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Abstract—This paper considers the task of answering
shortest path queries in large real-world graphs such as
social networks, communication networks and web graphs.
The traditional Breadth First Search (BFS) approach for
solving this problem is too time-consuming when networks
with millions of nodes and possibly billions of edges are
considered. A common technique to address these complexity
issues uses a small set of landmark nodes from which the
distance to all other nodes is precomputed in order to
then answer arbitrary distance queries by navigating via
one of the selected landmarks. Although many strategies to
select landmarks have been introduced in previous work,
the problem of finding an optimal set that covers the entire
graph remains NP-hard. Our contribution starts with a study
of characteristics that determine the successfulness of a land-
mark selection strategy. We propose a new adaptive heuristic
for selecting landmarks that does not only pick central
nodes, but also ensures that these landmarks properly cover
different areas of the graph. Experiments on a diverse set of
large graphs show that the proposed selection strategy and
assisting node processing technique can efficiently estimate
the node-to-node distance in graphs with millions of nodes
with very high accuracy, while using the same amount of
precomputation time as previously proposed strategies.
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I. INTRODUCTION

A large part of computer science research deals with
finding or computing simple paths, shortest paths or dis-
tances between objects in a dataset that can be modeled
as a graph (also called a network). Applications include
computation of graph properties such as the distance
distribution or the diameter [1] of the graph. In a web
context, an example of a path-related query is a request
for a simple yes or no answer to the question of whether
or not two nodes are connected, solving the so-called
reachability problem [2] in graphs, with well-known web-
related applications in for example XML parsing and
ontology querying [3]. In this paper we will focus on the
problem of finding the length of a shortest path between
a given pair of nodes, assuming that all nodes in the
graph are connected. More specifically, we consider the
task of answering distance queries in large graphs, which
has been shown to be a complex and challenging task [4].
By large graphs we mean that the distance matrix cannot
be stored in main memory, and algorithms with quadratic
space or time complexity in the number of nodes or
edges are not acceptable. Typical examples of large graphs
include social networks, biological networks, communica-
tion networks and web graphs. A typical webgraph can
easily have millions of nodes and possibly hundreds of

millions or even billions of edges.
The problem of efficiently computing the shortest path

length, i.e., the distance between two nodes in a graph,
has been extensively studied [5]. In unweighted graphs,
which we mainly consider in this paper, finding a shortest
path originating from a particular node can be done by
performing a Breadth First Search (BFS) until the goal
node is found. For a graph with n nodes and m edges,
one BFS considers each edge at most once, realizing a
time complexity of O(m). Doing this for each of the n
nodes in the graph results in a complexity of O(mn) for
determining the shortest path length between all possible
pairs of nodes, essentially solving the well-known All
Pairs Shortest Path (APSP) problem. Clearly, for the large
graphs that are nowadays studied a traditional brute-force
approach is not feasible in terms of time and memory
consumption.

Due to these complexity issues, approximation and
estimation techniques have been introduced, most notably
methods based on so-called beacons [6] or landmarks [7]
that do some precomputation in order to then answer a
shortest path query very quickly. Often, a small set of land-
marks (nodes) is selected, for which the actual distance
to every node is precomputed. When a distance query is
received, an approximation based on the distance to and
from these landmarks is given, using some smart lower
and upper bounds on the landmark distances, assisted by
checks for trivial cases in which an exact answer can be
returned. Typically, the precomputation step is orders of
magnitude faster than computing all the shortest paths, the
size of the landmark set is orders of magnitude smaller
than the number of nodes n, and the distance query time
is orders of magnitude faster than the traditional BFS
query time. Ultimately, there is a trade-off between space,
precomputation time, query time and accuracy [4].

Although a random set of landmark nodes for estimating
the shortest path lengths already works quite well [6],
it has been shown that a careful selection strategy, for
example based on nodes with a high centrality value [7],
or based on a tree which covers an as efficient as possible
portion of the graph [8], [9] can greatly improve the
performance of the landmark method. Clearly, not every
selection strategy performs well on every type of graph,
and choosing the correct landmark selection strategy can
be of great influence on the accuracy of the method for
a particular graph. The problem of selecting the perfect
minimal set of landmarks, has been proven to be NP-
hard [7].



Our contribution consists of a careful analysis of what
makes a certain landmark selection strategy perform well.
We will look at the nodes for which the error is high, and
attempt to characterize these nodes by their position in
the graph. Based on the obtained insights, we propose two
new techniques that attempt to improve landmark selection
techniques based on common centrality measures.

The rest of this paper is structured as follows. In
Section II we consider some notation and precisely formu-
late our problem statement and landmark approach. Next,
related work is discussed in Section III, after which we
explain our landmark framework in detail in Section IV.
Most notably, two new landmark strategies are proposed
in in Section V. In Section VI we perform a number of
experiments to compare the suggested techniques on a set
of large real-world graphs. Finally Section VII summarizes
the paper and provides suggestions for future work.

II. PRELIMINARIES

In this section, basic notation is briefly discussed, a for-
mal problem statement is given, and finally the landmark
approach and its constraints are explained.

A. Notation

We consider an undirected and unweighted graph G =
(V,E) with n = |V | nodes and m = |E| edges. Because
the graph is undirected, each edge is included twice, so
(u, v) ∈ E iff (v, u) ∈ E. Then, a path is defined as a
sequence of nodes connected by edges. A shortest path
between two nodes u, v ∈ V is a path consisting of a
minimal number of edges that connects the two nodes. The
length of this shortest path, or the distance d(u, v) between
nodes u and v, is simply the number of edges in such a
shortest path. The assumption is that G is connected, i.e.,
d(u, v) is finite for all nodes u and v. The degree deg(v)
of a node v is the number of edges connected to that
node. We assume that the graphs are sparse, meaning that
m is much smaller than the maximum number of edges
n(n− 1).

B. Problem definition

We consider the problem of accurately and efficiently
estimating d(u, v) for any given pair of nodes u, v ∈ V .
By accurate, we mean that the estimated value should not
differ too much from the actual distance value, i.e., the er-
ror, which we will define more precisely in Section VI-B,
has to be as low as possible. By efficient, we mean that
the computational step of one distance estimation should
be significantly faster than one simple BFS, which can be
done in O(m). Practically speaking, it should be possible
for large graphs to estimate thousands of these distance
values in a matter of seconds. The computational step of
a distance estimation, which we call the query time, should
only iterate over the set of nodes (or a subset), meaning
that it should be done in at most O(n) time.

To realize a low shortest path computation time, a
relatively short precomputation phase is allowed. In the
precomputation phase, we typically iterate over the set
of nodes and/or edges a constant number of times, for

example to perform a few real BFS runs (each taking
O(m) time). So for a reasonably small integer constant
c > 0, the precomputation time should be restricted to cm.
The same requirement holds for the space complexity: the
precomputation data should take no more memory than
the graph data itself.

C. Landmarks
As a precomputation step, we select a set of landmarks

B ⊆ V consisting of k = |B| nodes (with k � n) for
which we precompute for all pairs v, w (with v ∈ B
and w ∈ V ) the exact value of d(v, w). Because we deal
with undirected graphs, we automatically also compute
d(w, v). Note that k is typically very small compared to
n, and thus storing k×n distances is possible. In contrast,
storing n × n distances, i.e., the full distance matrix, is
not possible. Indeed, for k = n we would essentially
be solving the All Pairs Shortest Path (APSP) problem
which is prohibited due to time and memory constraints.
The problem of selecting a good set of landmarks B from
the original set of nodes V is considered in Section IV
and Section V. When we answer a distance query, i.e.,
a request for finding the distance d(u, v) between two
nodes u and v, we first check some trivial cases that can
be answered easily (assuming the graph is stored using
adjacency lists):

• If u or v is a landmark, then we can return the
exact value of d(u, v) as this value is stored for the
landmark.

• If u and v are identical, then obviously d(u, v) = 0.
• If u and v are direct neighbors (which can be deter-

mined in O(logm/n) by searching for v in the sorted
list of neighbors of u (or vice versa), then obviously
d(u, v) = 1.

• If u and v are at distance 2, then we can also detect
this efficiently in O(m/n) as we can iterate over both
u and v’s sorted lists of neighboring nodes in search
for a duplicate entry, resulting in d(u, v) = 2.

Any distance larger than 2 will have to be estimated
using the landmark set by considering each of the k
nodes in the precomputed set of landmarks. As observed
in [7], due to the triangle equality, the following state-
ment holds regarding the value of d(u, v) given a set of
landmarks B: maxw∈B(|d(u,w)− d(w, v)|) ≤ d(u, v) ≤
minw∈B(d(u,w) + d(w, v)). Thus, by considering the
precomputed distances for the landmarks, we can obtain a
lower and upper bound L and U on the distance between
u and v. Here, L is at least equal to 3, as otherwise we
would have found the distance as one of the trivial cases.
So we have:

L = max
(

max
w∈B

(|d(u,w)− d(w, v)|), 3
)

U = min
w∈B

(d(u,w) + d(w, v))

When asked for an estimate, we can return L or U itself,
the mean, geometric mean, or some other variation using
the two variables. It turns out that using U as an estimate
gives the lowest error rate [7].



III. RELATED WORK

The problem of exactly determining the distance be-
tween any or all pairs of nodes has been widely addressed.
Initially, algorithms that do fast matrix multiplication [10]
were frequently used. Such algorithms improve upon the
straightforward Floyd-Warshall algorithm for solving the
APSP problem, but suffer from large constants and obvi-
ous memory constraints. Other exact approaches are based
on A* [11], but still have poor worst-case complexity.

Considering estimation and approximation techniques,
data structures for answering distance queries were intro-
duced under the name “distance oracles”, providing some
theoretical results on the accuracy of the estimation [12].
Although elegant in design, these techniques are not
very useful when graphs with many low distance values
are considered [6], as the actual difference between the
approximated and real distance can be large, which is
undesirable in large graphs with relatively low pairwise
distances. This happens to be the case in many of the real-
world graphs that are nowadays studied, as they usually
belong to the class of so-called small world networks [13]
with very low average pairwise distances.

Methods based on beacons [6] or landmarks [7], [14]
were suggested as a better way of handling distance
queries in this type of graphs. Selecting a minimal set
of landmarks such that the graph is covered, meaning that
the estimate for d(u, v) is correct for all pairs u, v ∈ V ,
was shown to be NP-hard [7]. Selecting an efficient set of
landmarks based on the centrality of a node or based on
a “highway” [9] or a tree decomposition [8], [15] of the
graph were suggested as heuristics for selecting an optimal
set of landmarks. Various optimizations based on pruning
the BFS, bitwise tricks and parallelism were introduced
in [16]. Furthermore, the landmark selection method in
evolving graphs with edge additions and deletions has
been described in [17].

The landmark method has clearly been widely ad-
dressed, but due to the NP-hardness of the landmark
selection problem, it remains a challenging method worth
studying.

IV. LANDMARK FRAMEWORK

This section describes the landmark framework, which
consists of two parts: landmark selection and land-
mark processing. Landmark selection, considered in Sec-
tion IV-A, deals with the problem of sorting the nodes
based on their likeliness of being a good landmark. Sec-
tion IV-B is about landmark processing, which deals with
the question of how and which of the identified landmarks
should finally be used. Some minor optimizations are
discussed in Section IV-C.

A. Landmark selection

Landmark selection deals with the task of selecting a
total of k nodes from the total set of n nodes that are
going to serve as landmarks. As an improvement over
a random selection of k landmarks, several landmark
selection strategies based on centrality of the nodes in

the graph are suggested in [7]. The idea behind this is
to compute the centrality value C(v) of all nodes v ∈ V ,
and then select the k most central nodes (with the highest
value of C(v)) as landmarks. In this paper we will consider
the following centrality measures:
• Degree centrality: Cdeg(v) = deg(v)/(n− 1).
• Closeness centrality: Cc(v) = 1

n−1
∑
w∈V d(v, w).

• Betweenness centrality: Cbc(v) =
∑
u6=v 6=w

σv(u,w)
σ(u,w) ,

where σ(u,w) is the number of shortest paths from
u to w and σv(u,w) is the number of shortest paths
that run through node v [18].

• PageRank: Cpr(v), which is the value of PR(v)
after iteratively (usually 100 iterations is enough for
convergence) and simultaneously applying PR(v)←
1−d
n + d

(∑
w∈N(v)

PR(w)
deg(w)

)
for each of the nodes

v ∈ V , where PR(v) is initialized to 1/n and N(v)
is the set of nodes adjacent to node v and the well-
known random-surfer parameter d equals 0.15 [19].

Betweenness and closeness are two centrality measures
that are just as hard to compute as the distance between
all nodes (they require O(mn) time). Luckily both mea-
sures can be estimated by means of sampling, reducing
complexity to cm where c is the number of samples.
Computing the PageRank value of all the nodes also means
iterating over the set of m edges a constant number of
times, resulting in a similar time complexity.

Although numerous other centrality measures have been
suggested in literature, we believe that these four measures
are the most common, but more importantly are of four
different types. Respectively, they are based on a local
property of the nodes (the degree), the number of shortest
paths that runs through a node (betweenness), the average
distance from the node to every other node (closeness) and
the centrality of the node based on a propagation model
(PageRank).

Intuitively, the best nodes to be selected as landmarks
for finding shortest paths length, would be the nodes with
the highest betweenness centrality value, as the value of
this measure inherently suggests that the node is part
of a large portion of all the shortest paths. However, if
we consider an error measure which takes the difference
between the estimated and real distance into account
(see Section VI-B), then nodes on almost-shortest paths
(e.g., realizing distance plus one) are also good, but do
not necessarily have the highest betweenness value. This
suggests that there might be a better landmark selection
strategy than simply selecting the nodes with the highest
(betweenness) centrality value.

B. Landmark processing

When a set of nodes has been generated based on some
(centrality) measure or strategy, a sorted list of nodes can
be generated with the most central nodes on top. The
simplest form of node selection is then to take the top k
nodes (recall that k is the number of landmarks) without
any further evaluation of how these nodes are positioned
in the graph. In [7], a number of improvements over



this processing technique are suggested. First, one could
choose to select as landmarks the highest ranked nodes
from the list from each partition in the graph as defined
by some partitioning or clustering algorithm. Although
intuitively useful, this suggested improvement did not
produce a significantly much lower error, but comes with
an additional computation cost and is thus not considered
further in this paper.

A second suggested processing technique is to process
the list from top to bottom, but skipping nodes that are
at most at distance x from previously selected landmarks.
The idea behind this is that a central node that is close to
previously selected landmarks does not contribute equally
compared to a central node further away from previously
selected landmarks. The latter optimization hints towards
a second pitfall in simply using the most central nodes
as landmarks, namely that central nodes are often direct
neighbors. Although it turned out that x = 1 performed
best, sometimes this processing step gives no improvement
or even increases the error.

C. Optimizations

Several optimizations that can be applied after a path
based on landmarks has been derived, have been suggested
in the literature. Most notably, if for determining d(u, v)
the concatenation of paths from node u to landmark w
to node v includes the same node more than once, then
the intermediary nodes can be skipped, known as cycle
elimination [14]. Furthermore it is suggested that when
two paths have been concatenated, a quick check for a
shortcut can be done by determining for each node in
the path whether its neighborhood contains any of the
successors in the path, and if so, using this edge instead
of the subpath to that successor.

We introduce an additional seemingly obvious optimiza-
tion specifically for increasing the bound value for nodes
with degree 1. If node u has a degree of 1, then u always
needs its direct neighbor to navigate to every other node in
the graph. Thus, for this node, the lower or upper bound of
the neighboring node plus 1 can be returned. Real-world
graphs typically have a power law degree distribution, and
nodes with degree 1 are expected to be very common.

V. BALANCING CENTRALITY AND COVERING

The previous section has described two problems when
it comes to using the most central nodes as landmarks.
First, centrality measures often do not take into account
almost-perfect distances and second, most importantly,
central nodes are often grouped together, not properly
covering different parts of the graph. In this section,
improvements for overcoming these two problems are sug-
gested for both the landmark selection and the landmark
processing step discussed in the previous section.

A. Adaptive landmark selection

The landmark selection strategy that we propose in
this paper is adaptive, meaning that the strategy improves
its set of landmarks based on the error reduction of its
nodes. First, let us look at a preliminary figure of the

performance of different selection strategies based on
centrality measures in Figure 1. Clearly, the percentage
of correctly assessed path lengths (which we will call
the success rate) increases monotonically with the number
of landmarks. An important observation is that centrality
measures work regardless of the size of the landmark
set: landmarks selected based on centrality measures are
able to realize a significantly higher success rate than
landmarks that were selected at random. The same was
observed for the other real-world graphs that we studied,
although there was no single best-performing centrality
measure.

We furthermore note that not every landmark appears
to evenly contribute to increasing the success rate: some
landmarks (steps in Figure 1 from k to k + 1 landmarks)
contribute significantly more to the success rate than
others. Ideally the nodes that realize a big increase in
the success rate should be ranked higher than nodes
that only marginally increase the success rate. Although
obviously the increase realized by a landmark node is
highly dependent on previously chosen landmarks, we do
expect nodes with a great incremental contribution over
previously selected landmarks to give a high contribution
to the performance in general. This observation is the basis
for the adaptive landmark selection strategy:.

1) Sort the set of nodes V based on degree centrality,
resulting in a list of ranked nodes, with the most
central node v having rank R(v) = 1.

2) Perform the sampling phase, in which a number of
BFS runs is performed, storing how many times each
node v is part of one or more shortest paths.

3) Compute the value of S(R(v)), the success rate at
each successive rank. Note that here the rank is equal
to the potential landmark count. This means that we
are generating the plot in Figure 1 for the particular
centrality measure chosen in Step 1.

4) For rank i = 1 to n, derive for each rank i the
value of ∆S(R(v)): the increase in the success rate
realized by the landmark node v at rank i.
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Figure 1. Success rate of different centrality measures as landmark
selection strategies, applied to the CA-CONDMAT network.



5) Re-sort the list of nodes according to ∆S(R(v)),
resulting in a list with the (node with the) highest
increase in success rate on top.

6) Use the list from step 5 as input for the processing
step of the landmark framework, cf. Section IV-B.

In step 1, we have chosen degree centrality, because this
measure does not require any additional computation time.
Recall that in step 2, counting the number of shortest paths
is just as complex as computing the shortest path [18]. Fur-
thermore, performing one BFS from a particular node to
every other node, and then comparing the actual distances
with the estimated distances, allows us to quickly sample
n − 1 distance computations using only one BFS. Note
that the error determination procedure described above re-
places the computational step of for example betweenness
centrality or closeness centrality. Because the number of
samples in step 2 is equal to the number of samples needed
to compute the node centrality values of some centrality
measure, there is no additional computation time involved
in the adaptive landmark selection technique.

The intuition behind this method is that because we
first sort the list based on a centrality measure and then
compute the error difference of each node in the list,
we are taking both the centrality aspect and the covering
aspect into account, as nodes that do not significantly
reduce the error, apparently do not cover parts of the graph
that are not already covered by other nodes. Although step
2 through step 5 could be performed in an iterative process
until the error converges to a minimum, we found that one

Figure 2. Absolute error in estimated distances in the CA-HEPPH dataset
from low (blue) to red (high) with 100 landmarks using degree centrality.

iteration always results in improvement, but more than
one iteration almost never improves and sometimes even
results in worse performance. The latter is likely due to
the fact that after multiple iterations the influence of the
centrality measure is lost. Furthermore, an iterative process
requires more BFS runs and thus more computation time.

B. Greedy central neighbor processing

Our second contribution is an alternative landmark
processing technique called greedy central neighbor pro-
cessing (in short: gcn-processing), which works as follows.
When processing the list of nodes generated using some
strategy or centrality measure, we select for each node
in the list h times its most central neighbor, if such a
better neighbor exists and if this neighbor is not already
a landmark. For example, we select for each node in the
node list sorted by the error as a result of the adaptive
landmark selection from the previous section, the neighbor
with the highest degree (if that degree is higher than the
degree of the currently considered node). The intuition
behind this method is that this again solves problems with
many central nodes being clustered together, not covering
the rest of the graph. Note that for each node in the list,
one central neighbor at most h hops away is selected, so
the landmark count k remains unchanged. Furthermore,
the suggested technique is greedy: it does not look at
the full neighborhood (which would be computationally
expensive), but merely repeatedly picks the most central
neighbor.

Figure 3. As Figure 2, but with random landmarks and gcn-processing.
Visualization: ForceAtlas2 in Gephi (gephi.org).



As an example, consider Figure 2 and Figure 3 that
both show a visualization of the CA-HEPPH network (for
a description of this graph, see Section VI-A). In these
two visualizations of the same graph, the size of a node
is proportional to its degree, and the color of a node
denotes the error (see Section VI-B for a description of
this error measure) observed when computing a shortest
path from or to that particular node. In Figure 2, shortest
paths were computed using k = 100 landmarks selected
using degree centrality, whereas the errors in Figure 3 are
from k = 100 landmarks that were selected using random
node selection, but when processing the list, each time
in a greedy way selecting the most central neighbor of
the considered node (with h = 3). All low error nodes
(and thus all high degree nodes) in Figure 2 are grouped
together in one highly connected cluster. The error is much
higher for the rest of the graph, with higher errors as the
distance to the high degree cluster increases. On the other
hand, in Figure 3 the error is much lower in the entire
graph, demonstrating the usefulness of the greedy central
neighbor processing approach in solving the problem of
all central nodes residing in one cluster.

In a way, the gcn-processing technique combines two
centrality measures: one measure is used in the landmark
selection phase and another measure is used to guide
for greedy central neighbor landmark processing. It is
essentially an alternative for taking the weighted average
of two measures. In order not to increase the complexity
of the precomputation step, the degree can be used as
a measure for determining which neighbor has to be
selected. In Section VI we will have a detailed look at
the performance of this processing step for each of the
previously discussed landmark selection strategies.

VI. EXPERIMENTS

In this section we perform experiments on a large
set of networks to determine the performance of the
different landmark selection techniques, specifically the
two new selection and processing techniques introduced
in the previous section: adaptive landmark selection and
greedy central neighbor processing. We start by describing
our datasets in Section VI-A and a verification approach
in Section VI-B, after which we discuss the results in
Section VI-C.

A. Datasets

Table I gives an overview of the datasets used in
this study, including for each dataset a reference to the
paper in which the graph’s properties are discussed in
detail. The second column indicates the type of data
represented by the graph. All graphs represent real-world
data, are typically very sparse, and adhere to the small
world property, meaning that the average distance between
any two nodes is very small (less than 8) compared
to the number of nodes [13]. For each dataset, of the
largest connected component of (the undirected version
of) the graph, the number of nodes n, edges m and
average node-to-node distance d (sampled over 1, 000

node pairs) are listed. We performed experiments for five
landmark selection strategies: random selection, between-
ness centrality, PageRank, degree centrality, and the newly
proposed adaptive landmark selection. For each selection
strategy, we experimented with six landmark processing
techniques: plain top-k selection (0), skip-1 processing as
described in Section IV-B, and greedy central neighbor
processing for h = 2, h = 3, h = 4 and h = 5, as
described in Section V-B. The column “gcn” indicates the
lowest error as well as between brackets the value of h for
which this error was observed. Closeness centrality never
performed better than other measures such as betweenness
centrality (see for example Figure 1), so was left out of
the result table. Furthermore, random selection with skip-
1 processing and degree centrality with gcn-processing
(which is based again on degree centrality) make no sense,
so these respective result columns were also left out.

B. Measurement methodology
In our experiments, we will consistently use 1% of

the nodes in the connected component of the graph as
landmarks, with a maximum of k = 100 landmarks.
As this paper specifically considers landmark selection
strategies, we do not compare our method with other
distance estimation methods. For a general comparison of
the landmark framework with such methods, we refer the
reader to [7]. Assessing the performance of a landmark
strategy can be done by computing the error (sampled over
1, 000 node pairs), defined as |dreal − destimate | / dreal .
Recall that the success rate discussed in Section V-A only
counted the number of times a landmark node was on
a shortest path. Here, destimate is the estimated distance
(for the real distance dreal ) by employing the full landmark
framework as described in Section IV, so including checks
for trivial distances and the described optimizations. De-
pending on the type of application that is considered,
alternative error measures such as counting the percentage
of distances that differ by at most 1 could be used.

The number of iterations in the precomputation step
is fixed, and the final distance result is measured using
the error measure. Therefore, clock time is not a relevant
performance measure, nor are the specific properties of
the machine used for the experiments. However, to put the
results in perspective, we do mention that one BFS using
our straightforward C++ code takes about 6 seconds for
the 8 million nodes graph in Table I. This means that the
total precomputation time for approximating betweenness
centrality and the adaptive landmark selection strategy,
methods which both perform a total of k = 100 BFS
runs along with some book-keeping, can be done in a
few minutes, even for the largest graph. The same holds
for PageRank, which can be computed in roughly the
same time, also using 100 iterations. Random landmark
selection and degree centrality obviously do not require
any precomputation time.

C. Results and discussion
As we already demonstrated for one graph in Section V,

random landmark selection is clearly outperformed by



Table I
PERFORMANCE (ERROR, LOWER IS BETTER) OF DIFFERENT LANDMARK SELECTION APPROACHES ON VARIOUS NETWORK DATASETS.

Dataset Type n m d
Random Betweenness PageRank Degree Adaptive

0 gcn (h) 0 skip-1 gcn (h) 0 skip-1 gcn (h) 0 skip-1 0 skip-1 gcn (h)
CA-HEPPH [20] collab. 11.2K 235K 4.66 .509 .080 (3) .045 .078 .045 (2) .140 .090 .093 (3) .137 .091 .117 .103 .080 (3)

GOOGLENW [21] web 15.7K 297K 2.46 .224 .000 (3) .001 .004 .000 (3) .001 .003 .001 (2) .001 .003 .000 .003 .000 (2)

CA-CONDMAT [20] collab. 21.3K 182K 5.47 .551 .068 (2) .044 .064 .045 (2) .059 .066 .054 (3) .100 .098 .064 .083 .056 (3)

CIT-HEPTH [20] cit. 27.4K 704K 4.29 .562 .040 (4) .031 .059 .029 (3) .048 .069 .046 (3) .047 .071 .051 .086 .044 (3)

ENRON [22] comm. 33.7K 362K 4.05 .615 .013 (4) .010 .009 .008 (2) .011 .098 .009 (4) .012 .102 .022 .145 .012 (3)

SLASHDOT0902 [23] social 82.2K 1.09M 3.94 .764 .048 (4) .081 .052 .048 (2) .085 .046 .053 (2) .049 .053 .078 .052 .032 (4)

DBLP [24] coll. 99.3K 1.09M 3.94 .605 .135 (4) .090 .109 .091 (2) .103 .105 .099 (3) .113 .096 .093 .102 .093 (3)

M14B [25] elec. 100K 1.28M 52.5 1.17 .743 (3) .276 .116 .267 (3) .501 .152 .377 (3) .270 .174 .059 .065 .054 (2)

WAVE [25] elec. 156K 2.1M 22.9 .531 .461 (2) .199 .142 .194 (3) .270 .126 .211 (3) .164 .120 .121 .079 .096 (3)

WEB-STANFORD [23] web 255K 3.88M 7.31 .343 .007 (2) .003 .006 .003 (2) .005 .007 .006 (2) .007 .010 .010 .008 .004 (4)

WEB-GOOGLE [23] web 856K 5.58M 6.18 .884 .149 (3) .006 .019 .005 (3) .006 .006 .005 (4) .006 .009 .006 .010 .005 (4)

WIKI-TALK [23] comm. 2.39M 9.31M 3.91 .775 .030 (4) .038 .122 .038 (3) .037 .040 .037 (4) .039 .088 .036 .128 .036 (2)

LIVEJOURNAL [24] social 4.00M 69.3M 5.39 .831 .163 (3) .067 .079 .067 (2) .075 .082 .071 (2) .082 .079 .069 .074 .071 (2)

HYVES [26] social 8.08M 912M 4.75 .528 .038 (3) .045 .065 .035 (3) .035 .055 .035 (2) .034 .060 .042 .069 .029 (3)

centrality measures. We note that of the centrality mea-
sures, most of the time betweenness centrality has the
lowest error. Degree centrality and PageRank are in most
cases equally good. Because the newly introduced adaptive
landmark selection technique builds upon degree central-
ity, we say that the new adaptive strategy is successful
if it outperforms degree centrality, as otherwise the new
method would not be worth the additional computation
time compared to degree centrality. As Table I shows, this
is the case for all 14 graphs, demonstrating the usefulness
of the newly proposed adaptive selection strategy. On
a number of datasets, the adaptive landmark selection
strategy even outperforms betweenness centrality, a result
which strengthens the claim that we made in the beginning
of the paper: nodes that are part of a large number
of shortest paths do not necessarily serve as the best
landmarks. The error observed when using the skip-1
optimization is diverse. Although there is a big increase
in performance for the adaptive landmark selection on the
WAVE dataset, most of the time the error is similar or
worse as was also observed in [7].

The second contribution of this paper is the greedy cen-
tral neighbor processing strategy. Obviously, this method
mainly assists a landmark selection strategy in the final
processing phase. To get an idea of the contribution in
terms of performance of gcn-processing, we can look at
the error for a random set of landmarks as compared
to a random set of landmarks (the column of Table I
titled “Random”). We see that the greedy central neighbor
processing technique always greatly improves upon plain
random landmark selection, most notably in case of the
CA-HEPPH and WIKI-TALK datasets, where the gcn-
processing technique applied to a random set of nodes
even outperforms degree centrality. In all other cases,
random selection with gcn-processing does not improve
upon degree centrality, suggesting that the selected nodes
are merely a local minimum. We note that for h > 4 there
was never an increase in performance compared to smaller
values of h.

We also applied gcn-processing to the betweenness and
PageRank selection methods, and there we also observe
increases in performance. Apparently, although between-
ness and PageRank both take the global aspect of the graph
into account, locally some optimization using the gcn-
processing technique can still be achieved. In case of the
adaptive landmark strategy, the increase in performance
obtained by using gcn-processing is diverse, but often
relevant. For example for the SOC-SLASHDOT or CA-
HEPPH network, the error is actually significantly lower
when gcn-processing is used.

In general we can conclude that the new landmark
selection and landmark processing techniques work well
for our set of real-world graphs, as shortest path lengths
can be determined with an error that is consistently lower
than 0.10. We note that even when the average distance
in the graph is relatively high, such as for the AMAZON
and WAVE datasets, the error remains low. Finally we
note that based on the results that we obtained, the error
does not appear to be influenced by variables such as
the numbers of nodes or edges or the average node-to-
node distance, which demonstrates the scalability of the
suggested techniques.

VII. CONCLUSION

The performance of the landmark methodology for
assessing shortest path lengths in large real-world graphs
heavily depends on the chosen landmark selection strategy.
Using various experiments we have shown that the task
of selecting a good set of landmarks involves at least
two aspects: selecting a set of central nodes and prop-
erly covering different areas of the graph. In order to
address these two aspects, in this paper we have compared
different landmark selection strategies and introduced the
adaptive landmark selection strategy and the greedy central
neighbor processing technique. Experimental results on a
number of real-world graphs show that using the same
amount of precomputation time, the proposed strategies
outperform and improve previously suggested landmark
selection techniques based on centrality.



The question remains whether or not it is possible to
determine beforehand which landmark strategy is expected
to show the best performance. In future work we would
like to investigate how we can link different graph-based
properties to the performance of a specific selection and
processing technique in order to determine a priori a
suitable landmark selection strategy. Although we have
demonstrated the success of the proposed strategies on a
number of real-world graphs, more research is needed to
determine the worst-case performance in order to give an
upper bound on the error. Furthermore we want to see if
our adaptive landmark selection strategy as a whole can
also be applied to the problem of determining shortest path
lengths in evolving graphs that are growing and shrinking
as nodes and edges are added and deleted.
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