Agent 
models to act in such a training environment need to display 
both phenomena. By maintaining an adequate model of the 
environment a form of situation awareness is achieved as a 
basis for comprehension and prediction of what is to be 
expected. However, still unexpected events may occur to the 
agent and may lead to a state of surprise. The focus of this 
paper is on how the combination of situation awareness and 

surprise can be achieved in an agent model by integrating 
computational models for each of these separate phenomena 
as described, respectively, in [7] and [12].  

 Situation awareness is defined in [5] as: perception of 
cues, comprehension and integration of information, and 
projection onto future events. The extent to which an agent 
has situation awareness depends on the available cognitive 
resources. In demanding circumstances such as in air traffic 
control or military combat a reduction in situation 
awareness will often negatively affect performance. Surprise 
is considered a response to unexpected events with 
emotional and cognitive aspects (for example [4, 15, 13]). 
Experiencing surprise affects human behaviour, for 
example, expression through facial expressions [4] and the 
interruption of ongoing action [8].  

The agent model integrating situation awareness and 
surprise presented here has been developed for simulation-
based training in combat flight simulation, which is a 
common method used to train fighter pilots; e.g., [9, 14].  
This integrated model reuses elements of the computational 
model for situation awareness described in [7] and the 
model for surprise presented in [12].  

In the paper, Section II describes the modelling approach 
used, and Section III the integrated computational model for 
situation awareness. In Section IV it is described how the 
model has been tested in a case study, using an existing 
simulator for F16 pilots. Finally, Section V is a discussion. 

II. MODELLING APPROACH 

To model the different aspects related to the creation of 
situation awareness and surprise from an agent perspective, 
an expressive modelling language is needed. On the one 
hand, qualitative aspects have to be addressed, such as 
observations and beliefs of agents about the world. On the 
other hand, quantitative aspects have to be addressed. For 
example, the extent to which a certain belief is active within 
the agent’s working memory can best be described by a real 
number, and the update of such activation values can best be 
described by a mathematical formula.  

The hybrid executable language LEADSTO [3] fulfils 
these desiderata. This language, which is a sublanguage of 
the Temporal Trace Language (TTL) [2], integrates 
qualitative, logical aspects and quantitative, numerical 



aspects. This integration allows the modeller to exploit both 
logical and numerical methods for analysis and simulation.  

The languages LEADSTO and TTL are based on the 
assumption that dynamics can be described as an evolution 
of states over time. The notion of state as used here is 
characterised on the basis of an ontology defining a set of 
physical and/or mental (state) properties that do or do not 
hold at a certain point in time. These properties are often 
called state properties to distinguish them from dynamic 
properties that relate different states over time. A specific 
state is characterised by dividing the set of state properties 
into those that hold, and those that do not hold in the state. 
Examples of state properties are ‘agent A observes world 
fact W’, or ‘agent A has belief B with an activation level of 
0.6’. Real value assignments to variables are also considered 
as possible state property descriptions. 

In LEADSTO, direct temporal dependencies between 
two state properties in successive states are modelled by 
executable dynamic properties. LEADSTO subsumes 
specifications in difference equation format. For more 
details, see [3].  

III. THE INTEGRATED AGENT MODEL 

In this section the integrated agent model for situation 

awareness and surprise is described in more detail. 

A. The Situation Awareness Model 

In the model situation awareness is represented by 
dynamically generated and updated sets of observations and 
beliefs (cf. [Hoogendoorn et al., 2011]). The observations 
represent the input the agent receives from its environment. 
Observations are represented in the form  

observation(AGENT, WORLD_INFO, REAL)  

where the first argument is the owner of the observation, the 
second argument the world info the observation is about and 
the third argument the certainty of the owner that the world 
info really holds. Beliefs are represented in the form  

belief(AGENT, WORLD_INFO, REAL, TIME)  

where the first argument is the owner of the belief, the 
second argument the world info the belief is about, the third 
argument the activation level of that belief and the fourth 
argument for what time the agent holds that belief. 

Generation of beliefs makes use of an underlying mental 
model. This is a network of observations and beliefs where 
connections have strengths indicated by a real number in the 
interval [0, 1]; along these connections activation is spread 
throughout the network. A connection has a source 
observation or belief and a destination belief. Activation is 
spread from the source via the connection to the destination 
belief. 

Updating the beliefs consists of three phases (cf. [5]): 
perception, comprehension and projection. In perception, the 
certainties of observations are determined and used to derive 
the activation values of those beliefs directly connected with 
the observations. In comprehension, the activation values of 
beliefs on the present and the past are updated. In projection, 
the activation values of beliefs for the future are updated. 

Each of the three phases has a time limit which determines 
how much time the update process for that phase may take. 
These three time limits model the phenomenon that humans 
under time pressure take shortcuts in their reasoning and 
have degraded situation awareness. 

Perception 

In the perception stage, the certainty values of the 
observations are used to calculate the activation values of a 
subset of beliefs on the current situation, those connected 
directly with observations. Currently, it is assumed that an 
observation is only connected to one belief. The belief 
activation update formula for perception is as follows. 

 

VB(t+∆t) = VB(t) + [αB (th(σ, τ, VO(t)) - VB(t)) - γB VB(t)] ∆t 
 

Here the symbols mean: 
B The belief for which the activation value is calculated. 

O The parent observation of B. 

αB The update speed parameter (how fast recent updates 

 influence the activation value) for B. 

γB  The decay parameter for B 

VB(t) The previous activation value of B. 

VO(t) The certainty value of observation O. 

th(σ, τ, VO(t)) The threshold function, with parameters σ 

(steepness), and τ (threshold value ). 
 

The continuous logistic threshold function used is as follows: 
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Here the symbols mean: 

σ Steepness parameter 

τ Threshold parameter 

V Input value 

Comprehension 

In the comprehension phase, the activation values of all the 
beliefs on the present situation are updated. A belief is 
updated exactly once during a cycle. To ensure that the 
update of a belief is based on the most recent information, a 
belief is only updated if all its parent beliefs are updated; the 
belief graph is assumed to have no cycles. In each iteration, a 
belief is selected to be updated. For this belief, all the 
incoming connections that come from an active belief are 
used to update the activation value of the selected belief. The 
selected belief is marked as considered and the next iteration 
starts. This continues until either the time limit of the 
comprehension phase is reached or all beliefs on the present 
and past are updated. The calculation of the activation value 
of a belief B is done by using only those connections whose 
source belief has an activation value higher than the minimal 
activation value. This models the phenomenon that 
activation only spreads from beliefs that have some degree of 
activation. 

The update function for belief activation is as follows. 
 

VB(t+∆t) = VB(t) +  

[αB (th(σ, τ, ΣC∈g(B) ωC,B VC(t)) - VB(t)) - γB VB(t)] ∆t 
 

B The belief for which the activation value is calculated. 

αB The update speed parameter (how fast recent  



updates influence the activation value) for B. 

γB  The decay parameter for B 

VB(t) The previous activation value of B. 

VO(t) The certainty value of observation O. 

th(σ, τ, VO(t)) The threshold function, with parameters σ 

(steepness), τ (threshold value for B). 

g(B) The set of beliefs C connected to belief B as destination 

C A belief from the set g(B). 

ωC,B The strength of connection from C to B. 

Projection 

If the time limit has not been reached, the projection stage is 
started. In projection, beliefs on the future are updated. The 
process is the same as with beliefs on current situation, only 
with a different start set of beliefs.  

B. The Surprise Model 

In the surprise model, adopted from (Merk, 2010) events in 
the environment are continually monitored and evaluated. 
This evaluation consists of determining the degree of 
expectation disconfirmation [18], how important the event is 
to the subject and how novel the event is. This evaluation is 
used to generate the surprise intensity. As the evaluation 
happens continually, there is a surprise intensity value at 
any moment. The outcome of the evaluation aggregates 
expectation disconfirmation, event importance and event 
novelty, which are each represented by a real value between 
0 and 1. Expectation disconfirmation measures the degree of 
discrepancy between the expectations of the agent and the 
actual observed events. The higher this value, the more 
unexpected the event is to the agent. Event importance 
measures the impact the event has on the goals and desires 
the agent has. A higher importance indicates that the event 
has relative far-reaching consequences for the agent. Event 
novelty gives an indication of how familiar an event is, how 
often the agent has experienced this situation before. A 
mechanism that links the agent’s episodic memory on 
similar previous experiences with the observed event is 
needed for generating the value for event novelty. 

Surprise intensity is calculated in a dynamic manner: the 
rate of change or derivative is calculated and this rate of 
change is then used to update the current surprise intensity 
value. This rate of change is called the delta surprise 
intensity in the model. The influences that determine 
surprise intensity identified in the previous section are used 
in the calculation of delta surprise intensity. The expectation 
disconfirmation, event importance and event novelty are the 
factors that increase surprise intensity. Decrease of surprise 

intensity is based on a decay parameter ζ. The calculation of 
surprise intensity can then be informally described as 
follows: 

 

if  the surprise intensity at time t has value si  

   and the delta surprise intensity has value dsi,  

then  at t+∆t the surprise intensity will have the  

 value si + dsi ∆t 
 

More formally,  
 

si(t+∆t) = si(t) +  dsi(t) ∆t 
 

The value for the delta surprise intensity is determined as 

follows: 
 

If  at time t the surprise intensity has value si,  
  and there is an expectation disconfirmation with value ed, the 

importance and novelty of the currently observed events 
have respectively the values i and n,  

and  the weights for importance and novelty have values wi and 
wn   

and  the decay parameter has value ζ  
then at time t the delta surprise intensity has  

 value (1 - si) · ed · (wi · i + wn · n) - ζ si  
 

More formally: 
 

dsi(t) = (1 – si(t)) ed(t) · (wi  i(t) + wn n(t)) - ζ si(t)  (1) 
 

As formula (1) is an important part of the model, we will 
examine it in more detail. The expectation disconfirmation 
is multiplied with the sum of the importance and novelty 
factors that are themselves multiplied with their weight 
values. The reason for this construction consists of two 
assumptions: first the assumption that without expectation 
disconfirmation, there is no surprise. Second, the 
assumption that importance and novelty have a different 
effect in that they alone do not lead to surprise. For 
example, observing an important event that has been 
expected should not lead to surprise. The weights wi and wn 
add up to 1, so that the outcome of ed · (wi · i + wn · n) 
always lies between 0 and 1. With these weights, the 
relative influence between the two factors can be tuned.  
The expression ed · (wi · i + wn · n) is multiplied by (1-si) 
so that the value of surprise intensity stays below 1. 
Including this factor (1-si) also ensures that the surprise 
intensity value changes smoothly over time. 

C. Integrating the Situation Awareness and Surprise Model 

Integration of the situation awareness model and the 
surprise model (see Figure 1) uses an interaction between 
the models involving determination of the expectation 
disconfirmation value ed. This is done in the first place by 
specification of which situations (co-occurrences of beliefs) 
are considered as expectation disconfirmation. 

In the general surprise model as described in [12], 
certain aspects were left unspecified, as meant to be added 
for specific applications of the model. In the model 
described in the current paper, these aspects have been 
expanded upon to obtain a more specialised model. In 
particular, the determination of expectation disconfirmation, 
novelty and the sensemaking process have been specified in 
the current model. 

Expectations, observations, earlier experiences (novelty) 
and sensemaking can be seen as playing a role in forming 
situation awareness, as these aspects all relate to information 
on the agent’s environment. Expectations are essentially 
based on beliefs on future events, earlier experiences can be 
represented by beliefs on the past and sensemaking can be 
viewed as belief derivation. 

 



These aspects being seen as taking part in situation 

awareness, the surprise model can be seen as describing a 

meta-reasoning process that monitors the situation 

awareness for expectation disconfirmation. Expectation 

disconfirmation is modelled as a form of belief 

inconsistency: the agent believes on the one hand that some 

X has been true, is true or will be true and then on the other 

hand forms the opposite belief.  

To determine expectation disconfirmation, two elements 

are needed. First, beliefs on the world are needed. It is 

assumed that these beliefs are available in the form  
 

belief(AGENT, WORLD_INFO, REAL, TIME) 
 

where the first argument is the owner of the belief, the 

second argument the world info the belief is about, the third 

argument the activation level of the belief, and the fourth 

argument for what time the agent holds that belief. While 

the Situation Awareness model described in [7] is used to 

supply these beliefs in this paper, any model that generates 

beliefs with an activation value and a temporal aspect can be 

used for supplying the beliefs. 

Second, to determine expectation disconfirmation a set 

of disconfirmation specifications is needed. These 

specifications determine which combinations of beliefs are 

inconsistent and to which extent: what expectation 

disconfirmation value the inconsistency creates. For 

example, an agent cannot believe that an object is at two 

different places at the same time. This can be represented, 

for example, by the following disconfirmation specification: 
 

belief(Agent, position(X, L1), A1, present) ∧ 

belief(Agent, position(X, L2), A2, present) ∧ L1 ≠L2 

→  expectation_disconfirmation(Agent, f(A1, A2)). 
 

Here the combination function f(A1, …, An) determines the 

disconfirmation value with n activation values Ai as input. 

The function f should be a monotonically increasing 

aggregate function of the input activation values mapping to 

values between 0 and 1, for example the average, or based 

on a logistic function such as 
 

f(X1, …, Xk) =   th(X1+… + Xk) 

with 

th(σ, τ, W) = 1/(1+e
-σ(W-τ)

) 
 

for some theshold and steepness parameter values τ and σ. 

Another example of a disconfirmation specification, this 

time involving temporal relations is: 
 

belief(Agent, X, A1, future),  

belief(Agent, Y, A2, present),  

belief(Agent, before(X, Y) , A3, always) 

→ expectation_disconfirmation(f(A1, A2, A3)). 
 

With the set of beliefs supplied by the situation awareness 

model and a set of disconfirmation specifications given, the 

surprise model can generate expectation disconfirmation 

Fig. 1: Overview of the integrated model 



values. However, novelty and importance are also needed to 

determine surprise.  

For the current model it is assumed that importance is 

determined in a separate process, as importance is linked to 

goals and motivations, which are not covered by situation 

awareness. In contrast, novelty can be directly related to 

situation awareness. 

Novelty is a measurement of how familiar the events that 

lead to surprise are. This can be determined by taking into 

account the beliefs on past occurrences of the  events or 

facts referred to in the beliefs about the present that occur in 

a disconfirmation specification. If a belief is active on the 

past of the same world information X as a belief on X in the 

present in an applicable disconfirmation specification at the 

time the specification is considered, its activation value will 

be taken into account for determining the novelty of the 

accompanying surprise. For example, if 
 

belief(Agent, X, A1, present)  
 

occurs in the disconfirmation specification considered, and  
 

belief(Agent, X, A2, past) 
 

is an available belief, then the novelty of X is taken as (1-A2) 

A1. In the binary case with both A1 and A2 are 1, the novelty is 

0, whereas for A1 = 1 and A2 = 0, the novelty is 1. 

Any beliefs in an applicable disconfirmation specific-

ation with a past or always time label are ignored for 

determining the novelty, as those beliefs are already about 

the past.
1
 For multiple beliefs about the present, the novelty 

is determined using a monotonically increasing aggregate 

function f of the individual values. If n1, …, nk are the 

values of novelty for the different beliefs on the present in a 

given disconfirmation specification, then f(n1, …, nk) is the 

aggegate novelty value for this disconfirmation specification 

at that point in time. 

Given the ingredients as discussed, the surprise level is 

determined as follows: 

(1)  Determining expectation disconfirmation edds 

 Evaluate the disconfirmation specifications: if a 

specific disconfirmation specification ds applies, as an 

outcome a certain level of expectation disconfirmation 

edds for this specific ds is determined from the 

activation values involved in ds. 

(2)  Determining novelty nds 

 The novelty nds of the current situation is determined 

taking into account the beliefs on the present in the 

disconfirmation specification ds and which of them are 

also past beliefs 
  nds = f(n1, .. , nk) 

 where the ni are the novelty values for the different 

beliefs on the present occurring in ds:  
  ni = (1-Ai,2) Ai,1 

                                                           
1
 With a more finely grained time representation in which beliefs on the 

past can be about different episodes (for example one about yesterday and 

another about last year), past beliefs could be taken into account if they are 
further back into the past. 

 with Ai,1 and Ai,2  the activation values of the given 

present and past belief, respectively. 

(3)   Determining delta surprise intensity dsids 

 The disconfirmation value edds, importance value ids 

and novelty value nds are aggregated into one value for 

the delta surprise intensity dsids for the given 

disconfirmation specification ds using the model for 

dsi in Section  IIIB, i.e.: 

  dsids = (1 – si) edds · (wi  ids + wn nds) - ζ si 

(4) Determining overall delta surprise intensity dsi 

 The delta surprise intensity values dsids for the 

different applicable disconformation specifications ds 

are aggregated into one  delta surprise intensity value 

dsi, using the combination function f, i.e.: 
  dsi = f(dsids1, .. , dsidsn) 

(5)  Determining surprise intensity si 

 The delta surprise intensity dsi is used to update the  

value of surprise intensity si as described in Section 

IIIB: 

si(t+∆t) = si(t) +  dsi(t) ∆t 

D. Effects of Surprise in Behaviour 

Surprises have effects on behaviour in two different ways: 
(1) by triggering specific behavioural responses, and (2) by 
slowing down the normal cognitive functions to maintain 
situation awareness. The first effect is realized in by having 
specified behavioural specifications that only can be 
triggered when the surprise level is high enough. The 
behavior specification for being surprised deviates from a 
normal behaviour in the sense that 1) its execution is more 
delayed and 2) it is less optimal in regards of achieving the 
goals, thus representing confused and shocked behavior. 

IV. CASE STUDY 

As this paper is part of a larger research effort to generate 

more human-like agents to improve the quality of tactical 

training simulators for the Royal Netherlands Air Force, the 

model is tested against a case study in the domain of air-to-

air combat.  

A. Scenario 

To test the integrated model, a scenario from the domain of 

air combat has been implemented in STAGE. STAGE is a 

software tool that lets one  build a tactical database and then 

simulate dynamic, interactive, complex, and realtime 

tactical and operational environments. These environments, 

called scenarios, contain individual platforms (such as 

planes, ships, trucks, radar sites) that interact through 

detection, communication, engagement and/or destruction. 

Platforms may be equipped with weapons, such as guns, 

artillery, and missiles, and other defining characteristics.  

In the scenario there are two fighter aircraft, one 

controlled by an agent equipped with the integrated model 

as described in the current paper, the other by a non-expert 

human. The agent, controlling the Red aircraft, has the goal 

to reach an objective, while the human, flying the Blue 



aircraft, must defend the objective against enemy attack. 

Besides the two aircraft, a couple of SAM (Surface to Air 

Missile) sites defend the objective. These are ground-based 

weapon platforms that can attack and destroy enemy 

aircraft, for example the MIM-104 Patriot. If Red comes 

within the weapon range of a SAM site, the SAM site will 

fire a missile at Red, which will destroy Red if the agent 

takes no further action. 

According to fighter pilots, the best way for a pilot in 

such a situation to avoid getting hit by the SAM missile is to 

throw out chaff (a countermeasure that disrupts the radar of 

the SAM site and lowers the change of impact of the 

missile), followed by a ‘beam’ maneuver: this means that 

the aircraft is flown at a right angle to the direction of the 

SAM site. For simplicity’s sake, we assume that when a 

pilot throws out chaff and then beams, the SAM missile is 

defeated and will not hit his aircraft. 

The twist in this scenario is that the SAM sites have their 

radar switched off and their existence unknown to the agent. 

Only when Red gets within their weapons range will they 

switch on their radar and fire a missile at the agent’s 

aircraft. Such SAM sites are known as ‘SAM traps’ or pop-

up SAMs; this tactic has been used in real life. As the agent 

does not know about the SAM sites nor has any means of 

detecting them before they launch their missiles, an attack 

from such a SAM site will be unexpected, thus surprising. 

The situation awareness belief graph for the agent is 

shown in Fig. 2. At the bottom there are the observations, 

derived from the Red aircraft’s radar, radar warning receiver 

(a sensor that detects the emissions of other radars) and 

knowledge on SAM site locations. Above that, past, present 

and future beliefs are derived from the observations through 

connections. Three beliefs are especially important:  
 

   belief(incoming_air_to_air_missile,X, future) 

   belief(incoming_sam_missile,X, future) 

   belief( before(in_sam_range, incoming_sam_missile), X, always) 
 

If the first of these beliefs becomes active, the agent will 

intent to avoid the human-controlled Blue aircraft and fly 

away from Blue. If the second belief becomes active, the 

agent will intent to defeat the SAM missile. This intention 

can be executed in two ways, depending on whether the 

agent was surprised by the missile launch or not. If not 

surprised, the agent will throw out chaff, beam for a while 

and then turn away from the SAM site. If the agent was 

surprised, it will act confused for a while (represented by a 

zigzag maneuver) and then will turn away from the SAM 

site. The belief  
  

  belief( before(in_sam_range, incoming_sam_missile), X, always)  
 

is used to represent the fact that the agent expects to be 

within SAM weapon range before a SAM missile is 

launched. For the use case, only one disconfirmation rule 

has been used: 
 

belief(Agent, X, A1, future),  

belief(Agent, Y, A2, present),  

belief(Agent, before(X, Y) , A3, always) 

→ expectation_disconfirmation(f(A1, A2, A3)) 
 

This rule represents the fact that, if the agent believes that 

some event X happens before event Y and Y happens right 

now while it believes that X is to happen in the future, there 

is a belief inconsistency and thus an expectation 

disconfirmation. 

To evaluate whether the situation awareness model and 

the surprise model contribute to make the agent’s behaviour 

more realistic, the agent was tested against four trials. In 

these trials, the parameters of the model have been varied. 

In the Surprise+ setting, the surprise model works as 

described in Section III above. In the Surprise- setting, the 

surprise model is turned off and the surprise intensity will 

always be zero. In the SA+ setting, the situation awareness 

model is fully updated, while in the SA- setting the time 

limits for the perception phase, comprehension phase and 

the projection phase are set low enough that not all beliefs in 

each phase can be updated (about 75% of all beliefs in each 

phase are updated). 

 
 

 
 

Fig. 2: Situation awareness belief graph 



B. Results 

To show the results of the agent’s behavior, Figs. 3 through 

6 are screenshots of the STAGE simulator running the 

scenario as described. The red aircraft, controlled by the 

agent starts in the west and tries to reach the objective (red 

circle) in the east, while Blue, controlled by a human, tries 

to flank Red and lure him into the range of the Patriot SAM 

site to the southwest, indicated by the large circle. The red 

and blue lines are the flight paths of the respective aircraft. 
 

 
Fig. 3: Flight paths (SA+, Sur-) 

 

In Fig. 3, the agent fully updates its beliefs but its surprise 

model is inactive. At point A, the agent detects Blue and 

flies away from the enemy. At point B, the Sam site shoot a 

missile at the agent, which throws out chaff. At point C, the 

agent starts to beam and at point D, the agent starts moving 

away from the SAM site. 
 

 
Fig. 4: Flight paths (SA+, Sur+) 

 

In Fig. 4, the difference in the agent’s behaviour when it is 

surprised is visible. Again at point A it detects the enemy 

and flies away. However, at point B, when the SAM site 

launches its missile, the agent neglects to throw out chaff 

and instead acts confused (seen here as a zigzag move) as a 

result of its surprise at being fired upon by an unexpected 

SAM site. At point C the SAM missile intercepts the agent 

and it is killed. 

In Fig. 5, the agent has reduced situation awareness and 

can only update a limited amount of beliefs, while its 

surprise model is deactivated. While not clearly visible in 

the figure, the agent reacts much slower to the detection of 

Blue. At point B, when the SAM site launches its missile, 

the agent does not react at all, because its future belief 

regarding the impact of the SAM missile is never updated 

due to the low time limit. At point C the agent is killed by 

the SAM missile. 
 

 
Fig. 5: Flight paths (SA-, Sur-) 

 

Fig. 6 shows the results of the trial where the agent has 

reduced situation awareness and with the surprise model 

activated. However, the agent’s expectation disconfirmation 

and thus its surprise intensity never rises as the future belief 

for missile impact, which never becomes active due to 

reduced SA, is necessary to activate the disconfirmation 

rule. Because of this, the agent behaves the same with 

surprise on and off when having reduced SA. 
 

 
Fig. 6: Flight paths (SA-, Sur+) 

V. DISCUSSION 

In order to enhance realism of virtual agents in serious 
gaming applications, computational models of human 
(cognitive) processes can play an important role. Although 
many computational models have recently been developed 
for separate human processes (e.g., [6, 7, 12]), less research 
has been done that addresses the combination of such 
models. As a first step in that direction, this paper presents a 
computational agent model that integrates situation 
awareness and surprise. The model combines the situation 
awareness model described in [7] with the surprise model 
described in [12]. The former was based on Endsley’s three-



phase theory on situation awareness [5], whereas the latter 
was inspired, among others, by the expectation 
disconfirmation theory from [18]. The integration of both 
models was achieved by matching beliefs about the situation 
that are generated by the situation awareness model with 
expectations about the world that are present within the 
surprise model. As a result of this matching process, a 
certain degree of expectation disconfirmation is calculated, 
which (combined with values for novelty and importance) 
leads to a certain degree of surprise. Subsequently, surprise 
has an effect on behaviour by triggering specific direct 
responses, and by slowing down the normal cognitive 
functions to maintain situation awareness. 

A preliminary evaluation of the integrated model has 
been performed, by implementing it within an existing 
simulator for F16 pilots, and by running a domain-specific 
scenario with four variants of the model (i.e., 
SA+/surprise+, SA-/surprise+, SA+/surprise-, SA-/surprise-
). The results indicate that the possibility to manipulate 
levels of situation awareness and surprise enables the 
modeller to create a richer variety of behaviours, which 
correspond to different characteristics of humans. For 
example, an experienced pilot, who was asked to evaluate 
the behaviour of the agent under different settings, stated 
that an agent with partial SA was perceived as more realistic 
but less experienced than an agent with full SA. 

Compared to other models in the literature, the presented 
model is innovative because it integrates the processes of 
situation awareness and surprise within one computational 
model. Although both of these processes have been 
modelled separately (e.g., [6, 10, 20]), mechanisms to 
combine the two have not been fully explored. Furthermore, 
earlier models for the design of intelligent agents with SA 
(e.g. [10, 20]) do not represent all necessary aspects and 
stages of SA as have been distinguished in this paper. A 
more detailed model of SA can be found in [Juarez-
Espinoza and Gonzalez, 2004], but it does not make use of a 
general method to integrate observations into higher level 
beliefs and is therefore difficult to apply in new situations. 
Finally, a computational model proposed for situation 
awareness that takes Endsley’s model [5] as a point of 
departure is described in [17]. The first two phases are 
covered, but the temporal projection phase of Endsley’s 
model is not modelled in [17]. 

Future work will address further testing of the model, 
using different and more complex scenarios. In addition, a 
more elaborated experiment is currently being set up, in 
which multiple domain experts (F16 pilots) will play 
realistic missions against different variants of the integrated 
model, and will be asked to evaluate various aspects of the 
agent’s perceived behaviour by means of a questionnaire. 
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