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Abstract—Social-media websites, such as newspapers, blogs,
and forums, are the main places of generation and exchange
of user-generated comments. These comments are viable sources
for opinion mining, descriptive annotations and information ex-
traction. User-generated comments are formatted using a HTML
template, they are therefore entwined with the other information
in the HTML document. Their unsupervised extraction is thus
a taxing issue – even greater when considering the extraction of
nested answers by different users. This paper presents a novel
technique (CommentsMiner) for unsupervised users comments
extraction. Our approach uses both the theoretical framework
of frequent subtree mining and data extraction techniques. We
demonstrate that the comment mining task can be modelled as
a constrained closed induced subtree mining problem followed
by a learning-to-rank problem. Our experimental evaluations
show that CommentsMiner solves the plain comments and
nested comments extraction problems for 84% of a representative
and accessible dataset, while outperforming existing baselines
techniques.

I. INTRODUCTION

Possessing user-generated contents is one the great chal-
lenge in today’s Web ecosystem. Companies such as Twitter,
Facebook, Instagram, Google, to name a few, have long
understood the value of the content produced by their users.
They managed to reach millions of users, mainly by offering
free high-quality services. Analysing and processing these
data raise many interesting research challenges. It is there-
fore not surprising that content posted on these mainstream
platforms are attractive to researchers, especially because they
are accessible as structured data through APIs. Although these
social media and networks are in the limelight, they however
represent only a fraction of user-generated content on the Web.
Other user-generated content include reviews, comments, wikis
and many other ways to create content on the Web.

This content is not centralized on mainstream platforms but
is rather spread all over the Web, making it more difficult to
reach out. Still, this user-generated content offers promising
business opportunities. For instance, websites gathering user
reviews on specific products receive a wide audience. User-
generated comment business is, altough less remarked than
large social networks, one of the much competitive market
in today’s Web. Many companies are engaged into the user-
generated comments services: Disqus (founded 2007), Live-
Fyre (2009), Facebook comments plugin (2012), SolidOpinion
(2013), Discourse (2013), to name a few. They all offer similar
services: third party commenting frameworks for webmasters
and blog owners. The ultimate goal being to enlarge their
community of users and to let their user-generated content
enter the company data silo.

Nonetheless, this does not address the problem of crawl-

ing and extracting user-generated comments at Web Scale.
Gathering user-generated comments at Web Scale offer not
only business opportunities but also research issues. That
is the reason why Web content extraction and social media
analysis has gained a lot of traction in the past years [1], [2].
Many major conferences have included mining and analysis
tracks on social media content – this includes Intelligent Web
Data Mining, Web Mining Applications, and Web Mining
and Warehousing tracks in past WI conferences. However, the
comment mining task, expected to be unsupervised for Web-
scale extraction, is surprinsingly understudied.

In this paper, we propose CommentsMiner, a two-stage
algorithm that extracts comments from webpages along their
conversational structure. Our approach allows nested com-
ments extraction, which enables conversation extraction, a
decisive feature for social analysis. Our scientific contributions
are as following:

1) We notice that comments constitute frequent subtrees
in the DOM. Thus, we demonstrate that comments
extraction task can be modelled by utilizing frequent
closed induced subtree mining along with a learning-
to-rank model. Our approach differs from existing
solutions insofar as we rely on a sound theoreti-
cal framework and benefits from the vast literature
and algorithms on both frequent subtree mining and
learning-to-rank.

2) We devise several constraints that drastically restrict
the number of generated subtrees candidates, even
under a small support value s (s ≥ 2) – these
constraints include subtree positions in the DOM tree
as well as textual features.

3) We demonstrate that our offline learning-to-rank ap-
proach utilizing densitometric features, achieves a
perfect selection of the subtree pattern formatting
comments for 84.37% of a representative and acces-
sible dataset.

The entire process of CommentsMiner on data collected for
the evaluation is done within 200 milliseconds in average per
domain, which makes it a candidate for Web scale comments.
CommentsMiner achieves a perfect mining score on the
TestBed for information extraction from Deep Web (TBDW)1,
and we present further results on a surrogate dataset called
NUCE – another technical contribution presented with this
paper, publicly available on its webpage2.

1http://daisen.cc.kyushu-u.ac.jp/TBDW/
2http://datasets-satin.telecom-st-etienne.fr/cgravier/nuce/
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Fig. 1: Example of nested comments on www.reddit.com, in which q = 5. Gray-tinted subtrees constitute C. They are the
occurences of the pattern p used for generating comments – we are mining the pattern p. Labels are ommitted for readability.

II. OVERVIEW OF COMMENTSMINER

On the rendered webpage, user-generated comments are
commonly positioned under the content they discuss. Under
the hood, these comments are stored into a database on the
server serving the content, or on the servers of third party
provider (Disqus, Livefyre, . . . ).

When a page is viewed by a user, comments related to
the page are loaded from the database and formatted into
HTML using a pattern p. Comments are then assembled into
a single HTML fragment with respect to the structure of
the conversation. This HTML fragment is inserted into the
webpage with a template mechanism as depicted in Figure 1,
or using an iframe in the case of third-party services.
From a datastructure point of view, the conversation made
of comments is a tree. The root of the tree is the beginning
of the comments section. This root is not visible as such
on the webpage. Top level comments are children from the
root, and their respective answers are commonly indented
to the right for simple visualization. The problem of users’
comments extraction can be defined as retrieving the pattern p
that was used to generate the HTML fragments embedding
users’ comments. This pattern is valid at site scale. As a
consequence, once the pattern is determined, it can be used
to extract comments from every page of the site.

More formally, a Web document d is a rooted, directed,
and ordered tree (the DOM tree) noted d = 〈E, V, T 〉 where
T is the set of HTML tags, E the set of DOM nodes, and V
the set of vertices associating a HTML tag t ∈ T to any e ∈ E.
Our goal is to find the subtree pattern p = 〈V ′, E′, T ′〉, with
V ′ ⊂ V, E′ ⊂ E, T ′ ⊂ T , such as Op, the set of occurences
of the pattern p in the DOM tree validates :

• ∀c ∈ Op, c is a DOM fragment containing a user-
generated comment.

• |Op| = q, q ≥ 2 where q is the actual number of com-
ments in d.

We aim at automatically identifying the pattern p for any
given webpage d, without any a priori knowledge about the
structure of d. Whenever a webpage contains more than two

comments, the pattern used to render comments is repeated
within the page. Therefore, the pattern identification task can
be described as a frequent subtree mining task.

Figure 2 depicts the overall architecture of
CommentsMiner. CommentsMiner works in two stages.
First, we consider the problem of comments and nested
comments mining as constrained frequent subtree mining. It
genenerates the set of subtrees candidates for the comment
extraction task. CommentsMiner uses domain-specific
constraints to reduce the number of candidates subtree. This
stage is detailed in the next section.

Second, we learn a ranking model to select the winner
subtree among the candidates. An important remark is that
our ranking model is learnt using the content of the comments
– i.e. textual features – and not using any tree related feature.
Consequently, the model is agnostic to the structure of training
pages, and generalize very well on unknown pages. This
second stage is detailed in Section IV.

Once the pattern has been identified, the system can per-
form the extraction of the user-generated comments. We dis-
cuss the general mechanism as well as strategies for site-wide
extraction in Section V. Section VI presents our experimental
evaluation and discuss the performance and the scalability of
CommentsMiner.

III. CANDIDATE GENERATION

In this section, we first recall some notions on frequent
subtree mining. A reader familiar with this topic can skip
this subsection and head directly to Subsection III-B, that
details the application of frequent subtree mining to comments
extraction.

A. Frequent Subtree Mining

Tree mining deals with the task of finding patterns of
interest in a single tree or in a forest [3]. The type of patterns
to be extracted, as well as the trees they should be extracted
from, may differ in nature. We briefly recall that a subtree is
frequent if its support is greater than a minimum support s.
A subtree t is maximal if none of its supertrees is frequent,
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Fig. 2: Outline of CommentsMiner

and closed if none of its supertrees has the same support [4].
Trees are categorized along three criteria: rooted/unrooted, or-
dered/unordered and labeled/unlabeled. A tree is called rooted
if there exists a node that has been designated the root, in
which case the tree may be traversed in two directions: towards
and away from the root. A tree is said to be ordered if an
ordering for the children of each vertex has been defined.
Finally a tree is a labeled tree if each node is given a unique
label. The interested reader is invited to refer to [5] for a
detailed review on frequent subtree mining.

For our concern – subtree mining within DOM trees – we
consider the case of rooted labeled ordered trees. There are
different types of subtrees for there exists different types of
trees. We consider a rooted tree T with vertex set V and edge
set E and a subtree T ′ with respectively V ′ its vertex set and
E′ its edge set. In what follows, we present the three main
types of subtrees with their definitions.

Bottom-up subtree: T ′ is a bottom-up subtree from T iff:
V ′ ⊆ V , E′ ⊆ E; for a vertex v ∈ V , if v ∈ V ′ then all
descendants of v are in V ′ ; the ordering of the siblings must
be preserved in the subtree. Intuitively a bottom-up subtree T ′

can be obtained by taking a vertex from V together will all
its descendants and the corresponding edges.

Induced subtree: T ′ is an induced subtree from T iff:
V ′ ⊆ V , E′ ⊆ E; for a vertex v ∈ V , the left-to-right ordering
of the siblings are preserved in the subtree, i.e. it should be
subordering of the corresponding vertices in T . An induced
subtree T ′ can be obtained by repeatedly removing leaves.

Embedded subtree: T ′ is an embedded subtree from T
iff: E′ ⊆ E, (v1, v2) ∈ E′ where v1 is the parent of v2 in
T ′ only if v1 is ancestor of v2 in T . An embedded subtree T ′

must not break the parentship relations among the vertices.

Figure 3 illustrates these three types of subtrees from a
given data tree through three different examples on the same
data tree 3 (a).

To better understand the difference between the subtrees,
one can say that bottom-up subtrees are complete subtrees
while inducted subtrees allow to remove nodes horizontally in
the subtree and finally embedded subtrees allow both horizon-
tal and vertical removals. We have the following relationship:
bottom-up subtree ⊆ induced subtree ⊆ embedded subtree.

Algorithms’ complexities vary with the nature of the data
tree and with the type of subtree one wants to extract. Mining
bottom-up subtrees is faster than mining induced subtrees
which is itself than mining embedded subtrees. The time
complexity is linked to the number of subtrees for each type
and to the complexity of the algorithms and data structures.
The impact on performance being serious [5], it is therefore
highly desirable to identify precisely which type of subtrees we
want to extract. We discuss this issue, as well as performance
optimizations in the next subsections.
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subtree (b) ; induced subtree (c) ; embedded subtree (d)



B. Application to comments extraction

Figure 4 describes an example of DOM fragment contain-
ing, (a), a single comment, and (b), the same comment with
an answer. This simplified example is used as an illustration
for discussions in this section. In this figure, the pattern we
should identify is (A,P)DIV.

DIV

A
DIV

P

A P
(b)

DIV

A P

(a)

Fig. 4: Example of subtrees. The comment pattern is
(A,P)DIV (in Newick tree format).

Figure 4(b) exactly depicts the usual conversational struc-
ture of comments in a Webpage. An answer to a comment
is a child of this comment. There are no rules about where
the root of an answer is inserted within the original comment
– as it can be anywhere depending on the website template.
We encountered various situations during our research. In our
running example, the answer is inserted in the middle of the
original comment between the tags A and P . This situation is
relatively common, we also encountered several cases where
the answer is inserted at the end of the comment – in this
example it would be after the P in the comment.

In order to mine comments that are nested in a conversa-
tional structure, such as in Figure 4, the subtree mining process
must be able to skip leaves horizontally. Thus, using bottom-
up subtrees would not be sufficient to match this pattern.
However the vertical removal that is permitted using embedded
subtrees is not a wishful feature and would lead to unnecessary
expensive computations. The frequent subtrees we are mining
have therefore the property to be induced.

In user-generated comments, the content of comments itself
may contain not only user-generated text but also HTML tags.
These tags are at the discretion of the users. For example some
websites allow users to format their text with a limited whitelist
of tags such as <b>,<i>,<em> etc. The original template
subtree can then be extended by other tags – this is exemplified
by blank leaves under gray-tinted subtrees ci ∈ C in Figure 1.
During this mining step, it is not possible to identify the target
subtree from its supertrees that are due to user formatting.
Thus, maximal subtree mining is too restrictive. However
closed subtree mining matches our requirement, since it will
output both the target and its supertrees: in the case where
the comments have different formattings, the target subtree
will have a greater support than its supertrees. On the other
hand, when all comments share the same formatting, the
target pattern is extended to the formatted one, thus allowing
the extraction of the comments. Thus, the frequent induced
subtrees that we are mining have the second property to be
closed.

Intuitively, HTML attributes may be prone to help in
frequent subtree mining for the problem of comments extrac-
tion. However, within a single webpage, attributes may be

highly variable for various reasons, for instance : comments
color alternative, highlighted or downvoted comments, internal
comments ID etc. Frequent attributed subtree mining [6]
would have resulted in a loss of generality. We discarded this
approach for the global process, while retaining comments
characteristics as an optimization to drive the mining process
when possible (See III-D).

For our implementation, we use CMTreeMiner [4] as the
algorithm of our choice – because it is the only one providing
frequent subtree mining of ordered induced closed subtrees as
reported in [7]. We adapted the algorithm to take into account
the constraints described in the next section.

C. Constraints

The search space of a DOM tree is very large, as reported
by HTTP archive3, an average DOM tree contains 1300
nodes. Regarding the performance reported by the authors of
CMTreeMiner, mining a tree of thousand nodes with a support
of 2 (minimal number of comments to be frequent) could take
minutes, even hours. To make this process tractable at large
scale, we introduce constraints, that restrict the search space
while guaranteeing that the target pattern will be present in the
set of candidates. We define three domain-specific constraints
to accomplish such task.

Lowest common ancestor similarity. As comments are lo-
cated in a unique area of the DOM tree, occurrences of the tar-
get pattern are relatively close to each other. The tree distance
between root occurrences of the target pattern is not a priori
known, and may vary from page to page. However, the two
root occurrences of the target pattern are in the same subbranch
of the top tag, i.e. the <body> tag. Formally, the lowest
common ancestor between two occurrences of the pattern
cannot be the root of the DOM tree. This constraint reduces
drastically the search space of CMTreeMiner. At each step the
subtrees of depth k are expanded. For each supertree resulting
of this expansion, we compute a binary similarity matrix
between its root occurrences – then we aimed at exploiting co-
occurences information for leveraging pattern candidates [8].
The similarity is equal to one if the lowest common ancestor
of two occurences is the root of the tree, zero otherwise. Using
this distance we group occurrences into clusters and split the
existing supertree into several supertrees. The binary similarity
has the nice properties of being commutative and transitive,
therefore it is easily computed in O(n), where n is the number
of root occurrences.

Blank occurences deletion. Another simple, yet very efficient
constraint is based on the text associated to the occurrences.
We discard patterns whose occurrences contains no text or
identical text.

Root and rightmost occurrences equality. In CMTreeMiner
– also in [9] – induced subtrees occurrences are identified
during the mining process using their rightmost occurrences.
We denote RootOcct,T and RmoOcct,T the sets of root and
rightmost occurrences of a frequent subtree t in a datatree T .
Each comment has its own root and right most occurrence
– they are not shared with other comments. The verification
for any candidate subtree is therefore carried out with :

3http://www.httparchive.org/trends.php?s=Top1000



|RootOcct,T | = |RmoOcct,T |. This constraint does not limit
the search space, but drastically reduces the size of the output
set of candidates.

D. Optimizations

Optimizations, at the opposite to the above defined con-
straints, are not guaranteed to work in every case. Yet, for a
large number of encountered situations, they provide a notice-
able performance gain. The idea behind these optimizations
is to speed-up the mining process wherever possible while
still being to able to complete the mining process when the
optimizations do not kick in.

In addition to the constraints, we introduce two optimisa-
tions in order to speed up the first step of our system. De-
creasing the support s makes the number of pattern candidates
exponentially grows, hence the computational complexity of
any comment extractor. Increasing s will limit the number
of generated subtrees, but increase the probability to miss
the expected pattern. We therefore choose s = 2, inspired
by the literature review [10]. This is the practical accepted
value for most similar extractors. Using such a low value for
s is computationally expensive, since the number of frequent
subtrees matching this support value is very high in a DOM
page. We therefore introduce an optimization called Attributes
Fallback to reduce the number of initial nodes that will form
the pattern: we initialize the first mining steps with nodes that
only have attributes containing words related to comments.
Words such as comments, reaction, posts . . . are looked for.
When no such initial nodes are to be found, the algorithm falls
back to its standard version.

The second optimisation is Page Optimization: starting
from the leafs of the DOM tree, we delete leafs containing
no text. This operation is repeated until a fix point is reached.
This considerably reduces the size of the search space. If the
pattern was mined using this preprocessing step, the extraction
must also run this preprocessing step.

The impact of the optimizations and their combinations,
depending on the minimum support is presented in Figure 5.
Combining the two optimizations reduce the number of sub-
trees by a factor 4 on our dataset4 for small minimum support
values, which is meaningful for the task of comments extrac-
tion. The memory footprint enhancement is strongly linearly
correlated to this factor. Evaluation on the dataset showed that
the winner candidate was not removed when only nodes with
attributes related to comments were used for initialization.

E. Output

This stage of the algorithm outputs a set of candidate
patterns, among which include the pattern used to generate
the comments on the Webpage. The set of candidate patterns
is a subset of all generated patterns as seen in Figure 5. To
be a candidate for the next stage, a pattern must validate the
constraints defined in Section III-C. In the practice, the number
of candidate patterns rarely exceeds twenty.

4This dataset is presented and discussed in Section VI-B
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IV. WINNER SELECTION

For a given webpage, the previous subtree mining step out-
puts a set of candidate patterns. Among these candidates, we
aim now at finding the pattern p, that was used as the template.
Finding the pattern p, that was used as the template to embed
comments, among the subtrees issued by the previous stage
can be seen as a ranking problem, where only the first rank
matters. To rank these candidates patterns, we use textual and
densitometric features as input to learning to rank algorithms,
including: SVMRank, MART, RankNet, RankBoost, AdaRank,
Random Forests, and Genetic Programming. We first describe
the features, then the ranking measure. Experimental results
are presented in Section VI.

A. Features description

The main characteristics that distinguish candidates for
ranking are both text and densitometric features. One can
observe that user-generated content is of variable length [11]
– unlike menus for which the length and the number of words
are very similar among menu items. It is also usually forbidden
to include links in comments to avoid spamming, we therefore
expect a low density of link in the HTML code. The text
density (ratio text vs code) of user-generated comments is
also significantly different from the one of boilerplate [12].
Therefore we exploit these characteristics as a set of eight
features (listed in Table I). As the content of user-generated
comments differ significantly, the average and the standard
deviation of each of these features convey the heterogeneity
between occurrences of the same candidate subtree.

B. Ranking measures

Our work deals with a special case of learning to rank,
where only the most relevant candidate matters, regardless
of other candidates. This kind of binary relevance is usually
denoted as Winner Takes All (WTA) [13]. Assume that we are
given the set of candidates pattern P := {p1, . . . , pl} along
with their label y ∈ {0, 1}, such as yi is the binary relevance
of the i-th candidate pattern. This relevance is a score of one



Observation Description Average-based
features STD-based features

TextLength
Text length of all
instances for a pattern
candidate.

TextLengthAVG TextLengthSTD

LinkDensity Percentage of characters
between <a></a> tags. LinkDensityAVG LinkDensitySTD

TextDensity

Ratio of characters that
are not part of HTML
boilerplate over all
characters (text and
HTML tags).

TextLengthAVG TextLengthSTD

WordsVolume
Number of words,
excluding HTML tags
and attributes.

WordsVolumeAVG WordsVolumeSTD

TABLE I: Features are computed over all instances of each
pattern and are two-fold: one for its average value, and one
for its standard deviation (STD) value.

for the winner pattern, and zero otherwise. We also assume
ĝ(pi) being the scoring function – estimating the rank of pi
belongs to {1, . . . , |P |}. Given the set P and the function ĝ,
WTA is defined as follows:

WTA(P, ĝ) =

{
1 iff ∀i ∈ {1, . . . , |P |}, ĝ(pi) = yi
0 otherwise.

(1)

Note that CommentsMiner relies on a ranking function
that must be learnt. However, CommentsMiner is considered
unsupervised : once the ranking function is learnt, it can
be reused for unknown Web domains, and without further
learning. This is consistent with the classification on this
criterion introduced by the recent and exhaustive literature
review provided in [10].

V. EXTRACTION

Once the winner pattern has been selected by the ranking
process, we proceed to the extraction of the comments. As
depicted in Figure 2, we first match the pattern against the
DOM tree and then rebuild the conversational structure of
the comments. Matching the pattern against the DOM tree is
performed in linear time using a depth-first strategy (breadth-
first is also suitable here): the algorithm first lists all the
occurrences in the DOM tree of the root element of the pattern.
For each occurrnce, it successively checks that the first child of
the pattern is matched in the datatree. The validation continues
similarly to a depth-first tree traversal.

It may happen in some edge cases that the pattern is
sufficiently common so that it is matched on other parts of
the DOM than the comments. To avoid such a case, we
group the occurrences that are close into the DOM using
the same technique as the constraint of placement in the
DOM. Afterwards, we use the parent relation between root
elements of the occurrences to determine which comment
answers another one. We start with the comments that have
the lowest level in tree (highest depth). For each comment we
traverse the tree towards the root and checks if the encountered
nodes are root nodes of a comment.

VI. EXPERIMENTAL RESULTS

In this section we first present the baselines and the
experimental setup. Then we report and discuss the accuracy
and performance of CommentsMiner for the comments and
their conversational structure extraction task.

A. Baselines

To the best of our knowledge, only MiBat [14] was
designed for the comment extraction task. Unfortunately, the
materials used in MiBat (software or datasets) are not publicly
available, nor upon request. The perfect matching success rate
of 75.653% was obtained for several pages belonging to the
same Web domain (this is inferred from the illustrations within
the paper, yet the precise number is unknown) – this skews the
evaluation. Another baseline is DEPTA, a follow-up of MDR
(see Section VII). DEPTA requires a full browser rendering
and a visual analytics that result in poor scalability, and it is
unable to extract parent-child relationships. While DEPTA is
not accessible, MDR can be retrieved online5 – which makes
it the candidate to be considered a standard baseline in several
works as reported in the survey [10].

Other eligible candidates are TPC and RST, yet none are
publicly available. They were however evaluated against the
same dataset, the TBDW dataset. CommentsMiner achieves
a success rate of 100% on this dataset, which makes hardly
a difference with TPC and RST (resp. 96.23% and 98.06%
precision, and resp. 97.03% and 97.88% recall value). Hence-
forth, we will focus on the more challenging dataset that is
NUCE.

B. Datasets

Both TPC [15] and RST [16] are competitors to our
approach. They were evaluated using the TestBed for infor-
mation extraction from Deep Web (TBDW)6. We discuss how
CommentsMiner performs on this dataset with respect to
these competitors in the next section (VI-A). However, there
are some primary issues on benchmarking the comments and
nested comments extraction task on the TBDW dataset –
mainly, it no longer reflect today’s Web programming habits.
Particularly:

• Most of the data to extract in this dataset are within
<table /> and <form /> tags – it was a common
practice in 2003 which has now completely vanished.

• Today’s Web pages are more complex, which results
in a significantly increased search space. According
to http://httparchive.org/, the average webpage size has
increased by 237% from December 20107 to February
20158. However, this website does not provide figures
before 2010, but according to the same figure in 2003
reported in [17], an estimation of the increase between
early 2003 and fall 2013 is 1,723%.

• In addition, there is no case of nested subregions
within this dataset, which makes it difficult to evaluate
the multi-level nesting extraction.

5http://www.cs.uic.edu/∼liub/WebDataExtraction/MDR-download.html
6http://daisen.cc.kyushu-u.ac.jp/TBDW/
7http://httparchive.org/interesting.php?l=Dec%2028%202010
8http://httparchive.org/interesting.php?l=Dec%2015%202013



Algorithm Settings Results

Name Type Best model settings Mean STD

MART Pointwise 1, 000 trees 66.402 6.391
SVMRank Pairwise RBF, c = 0.1 77.145 6.397
RankNet Pairwise 100 iterations 67.195 6.8204
RankBoost Pairwise 300 rounds 84.027 4.9706
AdaRank Listwise WTA for training 66.041 15.423
Coord. Ascent Listwise WTA for training 81.619 3.642
ListNet Listwise 1, 500 iterations 90.170 13.521
Gen. Prog. Listwise 50 iterations 84.375 0.854

MiBAT (baseline) Anchor Trees N/A 75.653 Unknown

TABLE II: Performance and settings of trained learners on the
NUCE dataset for extracting the exact pattern p.

• The dataset is dedicated to Web search results for 51
different search engines. No webpage include com-
ments to extract – it is dedicated for the extraction
of the frequent subtrees that represents web search
results. This is still of interest since the problem of
comments extraction can be neatly addressed using
densitometrics features that may not apply on other
use cases.

Since CommentsMiner achieve a perfect score for fre-
quent subtree mining for the ground truth offered by the
TBDW dataset, we built a more challenging dataset with at-
tributes including: i) up-to-date web programming paradigms,
ii) diverse and multilingual web domains, and iii) Webpages
with nested regions. We proceeded as follows : i) find relevant
domains starting from Google News in English, French and
German. When we ran out of Web domains on recent news,
we search new domains from Reddit, Fark and Metafilter, then
ii) for each domain, find a page containing more than two
comments and download its content through the Web browser
in order to avoid AJAX calls issue [18]. We stricly consider
only one page per domain. Some services like Wordpress,
Disqus, Livefyre, Facebook, etc., provide commenting features.
In order to avoid any bias, we kept one page using each service.
The dataset consists in 211 labeled Web pages. We called this
labeled dataset NUCE, which stands for Nested User-generated
Content Extraction dataset. Our surrogate dataset is publicly
available to download9, and includes for each page its browser-
side rendered webpage as well as the associated ground truth
– the subtree pattern that a comment extraction algorithm is
expected to mine.

C. Results

The evaluation depends on the quality of the learning-
to-rank step since the expected pattern p is always included
in the set of the pattern candidates set (as discussed in
Section III). We utilized different learning methods for learning
to rank pattern candidates. While it is out of the scope of
this paper to provide a complete state-of-the-art on learning-
to-rank methods, the authors can refer to [19] and [20] for
further details. The genetic programs were trained using the
WTA metric and the following operators were available for the
learner : addition, multiplication, substraction, division, power,
along with any values in the range [2; 10, 000]. All learners

9http://datasets-satin.telecom-st-etienne.fr/cgravier/nuce/

were trained and tested using the eight features described in
Table I. Results are presented in Table II. Training was done
using 20% data partitioning and a five-fold cross-validation.

ListNet best model provides a P@1 of 90.170 over 100
runs. However ListNet-based learning-to-rank models suffer
from a very significant standard deviation. We conclude that
Genetic Programming models are the most suitable for the
learning-to-rank step. Although those models do not achieve
the best success rate (84.375 in average), it is still very good
while providing more guarantees on its generalization. Genetic
Programming based models offers a standard deviation of
0.854. Genetic Programming models therefore offer a stability
of success rates of the utmost pratical interest for a learn once,
extract many crawling strategy.

The expected patterns to mine exhibits different depths and
sizes, as reported in Figure III.

Flat Nested Total

µf σf µn σn µt σt

Pattern depth 4.24 1.79 5.69 2.74 4.58 2.1
Pattern size (#nodes) 12.8 9.83 18.39 12.91 14.1 10.8
Page size (Kb) 134 104 198 92 149 95

TABLE III: Winner patterns summary. Two classes of com-
ments are observed – the first where no nested comments are
present (flat), the second with nested comments. The column
Total provide a consolidated view with respect to number of
elements in each class. For all three columns, µ indicates the
average and σ the standard deviation.

D. Performance and Scalability

The experiments were run on a 64-bit Linux server using an
Intel Xeon E5430 and 4 Gb of RAM. Using this commodity
hardware, the wall-clock time of the two-step algorithm of
CommentsMiner is 201 ms in average. The execution time
presents a significant standard deviation (242 ms) due to the
difference in page sizes (hence DOM tree density), which is
149 Kb in average, but with a standard deviation of 105 Kb.
This impacts the pattern size in number of nodes as well (14.10
nodes in average with a standard deviation of 10.8). As an
illustration of this performance – given 500 US$ and the cost
of a m3.large server at Amazon EC2 (0.140 US$ per hour
at the time of writing) – it is therefore possible to process
63,958,209 web pages with just 500 US$. Each Web pages
can also be processed in isolation, which provides another
scalability improvement.

VII. RELATED WORKS

DEPTA [21] – an extension of the work reported in [22]
– first processes the page using a Web browser in order to
get the boundaries information of each DOM node and later
detects nested rectangles – thus building a tag tree where the
parent relationship indicates a containment in the rendered
page. DEPTA utilizes a string edit distance to cluster similar
nodes into regions – a similar technique used by [23], while
replacing the tree edit distance with a token edit distance.
MiBAT [14] – an automatic extraction framework of Web data
record containing user-generated content – relies on domain



constraints to acquire anchor points information. For example,
each forum post must have exactly one tree containing “post-
date”. Despite their novel contributions, these works are unable
to provide a solution for classifying frequent regions with
respect to Web document structure [24]. Moreover, none are
able to mine nested frequent subtrees, i.e. comments published
in answer to other comments and situated in a subtree of the
first level comment subtree.

Other works focus on devising domain-agnostic region
extractors. [10] provides a contemporary and exhaustive anal-
ysis of more than a hundred of existing region extractors,
including a nesting level handling criterion. Among the 14
analyzed works for region extraction, only three proposals (Tag
Path Clustering (TPC [15]), VIsion-based Page Segmentation
(VIPS [25]), and Record Segmentation Tree (RST [16]) are
able to maintain a relationship between the subregions (re-
ferred as “multi-level nesting” in this survey). This feature
denotes the ability to identify nested sub-regions within a
region that allows the extraction of the conversational structure
of the comments. Among these proposals, VIPS outputs the
segmentation of the webpage in regions, without providing any
information on the relative relevance of the subregion. There-
fore, it is not suitable to use VIPS for comments extraction
– as no selection scheme provides the probability distribution
for comments in regions.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented CommentsMiner, a
novel approach to extract user-generated comments.
CommentsMiner bridges the gap between frequent
subtree mining and web information extraction by succesfully
extracting HTML templates that embed user-generated
comments. A specificity of users comments is their
conversational structure. Our approach based on constrained
mining of closed frequent subtrees is able to extract nested
comments. By constraining the mining process, we are able to
avoid the combinatorial explosion that usually characterizes
subtree mining. To identify the winner subtree among those
output by the mining step, we use a learning-to-rank approach
and compared the result of several algorithms. We finally
compare our extraction result to existing approaches on both
a popular and a surrogate datasets, thus acknowledging the
improvement brought by CommentsMiner on the comment
mining task.
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