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Abstract—Many different value-based or policy-search rein-
forcement learning algorithms have been applied to multi-agent
settings. Value-based learners estimate the expected return (value)
for each state-action combination and then derive a policy from
these expectations. Policy-search learners optimize the agent’s
policy directly by using a parameterized representation of the
policy and then optimizing the parameter values to maximize the
expected return. While the two classes of algorithms have been
considered as contrasting one another, we note that several policy-
search algorithms (e.g., Weighted Policy Learner and Infinitesimal
Gradient Ascent) need a method for estimating the expected
returns. In practice, these policy-search algorithms internally use
an update equation for incrementally improving value estimates.
In this paper we present the first detailed study of the effect of
using different value-based learning algorithms as components
of policy-search learners. Our results show that the particular
choice can significantly affect performance.

I. INTRODUCTION

Using reinforcement learning algorithms to optimize de-
cisions in multi-agent systems has been an active research
direction for quite some time now [5], [4], [15], [16], [2],
[21], [1]. Typically, algorithms can be cast into one of two
classes: value-based learners and policy-search learners. Value-
based learners estimate the expected return (value) for each
state-action combination and then derive a policy from these
expectations. Q-Learning (QL) is perhaps the most widely-
used and widely-studied value-based learning algorithm due
to its ease of implementation, intuitiveness, and effectiveness
over a wide range of problems [19], [18]. Although Q-learning
was originally designed for single-agent domains, Q-learning
and its variants have also been reasonably successful in multi-
agent settings [5], [11], [1]. Policy-search learners optimize the
agent’s policy directly by using a parameterized representation
of the policy and then optimizing the parameter values to
maximize the expected return. Some of these policy search
learning algorithms have been invented specifically for multi-
agent applications [2], [3], [6], [21].

While the two classes of algorithms have been considered
as contrasting to one another [12], it is interesting to note
that most Policy-search learning algorithms need a method
for estimating the expected returns for the different actions
at different states [4], [6], [2], [21]. In practice, most of the
policy-search algorithms used (or recommend the use of) the
basic Q-learning algorithm to estimate expected returns.

An important question that we raise and answer in this
paper is: does the value-based learning algorithm, which is

used internally as a component of a policy-search algorithm,
significantly affect the overall performance? Despite its popu-
larity, the common Q-learning is subject to several limitations
that have been addressed in more recent variants, including
Frequency Adjusted Q-learning (FAQL) [11] and Repeated
Update Q-learning (RUQL) [1]. In this paper we present the
first detailed study of the effect of integrating different value-
based learning algorithms within policy-search learners, and
we show that the particular choice can significantly affect
performance. In particular, we investigate Weighted Policy
Learner (WPL) [2] and Policy Gradient Ascent with Ap-
proximate Policy Prediction (PGA-APP) [21] as case studies.
Our experiments show that integrating the advanced value-
based learning algorithms results in significant improvement
in performance in multi-agent settings (in terms of minimizing
the regret).

In summary, the main contributions of this paper are:

• Proposing the integration of advanced value-based
learners within multi-agent policy-gradient learners.

• The first experimental analysis of the effect of the
underlying value-based learners when used as internal
components of policy-search learners, in a multi-agent
setting.

The paper is organized as follows. The next section provides
the necessary background, including different policy search
and value-based learning algorithms. This is then followed by
our proposal to integrate both classes of learners. We then
present the experimental results that compare the performance
of 6 combinations of policy search and value based learners.
This is followed by a discussion of related work.

II. BACKGROUND

Reinforcement learning, in its most basic form, attempts to
find the optimal solution (policy) for a given Markov Decision
Process (MDP). An MDP is defined by the tuple ⟨S,A, P,R⟩,
where S is the set of states representing the system and
A(s) is the set of actions available to the agent at a given
state s. The function P (s, a, s′) is the transition probability
function and quantifies the probability of reaching state s′

after executing action a at state s. Finally the reward function,
R(s, a, s′),1 gives the average reward an agent acquires if
the agent executes action a at state s and reaches state s′.

1Other variations of the reward function definition exist.



The Q-learning algorithm [19] is a model-free reinforcement
learning algorithm that is guaranteed to find the optimal policy
of an MDP. The Q-learning algorithm relies primarily on the
following update equation:

Qt+1(s, a) = Qt(s, a)+α
(
r + γ max

a′
Qt(s′, a′)−Qt(s, a)

)
(1)

The function Qt(s, a) represents the current best estimate at
time t of the expected discounted sum of future rewards, which
the agent believes it would get if it executes action a at state s
and following its policy subsequently (or intuitively, what the
agent believes, at time t, to be the worth of action a at state
s). The parameters α and γ are tunable learning parameters (α
is called the learning rate and γ is called the discount factor).
The variables r and s′ refer to the (sample) immediate reward
and the next state, both of which are observed after executing
action a at state s. Q-learning does not require knowing the
underlying transition probability function of the MDP model.

Ideally, the agent should gain information about the value
of each action at every state in order to become more certain
over time that the action with the highest estimate truly is
the optimal action. However, an agent can only execute one
action at a time and the agent only receives feedback (reward)
for the action that was actually executed. As a result, in Q-
learning, the rate of updating an action relies on the probability
of choosing that action. In other words, Q-learning (and to a
lesser extent Sarsa) has policy-bias. The theoretical comparison
of updating one vs. all actions at each time step reveals
that Q-learning counter-intuitively decreases the probability
of optimal actions under some circumstances, which leads to
drawbacks in non-stationary environments [11], [20], [1].

Scaling the learning rate inversely proportional to the
policy has been proposed to overcome this limitation, thereby
approximating the simultaneous updating of all actions every
time a state is visited. This concept has been initially studied to
modify fictitious play [8], and inspired several modifications
of Q-learning named Individual Q-learning [13], Frequency
Adjusted Q-learning (FAQL) [11], and Repeated Update Q-
learning (RUQL) [1]. The FAQL algorithm uses the following
update equation:

Qt+1(s, a) = Qt(s, a)

+ min(1,
β

π(s, a)
)α

(
r + γ max

a′
Qt(s′, a′)−Qt(s, a)

)
(2)

where β is a tuning parameter that safeguards against the
cases where π(s, a) is close to zero. The function π(s, a)
returns the probability of choosing action a at state s. The
RUQL algorithm, on the other hand, uses the following update
equation:

Qt+1(s, a) = [1− α]
1

π(s,a)Qt(s, a)

+
[
1− (1− α)

1
π(s,a)

]
[r + γmax

a′
Qt(s′, a′)] (3)

Q-learning and its variants (including RUQL and FAQL)
attempt to estimate the expected return (value) for each state-
action combination and then derive a policy from the expected
return. There is another class of algorithms that optimize the
agent’s policy directly. These algorithms use a parameterized
representation of agent policy and optimize parameters values

to maximize the expected return. Among the most successful of
this class of algorithms are gradient-ascent-based (GAB) learn-
ers. Such algorithms have shown great success in challenging
multi-agent settings where Q-learning and similar algorithms
fail [2], [3], [21]. Two recent algorithms that belong to this
class are Weighted Policy Learner (WPL) [2] and Policy
Gradient Ascent with approximate policy prediction (PGA-
APP) [21]. The WPL algorithm uses the following update rule:

∆πi(a)←
∂Vi(π)

∂πi(a)
· η ·

{
πi(a) if ∂Vi(π)

∂πi(a)
< 0

1− πi(a) otherwise
πi ← projection(πi +∆πi)

The term ∂Vi(π)
∂πi(a)

refers to the partial derivative of the value
function w.r.t to the current policy. In other words, how the
total (discounted) expected reward will change w.r.t to a change
in the policy (the probability of choosing actions). The term η
is a learning parameter that controls the rate of learning. The
function projection(x) projects a point x to the closest valid
policy [22]. The PGA-APP has more complex policy update
rule that we will not present here, but interested readers can
refer to the original paper [21].

III. USING LESS-BIASED VALUE-BASED LEARNERS
WITHIN POLICY-SEARCH LEARNERS

While the two classes of algorithms, the algorithms that
search for values and the ones that search for policies, have
been considered as contrasting to one another [12], it is
interesting to note that a particular class of policy-search
learners rely internally on value-based learners. The class of
gradient-ascent based (GAB) learning algorithms, which have
been used extensively in multi-agent learning setting [4], [22],
[2], [21], need a method for estimating the expected returns.
Most of these algorithms, in practice, use Q-learning or a
similar algorithm to estimate the expected returns for each
action. For example, both of WPL and PGA-APP algorithms
rely on the Q-learning update rule in their evaluation [2],
[21] to estimate the expected returns of different state-action
pairs, which is then used to estimate the gradient and update
the policy. We formalize the relationship between value-based
learners and GAB learners in Algorithm 1.

To our knowledge, the effect of the algorithm that is used
to estimate action values inside GAB learners has not been
studied yet. Researchers usually overlooked this detail. We

Algorithm 1: Integrated Gradient-Ascent Based Learners
and Value-Based Learners
1 begin
2 Initialize functions Q and policy π arbitrarily.
3 Observe the current state s.
4 repeat
5 Choose an action a according to the policy π.
6 Execute action a (and observe the resulting

reward r and the next state s′).
7 Update Q(s, a) according to Value-Based

learner.
8 Update π(s) according to Policy-Search learners
9 until done

10 end



hypothesize that using value-based learners with less policy-
bias is more suitable for multi-agent domains. The reason for
the improvement is that the value-based learners with less-bias
toward the execution policy (such as RUQL and FAQL) are
more effective (than QL) in estimating the values regardless
of current underlying policy (which is controlled by the
policy-search algorithm). Our experimental results verify our
hypothesis and show significant improvement in performance.

IV. EXPERIMENTAL ANALYSIS

In this section we evaluate the benefit of incorporating
RUQL and FAQL into gradient-ascent-based (GAB) MARL
algorithms. Since the strength of GAB-MARL algorithms
appears in games with mixed Nash Equilibria (NE), we focus
on games with this property. Table I lists three games that have
been used in the literature as benchmarks [2], [3], [4], [21]. The
matching-pennies game is the most well-known game and has
mixed NE=[( 12 ,

1
2 ) for the row player & ( 12 ,

1
2 ) for the column

player], or NE=[( 12 ,
1
2 )r & ( 12 ,

1
2 )c] for short. The tricky

game also has one mixed NE=[( 12 ,
1
2 )r & ( 12 ,

1
2 )c] but was

shown to be more challenging for some multi-agent learning
algorithms [2]. The biased game exposes the bias toward or
against uniform policy by having mixed NE=[(0.15, 0.85)r
& (0.85, 0.15)c] (while other games have mixed NE that is
uniform).

TABLE I. BENCHMARK GAMES USED IN EVALUATING MULTI-AGENT
LEARNING ALGORITHMS. BOTH matching-pennies AND tricky GAMES HAVE
ONE MIXED NASH EQUILIBRIUM (NE), WHERE ALL ACTIONS ARE PLAYED

WITH EQUAL PROBABILITY, I.E., NE=[( 1
2
, 1
2
)r & ( 1

2
, 1
2
)c], WHILE THE

BIASED GAME YIELDS NE=[(0.15, 0.85)r & (0.85, 0.15)c].

(a) biased
a1 a2

a1 1.0,1.85 1.85,1.0
a2 1.15,1.0 1.00,1.15

(b) matching
pennies

H T
H 1,-1 -1,1
T -1,1 1,-1

(c) tricky
a1 a2

a1 0,3 3,2
a2 1,0 2,1

A. Performance Metric

Using average payoff to gauge performance can be inef-
fective, e.g., in the matching-pennies game the average payoff
for strategies that cycle around the Nash equilibrium is zero. A
better performance metric in competitive games is regret [3].
The term regret refers to the difference between the maximum
payoff an agent could get, and the payoff an agent actually
achieved using its current (learned) policy. The maximum
payoff an agent could get at time t can be defined as the payoff
of the deterministic best reply, knowing the opponent policy
at time t. In other words, we define the (expected) regret for
a particular algorithm ALG at time t to be:

regrett(ALG) =
∑

i∈agents

[
max
x∈Πi

payoffi(x, π
t
−i)

−payoffi(π
t
i(ALG), πt

−i)

]
,

where payoffi(πi, π−i) is the payoff agent i would get given
its policy πi and the opponent policy π−i, the term πt

i(ALG)
refers to the policy agent i has learned at time t using algorithm
ALG, and Πi is the set of possible deterministic policies
for agent i. Since regret can vary over time, we are actually
interested in the accumulated regret:

Rt(ALG) =
∑t

i=0 regret
i(ALG)

And since we are mainly interested in measuring the improve-
ment in performance if we switch from the traditional Q-
learning (QL) to RUQ-learning and FAQ-learning, we define
the Regret Reduction (RR) as the reduction in regret due to
the switch:

RRt(ALG) = 100× Rt(QL)−Rt(ALG)

Rt(QL)

Note that RR provides the percentage of reduction in regret
(normalized w.r.t. the original Q-learning regret). We define
the final RR, RR(ALG) = RRT (ALG), where T is the
total simulation time. In other words, our goal of minimizing
expected regret R is equivalent to maximizing regret reduction
RR.

B. Self-Play Results

In self-play, the games are played with both agents using
the same value estimator and policy-search algorithm. Table II
shows the average RR over 10 simulation runs and 4 different
initial joint policies corresponding to the four combinations
near the policy boundary2 (total of 40 samples) for the bench-
mark games in Table I and the two MARL algorithms WPL
[2] and PGA-APP [21]. The learning rate α of both QL and
RUQL was set to 0.01 while it was set to

√
0.01 = 0.1 for

FAQL. The policy learning rate η was set to 0.00005. The
simulation was run for 2,000,000 time steps for each trial.

Using RUQL and FAQL results in significant improvement
over the use of traditional QL, as shown in Table II. All entries
in the table are positive (higher is better) and statistically
significant w.r.t. Q-learning, at p-value of 0.05. Furthermore,
RUQL consistently outperforms FAQL, indicated by higher RR
in all the entries, and statistically significant results in two
thirds of the entries (shown in bold).3

2The Initial Q values were set to either 0 (corresponding to which action is
initially selected with probability 0.0001) or 5 (corresponding to which action
is initially selected with probability 0.9999).

3We have used paired-two-sample t-tests (the same random seed and initial
policy were used for each pair of samples).

TABLE II. THE AVERAGE AND STANDARD DEVIATION OF RR FOR
BOTH FAQL AND RUQL WHEN USED INSTEAD OF Q-LEARNING WITHIN

GAB ALGORITHMS. ALL THE RR ENTRIES ARE STATISTICALLY
SIGNIFICANT W.R.T. Q-LEARNING. WHEN COMPARING RUQL AGAINST
FAQL, THE RESULTS WERE STATISTICALLY SIGNIFICANT ONLY IN THE

CASES SHOWN IN BOLD TEXT; FOR THE REMAINING CASES NO
STATISTICALLY SIGNIFICANT RESULTS COULD BE OBTAINED IN EITHER
DIRECTION. RUQL CONSISTENTLY ACHIEVED POSITIVE RR (BETTER

THAN QL), AND ALSO OUTPERFORMED FAQL.

Algorithm WPL PGA-APP

Game
Tricky
FAQL 24.53 ± 7.57 18.74 ± 3.04
RUQL 27.22 ± 8.57 18.83 ± 2.95
Matching Pennies
FAQL 13.11 ± 2.66 24.76 ± 2.71
RUQL 14.65 ± 2.77 24.82 ± 2.69
Biased
FAQL 22.08 ± 3.84 3.64 ± 1.37
RUQL 26.89 ± 7.25 3.85 ± 1.21
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Fig. 1. The cumulative reduction in regret for the WPL algorithm in the
matching-pennies game. RUQL and FAQL achieve significant improvements,
compared to the original WPL using Q-learning, with RUQL slightly surpass-
ing FAQL.

To gain more insight into the results presented in Table II,
Figure 1 and Figure 2 show the evolution of regret reduction
for some of the table entries, along with the corresponding
policies that the agents learn. Figure 1 shows the accumulated
difference in regret between QL and RUQL (FAQL), for the
WPL algorithm [2] in the matching pennies game (higher is
better). Note teh figure plots the numerator of the RR equation
(without the normalization, unlike the values in Table II which
gives RR). The cumulative regret reduction is monotonously
increasing for both RUQL and FAQL. Furthermore, there is
a gap between RUQL and FAQL. The gap widens in the
beginning and then remains almost constant. This means that
RUQL’s edge over FAQL is during the early transitional state
of learning. This is consistent with previous theoretical analysis
[1]: because both algorithms start from an almost deterministic
initial policy (0.0001 and 0.9999), it is harder for FAQL to
adapt quickly due to the β-limitation ([1]) in the initial stage.
While the relative performance of WPL using RUQL vs WPL
using FAQL may be affected by the initial setting, it is clear
that using either RUQL or FAQL clearly outperforms the use
of traditional QL.

Figure 2 plots the policy learned using WPL in combination
with each of the three algorithms: QL, FAQL, and RUQL. QL
consistently overshoots, because of its policy-bias limitation.
This causes the continuous increase in RR(RUQL) that is
observed in Figure 1. On the other hand, the asymptotic
performance is very similar for both of RUQL and FAQL in
this case, which explains the fixed gap in RR between RUQL
and FAQL.

C. Mixed-Play Results

The results presented so far assumed self-play. That is, both
agents playing the game are using exactly the same algorithm.
The next experiment investigates the performance when play-
ers are using two different learning algorithms: one agent using
gradient ascent based WPL with the original QL while the
other agent uses WPL with RUQL. Table III shows the results
when one agent uses QL for estimating the values while the
other uses RUQL. It answers whether an improvement in RR
(compared to the pure QL case) is observed, and if such an
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Fig. 2. The policy (probability of choosing the first action) for the matching
pennies game using WPL in combination with each of QL, FAQL, and RUQL.
The NE for this game is to play all actions for both players with probability
0.5. We can see that RUQL is always a step ahead of QL, which results in a
widening gap in regret. FAQL on the other hand catches up with RUQL after
some transitional phase (RUQL remains ahead but only slightly).

improvement is consistent over different games and gradient-
ascent-based learning algorithms. Using RUQL in a mixed
population resulted in consistent performance improvement.

V. RELATED WORK

Q-learning was originally designed for static single-agent
environments, but yet performed adequately in multi-agent
settings. However, there is a growing collection of algo-
rithms that were designed specifically for multi-agent learning.
The Win-or-Learn-Fast heuristic [4], [3] resulted in the first
gradient-ascend-based (GAB) multi-agent learning algorithms
that successfully converged to mixed Nash Equilibrium in
small general-sum games with minimum knowledge of the
underlying game (only the player’s own payoff). This was
followed by the more recent GAB algorithms [2], [21]. Other
multi-agent algorithms that assumed knowledge of the under-
lying game were also proposed and were able to converge
in larger games [9], [6]. All of these algorithms could benefit
from improved value approximation techniques, as we showed
in our experiments for two of these algorithms [2], [21].

Some learning algorithms specifically targeted non-
stationary environments [7], [14] and can potentially improve
GAB algorithms similar to RUQL and FAQL. However, their
integration with GAB algorithms are not as straightforward.
Specifically, one approach is specific to single-state domains
and yet more complex than the simple update equations of

TABLE III. THE AVERAGE AND STANDARD DEVIATION OF RR FOR
ONE AGENT USING RUQL AGAINST ANOTHER ONE USING Q-LEARNING
FOR VALUE ESTIMATION. RUQL AGAINST QL CONSISTENTLY REDUCES

REGRET COMPARED TO QL AGAINST QL.

Algorithm WPL PGA-APP

Game
Tricky 14.17 ± 7.27 10.55 ± 2.90
Matching Pennies 7.81 ± 2.03 14.80 ± 2.23
Biased 13.60 ± 10.96 1.67 ± 2.21



RUQL and FAQL [14]. The RL-Conext-Detection (RL-CD)
algorithm is model-based and assumes finite sets of stationary
contexts that the environment switches among [7]. For each
stationary context a model is learned. Such an approach
is challenging to use in multi-agent setting when the non-
stationarity is a result of an adaptive opponent (with potentially
infinite contexts).

Aside from Q-learning and its variations and extensions,
several reinforcement learning algorithms were proposed to
optimize the exploration and achieve more efficient learning
[17], [10]. Aside from being more complex than Q-learning,
the algorithms that optimize exploration are difficult to in-
tegrate with GAB-MARL algorithms, because GAB-MARL
algorithms control the exploration. RUQL and FAQL, which
we propose to use instead of QL, have simple update equations
that can be easily integrated with GAB-MARL algorithms, and
exhibit improved performance in dynamic settings.

VI. CONCLUSIONS

In this paper we proposed the use of recent value-based
learning algorithms as internal components in multi-agent
policy search learning algorithms. We evaluated six combi-
nations of two policy-search algorithms (WPL and PGA-APP)
and three value-based learning algorithms (QL, RUQL, and
FAQL). We experimentally showed that using value-based-
learners with less policy-bias in combination with the state-of-
the-art MARL algorithms results in significant improvements
in performance, both in self-play and in mixed-play with other
variants. While related work has adopted the basic Q-learning
update equation by default, the findings of this paper alert
researchers to the importance of learning action values with
algorithms that fit domain assumptions, especially for gradient-
ascent-based algorithms and in multi-agent settings.
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