
HAL Id: hal-03892080
https://inria.hal.science/hal-03892080

Submitted on 9 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Optimizing the Computation of a Possibilistic Heuristic
to Test OWL SubClassOf Axioms Against RDF Data

Rémi Felin, Olivier Corby, Catherine Faron, Andrea G. B. Tettamanzi

To cite this version:
Rémi Felin, Olivier Corby, Catherine Faron, Andrea G. B. Tettamanzi. Optimizing the Computa-
tion of a Possibilistic Heuristic to Test OWL SubClassOf Axioms Against RDF Data. W-IAT 2022 -
IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technol-
ogy, Nov 2022, Niagara Falls, Canada. �10.1109/WI-IAT55865.2022.00021�. �hal-03892080�

https://inria.hal.science/hal-03892080
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Optimizing the Computation of a Possibilistic
Heuristic to Test OWL SubClassOf Axioms Against

RDF Data
Rémi FELIN

Université Côte d’Azur, Inria, I3S
Sophia-Antipolis, France

remi.felin@inria.fr

Olivier CORBY
Université Côte d’Azur, Inria, I3S

Sophia-Antipolis, France
olivier.corby@inria.fr

Catherine FARON
Université Côte d’Azur, Inria, I3S

Sophia-Antipolis, France
catherine.faron@inria.fr

Andrea G. B. TETTAMANZI
Université Côte d’Azur, Inria, I3S

Sophia-Antipolis, France
andrea.tettamanzi@inria.fr

Abstract—The growth of the semantic Web requires tools to
manage data, make them available to humans and for a wide
range of applications. In particular, tools dedicated to ontology
management are a keystone for semantic Web applications. In
this paper we consider a possibilistic framework and an evolu-
tionary approach for ontology enrichment with OWL axioms. The
assessment of candidate OWL axioms against an RDF knowledge
graph requires a high computational cost, especially in terms of
computation time (CPU), which may limit the applicability of the
framework. To answer this problem, our contribution presented
in this paper consists of (i) a multi-threading system to parallelize
axiom assessment, (ii) a heuristic to avoid redundant computation
and (iii) an optimization for SPARQL query chunking relying
on an extension of the SPARQL 1.1 Federated Query standard.
The results of a comparative evaluation show that our proposal
significantly outperforms the original algorithm, enabling a
significant reduction in computation time.

Index Terms—Knowledge Graphs, OWL Axioms, Ontology
Enrichment

I. INTRODUCTION

Over time, the semantic Web has developed significantly, re-
lying on a series of W3C standards, the foremost of which are
RDF (Resource Description Framework), SPARQL (SPARQL
Protocol and RDF Query Language) and OWL (Web Ontology
Language). As a result, the use cases have diversified widely in
the domains of academia, research and industry. The benefits
of the semantic Web are diverse and revolve around three
axes [1]: interoperability between systems, notably through
the addition of standards allowing the creation and distribution
of knowledge graphs through the Web. These graphs are linked
together when they describe the same resources or use the
same vocabularies. Linked data is therefore one of the most
important outcome of semantic Web technologies. The Linked
Open Data (LOD) is a set of RDF knowledge graphs published
and freely accessible on the Web; they are of various natures
relating to many domains such as social networks, science,

media, and publications. The LOD-Cloud catalog1 reports that
the growth in the number of integrated datasets has been
steadily increasing with very significant increases between
2014 and 2017. Ontologies are the keystone of the semantic
Web as they not only enable this linkage of knowledge graphs
over the Web but also logical inference over knowledge
graphs, i.e., the automatic deduction of implicit statements in
a graph based on the axioms of ontologies.

An ontology has several definitions from both a philosophi-
cal and a computational perspective [2]: “An ontology is a for-
mal and explicit specification of a shared conceptualization”
is a concise definition highlighting its purpose. An ontology is
composed of a set of classes and a set of relations representing
the concepts of the domain knowledge, a set of individuals that
are instances of classes, and a set of axioms involving classes,
relations and individuals and capturing domain knowledge.
OWL is the semantic Web language to represent ontologies
for RDF graphs.

The quality of ontologies and their enrichment are major
research issues: the development of the semantic Web requires
to extract ontological knowledge from the available informa-
tion sources and to evaluate the quality of the constructed
ontologies before using them to infer new facts. Ontology
validation, quality control and enrichment are the subject
of many research works [3]–[7]. Ontology learning has an
important place in the development of the semantic Web
as it allows the enrichment of ontologies from assertions in
RDF knowledge graphs of the LOD. Despite the massive
development of knowledge graphs in the LOD there is a lack
of rich ontologies and the quality of the available knowledge
on the LOD is still an issue. For instance, although DBpedia is
one of the reference knowledge graph of the LOD, constructed
with information extracted from Wikipedia, its ontology is
sketchy and poor in axioms. Our work fits in the field of

1https://lod-cloud.net/

mailto:remi.felin@inria.fr
mailto:olivier.corby@inria.fr
mailto:catherine.faron@inria.fr
mailto:andrea.tettamanzi@inria.fr

ontology learning. We started from an evolutionary approach
previously proposed to extract OWL axioms from an RDF
knowledge graph [8]–[10]. In this approach, the extraction
of candidate axioms relies on an evolutionary algorithm and
their evaluation on SPARQL queries to compute a score based
on possibility theory [11]. Focusing on the evaluation of
subsumption axioms of the form SubClassOf(C,D), where C
and D are class expressions, a possibility theory-based scoring
involves a significant computational cost, in terms of resources
and time. This limits the practical applicability of this ap-
proach. In this paper, we present three novel contributions to
overcome these limitations:

A. a multi-threading system to parallelize OWL axioms
assessment, especially the computation of exceptions to
axioms,

B. an extension of the original heuristic to avoid redun-
dant computation, with an explanation of the computa-
tional problem,

C. an optimization of SPARQL query chunking relying
on an extension of SPARQL 1.1 Federated Query to
automatically iterate a SPARQL federated query service
call.

In order to assess these contributions, we tested the integrity
of the results and analyzed their impact in term of CPU time
saving, using the previous work [12] as a benchmark. The
source code of the project is available on GitHub.2

This paper is organized as follows: In Section II we sum-
marize the principles of the approach to extract OWL axioms
from RDF data to the improvement of which we contribute.
We present our contributions in Section III and the results of
the experiments that we conducted to evaluate them in Section
IV. We conclude in Section V.

II. PRELIMINARIES

A. OWL SubClassOf Axioms

Six categories of OWL axioms can be distinguished:
Class expression axioms (SubClassOf, DisjointClasses, . . .),
Object property expression axioms (SubObjectPropertyOf,
DisjointObjectProperties, . . .), Data property expression
axioms (SubDataPropertyOf, DisjointDataProperties, . . .),
Datatype definition axioms (DatatypeDefinition), Keys ax-
ioms (HasKey) and Assertion axioms (ClassAssertion, Object-
PropertyAssertion). In this paper, we focus on the SubClassOf
class expression axiom [13]. Its OWL functional-style syntax
is SubClassOf(C D), where C and D are OWL classes
occurring in an RDF graph, e.g. dbo:Organisation,
dbo:Work, dbo:Plant in the DBpedia knowledge graph
with dbo the prefix denoting the DBpedia ontology names-
pace.

Using the SHOIQ description logic syntax, the notation
C ⊑ D highlights the inclusion of C into D, i.e. the fact that
instances of C are also instances of D. This is described in the
direct model-theoretic semantics of OWL through the notation
CI ⊆ DI where I represents individuals in a knowledge

2https://github.com/RemiFELIN/RDFMining

graph. SubClassOf axioms are used to make up the taxonomic
backbone of most ontologies, such as the DBpedia 2015-04
Ontology. Here are some examples:

• dbo:Actor ⊑ dbo:Artist,
• dbo:Agglomeration ⊑ dbo:PopulatedPlace,
• dbo:Annotation ⊑ dbo:WrittenWork

B. An Evolutionary Approach to OWL Axiom Extraction

Our research area focuses on Axiom Learning [9], which is
a bottom-up approach, using learning algorithms and relying
on instances from several existing knowledge and information
resources to discover axioms. Axiom learning algorithms can
help reduce the overall cost of axiom extraction and ontology
construction in general.

To this aim, we use an evolutionary approach, namely
Grammatical Evolution [8]. Using a predefined grammar
in BNF format, we can generate a random set of candidate
axioms, formed according to the syntax defined in the BNF
file. Of course, this simple process is not sufficient to obtain
an axiom that is meaningful. For this purpose, we use an
evolutionary process based on this grammar to allow the
generation of random candidate axioms, which together form
a population, and the evaluation of this population using a
fitness function, which we aim to maximise. This process,
which iterates according to the given parameters, allows us to
obtain from initially random candidate axioms, new candidate
axioms that are more and more consistent, i.e., which present a
non-zero fitness, and these individuals will be taken as models
by the algorithm to generate a new population of axioms which
inherit traits from the best individuals.

It is of paramount importance, for such approach to work
correctly, that the fitness estimated for a candidate axiom
accurately captures its compatibility with the facts asserted in
the knowledge graph at hand. To this aim, we adopt am axiom
evaluation heuristic, based on possibility theory [11], which
has been shown to be particularly reliable in view of the open-
world semantics of RDF knowledge graphs [13]. The heuristic
computes a possibility and a necessity for a given axiom;
some particular cases, like the DisjointClasses axiom,
require a slightly different treatment, whereby their necessity
is always zero and only their possibility is computed [8], [9].

C. A Possibilistic Heuristic to Evaluate SubClassOf Axioms

Taking inspiration from possibility theory [11], we
previously proposed a possibilistic heuristic to assess
SubClassOf axioms with the two possibilistic metrics of
possibility and necessity of an axiom [10], [12]–[14]. Possi-
bility theory is a mathematical theory of epistemic uncertainty
which uses the events, variables, . . . denoted ω of a universe of
discourse Ω (ω ∈ Ω) where each ω has a degree of possibility
such that π : Ω→ [0, 1].

In order to assess the possibility and necessity of an axiom
ϕ, the heuristic considers υ+

ϕ , the number of confirmations
observed among the elements of υϕ, the support of ϕ, and υ−

ϕ ,

2

the number of exceptions observed. It defines the possibility
Π(ϕ) and necessity N(ϕ) of the axiom as follows:

Π(ϕ) = 1−

√√√√1−

(
υϕ − υ−

ϕ

υϕ

)2

,

N(ϕ) =


√
1−

(
υϕ−υ+

ϕ

υϕ

)2

, if Π(ϕ) = 1,

0, otherwise.

To decide the acceptance of an axiom according to its possi-
bility and necessity, an Acceptance/Rejection Index (ARI) is
defined, combining the two measures:

ARI(ϕ) = N(ϕ) + Π(ϕ)− 1 ∈ [−1, 1].

Thus, an ARI whose value is less than 1 indicates that there
is at least 1 exception υ−

ϕ for an axiom ϕ. When the ARI is
equal to 0, we are in a case of total ignorance for ϕ: this
indicates that υ−

ϕ → ∅ and υ+
ϕ → ∅. An ARI value greater

than 0 implies υ−
ϕ → ∅ and confirmations founded. Finally, a

perfect axiom has an ARI equal to 1 and implies υ−
ϕ → ∅ and

υ+
ϕ → υϕ.
The implementation of the above formulas was carried out

in SPARQL. The queries presented in Figures 2 and 3. return
(respectively) the number of confirmations υ+

ϕ and the number
of exceptions υ−

ϕ for a given subsumption axiom C ⊑ D.
The computation of the number of confirmations is quite
simple: we count the number of instances belonging to both
the subclass C and the superclass D.

On the other hand, the calculation of the number of
exceptions is trickier, since, according the the open-world
hypothesis, if a fact is not asserted in a knowledge base, this
does not necessarily mean it is false. Therefore, an exception
is assumed only when an instance of C is found to also
belong in another class that does not share any instance with
D. This query, which gives of course still an approximation,
even though a much finer one, of the actual number of true
exceptions, turns out to be computationally quite expensive.

SELECT (COUNT(DISTINCT ?t) AS ?nic) WHERE {
?x a <C>, ?t .

}

Fig. 1: SPARQL query used to compute the number of
intersecting classes (nic) for a subclass C.

III. CONTRIBUTIONS

A. Multi-Threading System

We implemented a multi-threading system in order to
parallelize the evaluation of the axioms, which allows us
to significantly reduce the overall computation time. This
gain is the more significant the greater is the number of
CPU cores available, since the program creates a number of

SELECT (COUNT(DISTINCT ?x) AS ?n) WHERE {
?x a <C>, <D> .

}

Fig. 2: Naive implementation of our possibilistic heuristic in
SPARQL: retrieval of the confirmations for a given axiom
SubClassOf(<C> <D>).

SELECT (COUNT(DISTINCT ?x) AS ?n) WHERE {
?x a <C>, ?t .
FILTER NOT EXISTS { ?y a ?t, <D> . }

}

Fig. 3: Naive implementation of our possibilistic heuristic
in SPARQL: retrieval of the exceptions for a given axiom
SubClassOf(<C> <D>).

threads equivalent to the number of cores available on the
machine on which the software is run. Nevertheless, while
this optimization can reduce the latency of axiom evaluation
if a large number of cores is available, it does not reduce the
overall cost of the task.

B. A Heuristic to Avoid Redundant Computation

We propose an optimization to reduce the overall computa-
tion time of the ARI of an axiom by reducing the computation
time of its exceptions. Considering the naive implementa-
tion of the retrieval of the exceptions for a given axiom
SubClassOf(<C> <D>) in the SPARQL query depicted in
Figure 3, we can observe the possible and useless repetition
of the retrieval of the same types ?t for different instances
?x of a subclass <C> satisfying a filter condition that does
not depend on ?x. And it is very likely that the same types
are found many times for different individuals, implying the
repetition of these same computations. As a result, we have
split the SPARQL query to compute exceptions to an axiom
in two (the latter query being dependent on the result of first
one):

1) The first query retrieves, once for all, distinct types
(i.e., classes) being evaluated as potentially containing
exceptions to the axiom (Figure 4).

2) The second query retrieves the instances that belong
to both subclass <C> and at least one of the classes
retrieved bu the previous query, which suggests them to
be considered as exceptions (Figure 5).

Additionally, considering the worst case where (almost)
all the instances of subclass <C> are exceptions to axiom
SubClassOf <C> <D> (in that case the axiom’s ARI will
be close to -1), the computation time of exceptions may
be very long if the number of instances of <C> is high.
The computational cost of FILTER NOT EXISTS grows
more than linearly with the number of instances that have
to be filtered. Therefore, we have also developed a chunking
technique for SPARQL queries in order to split the task into

3

SELECT DISTINCT ?t WHERE {
{

We retrieve the other classes of the instances of subclass <C>.
SELECT ?t WHERE {

SELECT DISTINCT ?t WHERE { ?x a <C> , ?t . } ORDER BY ?t
} LIMIT $limit OFFSET $offset

}
From these classes, we remove those sharing instances with superclass <D>.
FILTER NOT EXISTS { ?z a ?t, <D> . }

}

Fig. 4: Implementation of our optimized heuristic in SPARQL: retrieval of the classes which instances are possible exceptions
to axiom SubClassOf(<C> <D>).

SELECT DISTINCT ?x WHERE {
?x a <C>, ?t
VALUES ?t { <t1> <t2> ... <tn> }

} LIMIT $limit OFFSET $offset

Fig. 5: Implementation of our optimized heuristic in SPARQL:
retrieval of the exceptions of SubClassOf(<C> <D>) as
being the instances of the classes computed in Fig. 4.

several steps. The LIMIT and OFFSET modifiers allow the
results of a SPARQL query to be paginated, making it quicker
to manipulate a subset. The resulting algorithm is presented
in Algorithm 2.

C. Optimizing the Chunking of SPARQL Queries

In general, it is quite tedious to implement chunking of
SPARQL queries. Moreover, one may still want to resort
to chunking a SPARQL query with a VALUES clause, due
to the fact that some servers limit the number of elements
handled in such a clause. Within the framework of our special
use case of computing the exceptions to a SubClassOf
axiom, we propose a generic SPARQL operator allowing us
to automatically integrate the pagination of the results with an
iteration system. We build upon previous work on using URL
parameters in SPARQL federated query services [15]. This
operator allows specifying the iteration with a URL parameter
loop set to true and the pagination with a URL parameter limit
set to the chosen number of first results to be returned by a
query. The advantage of this operator is twofold: on the one
hand, it makes it easier to code the iteration and chunking of
SPARQL queries; on the other hand, the iteration and chunking
are delegated to the SPARQL engine, which in general is
more effective at performing them than the user code calling
the engine several times. The algorithm of this operator is
described in Algorithm 1. It is implemented into the Corese3

semantic Web factory [16].
By using this novel loop+page operator, we propose an-

other algorithm to compute the exceptions to a SubClassOf

3https://github.com/Wimmics/corese

Algorithm 1 Iterate and page a SPARQL query

1: sol ← {}
2: q ← the body of a SPARQL query
3: for i=$start; i<=$until; i++ do
4: q← q+LOOP=$true&LIMIT=$limit&OFFSET=i*$limit
5: res ← eval(SERVICE url{q})
6: if len(res) == 0 then
7: break
8: end if
9: sol ← sol ∪ res

10: end for
11: return sol

<C> <D>axiom. Both the query to retrieve the classes poten-
tially containing exceptions (Figure 6) and the query to retrieve
the exceptions (Figure 7) are SPARQL federated queries using
the parameters loop and limit in the URL of the remote
query service in the SERVICE clause. The resulting algorithm
is detailed in Algorithm 3). When compared to Algorithm 2,
it is obviously less tedious to set up.

IV. EXPERIMENTS

In order to evaluate our contributions, we carried out the
scoring of 722 candidate axioms against an RDF dataset
extracted from DBpedia 3.9 comprising 463,343,966 triples
and 532 OWL classes. This experiment has two objectives:
on the one hand, to show that our optimizations give results
that are faithful to the initial results achieved with the original
heuristic presented in [12], and, on the other hand, to highlight
the computation time savings obtained. The experiments were
performed on a server equipped with an Intel(R) Xeon(R) CPU
E5-2637 v2 processor at 3.50GHz clock speed, with 172 GB
of RAM, 1 TB of disk space running under the Ubuntu 18.04.2
LTS 64-bit operating system.

As it can be seen in Fig. 8, when using our optimization,
the computation time is significantly reduced, with a maximum
computation time reduced from 71,699 to 489 minutes. The
ARIs values computed for each axiom remain unchanged,
giving the same average ARI value (∼ -0.1936). As already
reported in the experiments described in [14], with an ARI

4

SELECT DISTINCT ?t WHERE {
SERVICE <$url/sparql?loop=true&limit=$limit> {

SELECT DISTINCT ?t WHERE { ?x a <C>, ?t . }
}
SERVICE <$url/sparql> {

VALUES ?t {undef}
FILTER NOT EXISTS { ?z a <D>, ?t . }

}
}

Fig. 6: Second implementation of our optimized heuristic with a SPARQL federated query using parameters loop and limit:
retrieval of the classes which instances are possible exceptions to axiom SubClassOf(<C> <D>).

SELECT DISTINCT ?x WHERE {
SERVICE <$url/sparql?loop=true&limit=$limit> {

?x a <C>, ?t VALUES ?t { <t1> <t2> ... <tn> }
}

}

Fig. 7: Second implementation of our optimized heuristic with a SPARQL federated query using parameters loop and limit:
retrieval of the exceptions of SubClassOf(<C> <D>) as being the instances of the classes computed in Fig. 6.

(a) Original heuristic (b) Results obtained with contributions A+B

Fig. 8: Comparison of the ARI values of 722 axioms computed against DBpedia 3.9 using the original heuristic in [12] and
our proposed optimization

value greater than 1/3 as an acceptance criterion for an axiom
ϕ, the number of accepted axioms is only 197 against 525
rejected (27,28% of acceptance rate). Here are interesting
example axioms with ARI = 1 that are not already in the
DBpedia 3.9 ontology and could be considered to enrich it:
SubClassOf(dbo:Chef dbo:Agent) ,
SubClassOf(dbo:Venue dbo:Place) ,
SubClassOf(dbo:RadioHost dbo:Person).

We also compared the computation times of the ARI of
each of the 722 candidate axioms when using the original
heuristic or our proposed optimization. Figure 9 presents the
initial computation time of the axioms ARIs when using the
original heuristic as a function of the computation time when
using our proposed optimization. This highlights the huge
proportion of axioms for which our proposed optimization
saves computation time and the importance of this time saving.

The average CPU computation time for evaluating an axiom
is 30 minutes with our proposed optimization compared to
578 minutes with the original heuristic, with a significant
average time saving of 548 minutes. For most axioms we
observe a lower computation time: 593 axioms are faster to
evaluate with our method, i.e. 82% of the candidate axioms
tested. In particular, our optimization solves the problem of
extremely long CPU computation times for some axioms (see
Figure see Figure 8a, up to 71,699 minutes). Our optimisation
significantly reduced the computational cost to a maximum
value of 489 minutes, a reduction by a factor of approximately
150. For 129 axioms, i.e. 18% of the tested candidate axioms,
we observe a higher computation time with our optimization.
This occurs for axioms where the instances of <C> do not
share any of their other types. In that case, the execution of
the initial single SPARQL query (Figure 3) is faster than the

5

Fig. 9: Comparison of the computation times (CPU) of axioms ARIs with the original heuristic and with our proposed
optimization (A+B), highlighting the proportion of axioms for which our optimization saves time (in green) or loose time (in
red). Both axes are logarithmic.

execution of the two SPARQL queries in our optimisation
(Figures 6 and 7). However, the results show an average
increase in computation time of about 57 minutes and a
maximum increase of 244 minutes for these axioms. These are
much smaller losses compared to the average and maximum
gain we get on the other 82% candidate axioms.

To evaluate our last optimization using a loop+page operator
relying on the extension of SPARQL federated query with
URL parameters, we compared the times to compute axioms
ARIs with this extension and with standard SPARQL queries.
The results presented in Fig. 10 highlight a significant CPU
time saved when using SPARQL federated queries with URL
parameters. The average computation time for an axiom is
reduced by approximately 12 minutes. There are 683 axioms
quicker to assess using the loop operator and only 39 axioms
for which there is a minor increase of the computation time.
This observed loss of time is explained by a significant accu-
mulation of HTTP requests submitted to the server in the case
where the potential exceptions have a high number of types.
This accumulation increases, even more, when several axioms
are evaluated simultaneously (contrib. A). A large number of
HTTP requests can increase server latency, however, we can
see that these time losses are marginal. This suggests that
the implementation of this operator optimises the chunking of
queries internally, making the computation cost less important
than our first proposal, in which we truncate the queries (see
Algorithm 2).

V. CONCLUSION

We presented an optimisation of a possibilistic heuristic
approach for the assessment of OWL SubClassOf axioms

against RDF data, enabling a significant CPU computation
time saving and offering new perspectives to this approach.
Our contribution lies in the proposition and the combination
of a multi-threading system and two algorithms to compute
the exceptions to candidate SubClassOf axioms: a first one
relying on a classical approach for SPARQL query chunking
and a second one where we put forward our expertise with the
Corese semantic Web factory to propose a loop+page operator
implemented with URL parameters for SPARQL federated
queries.

As future work, we plan to adapt the proposed optimizations
to the evaluation of other types of OWL axioms. Another
challenge is to generalize this optimisation to computational
problems with SPARQL queries having a similar form, and
thus bring the benefit of our work to the semantic Web
community.

ACKNOWLEDGMENTS

This work has been partially supported by the French
government, through the 3IA Côte d’Azur “Investments in the
Future” project managed by the National Research Agency
(ANR) with the reference number ANR-19-P3IA-0002.

REFERENCES

[1] P. Pieter, Z. Sijie, and L. Yong-Cheol, “Semantic web technologies in aec
industry: A literature overview,” Automation in Construction, vol. 73,
pp. 145–165, 2017. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0926580516302928

[2] N. Guarino, D. Oberle, and S. Staab, What Is an Ontology? Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 1–17. [Online].
Available: https://doi.org/10.1007/978-3-540-92673-3_0

[3] D. Vrandečić, Ontology Evaluation. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2009, pp. 293–313. [Online]. Available: https:
//doi.org/10.1007/978-3-540-92673-3_13

6

https://www.sciencedirect.com/science/article/pii/S0926580516302928
https://www.sciencedirect.com/science/article/pii/S0926580516302928
https://doi.org/10.1007/978-3-540-92673-3_0
https://doi.org/10.1007/978-3-540-92673-3_13
https://doi.org/10.1007/978-3-540-92673-3_13

Fig. 10: Comparison of the computation times (CPU) of axioms ARIs with our first (A+B) and second (A+B+C) proposed
optimizations, highlighting the proportion of axioms for which for which our last optimization saves (in green) or loose (in
red) time with A+B+C. Both axes are logarithmic.

[4] J. Raad and C. Cruz, “A survey on ontology evaluation methods,”
in Proceedings of the International Joint Conference on Knowledge
Discovery, Knowledge Engineering and Knowledge Management,
ser. IC3K 2015. Setubal, PRT: SCITEPRESS - Science and
Technology Publications, Lda, 2015, p. 179–186. [Online]. Available:
https://doi.org/10.5220/0005591001790186

[5] S. Mc Gurk, C. Abela, and J. Debattista, “Towards ontology quality
assessment.” in MEPDaW/LDQ@ ESWC, 2017, pp. 94–106.

[6] G. Petasis, V. Karkaletsis, G. Paliouras, A. Krithara, and E. Zavitsanos,
Ontology Population and Enrichment: State of the Art. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, pp. 134–166. [Online].
Available: https://doi.org/10.1007/978-3-642-20795-2_6

[7] L. Bühmann and J. Lehmann, “Universal owl axiom enrichment for
large knowledge bases,” in Knowledge Engineering and Knowledge
Management, A. ten Teije, J. Völker, S. Handschuh, H. Stuckenschmidt,
M. d’Acquin, A. Nikolov, N. Aussenac-Gilles, and N. Hernandez, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 57–71.

[8] T. H. Nguyen and A. G. Tettamanzi, “An evolutionary approach to
class disjointness axiom discovery,” in IEEE/WIC/ACM International
Conference on Web Intelligence, ser. WI ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 68–75. [Online].
Available: https://doi.org/10.1145/3350546.3352502

[9] T. H. Nguyen and A. G. B. Tettamanzi, “Using grammar-based ge-
netic programming for mining disjointness axioms involving complex
class expressions,” in Ontologies and Concepts in Mind and Machine,
M. Alam, T. Braun, and B. Yun, Eds. Cham: Springer International
Publishing, 2020, pp. 18–32.

[10] R. Felin and A. G. Tettamanzi, “Using grammar-based genetic
programming for mining subsumption axioms involving complex class
expressions,” in IEEE/WIC/ACM International Conference on Web
Intelligence and Intelligent Agent Technology, ser. WI-IAT ’21. New
York, NY, USA: Association for Computing Machinery, 2021, p.
234–240. [Online]. Available: https://doi.org/10.1145/3486622.3494025

[11] L. A. Zadeh, “Fuzzy sets as a basis for a theory of possibility,” Fuzzy
Sets and Systems, vol. 100, pp. 9–34, 1999.

[12] A. G. Tettamanzi, C. Faron-Zucker, and F. L. Gandon, “Dynamically
time-capped possibilistic testing of subclassof axioms against rdf data
to enrich schemas,” in K-CAP, ser. Proceedings of the 8th International
Conference on Knowledge Capture, K. Barker and J. M. Gómez-Pérez,
Eds., no. 7, Palisades, NY, United States, October 2015.

[13] A. Tettamanzi, C. Faron Zucker, and F. Gandon, “Possibilistic testing of

OWL axioms against RDF data,” International Journal of Approximate
Reasoning, 2017. [Online]. Available: https://hal.inria.fr/hal-01591001

[14] A. G. Tettamanzi, C. Faron-Zucker, and F. Gandon, “Testing owl axioms
against rdf facts: A possibilistic approach,” in Knowledge Engineering
and Knowledge Management, K. Janowicz, S. Schlobach, P. Lambrix,
and E. Hyvönen, Eds. Cham: Springer International Publishing, 2014,
pp. 519–530.

[15] O. Corby, C. Faron, F. Gandon, D. Graux, and F. Michel,
“Beyond Classical SERVICE Clause in Federated SPARQL Queries:
Leveraging the Full Potential of URI Parameters,” in WEBIST
2021 - 17th International Conference on Web Information Systems
and Technologies, Online, Portugal, Oct. 2021. [Online]. Available:
https://hal.inria.fr/hal-03404125

[16] O. Corby and C. F. Zucker, “Corese: A corporate semantic web engine,”
in International Workshop on Real World RDF and Semantic Web
Applications, International World Wide Web Conference, 2002.

7

https://doi.org/10.5220/0005591001790186
https://doi.org/10.1007/978-3-642-20795-2_6
https://doi.org/10.1145/3350546.3352502
https://doi.org/10.1145/3486622.3494025
https://hal.inria.fr/hal-01591001
https://hal.inria.fr/hal-03404125

Algorithm 2 Compute exceptions to a SubClassOf axiom
according to contribution B.
Output: numExceptions, and a list of these exceptions.
Require: numConfirmations ̸= referenceCardinality

1: q1 ← SPARQL query presented in Fig. 1
2: q2 ← SPARQL query presented in Fig. 4
3: offset← 0
4: limit← 1000
5: exceptions← {}
6: types← {}
7: nic← eval(q1)
8: while offset ̸= nic do
9: q2 ← q2 + LIMIT limit OFFSET offset

10: types← types ∪ eval(q2)
11: offset← offset+min(nic− offset, limit)
12: end while
13: start← 0
14: step← 100
15: limit← 10000
16: while start ̸= ∥types∥ do
17: offset← 0
18: end← start+min(step, ∥types∥)
19: while true do
20: q3 ← SPARQL query presented in Fig. 5
21: using VALUES { ti ∈ types, i ∈ [start, end] }
22: q3 ← q3 + LIMIT limit OFFSET offset
23: e← eval(q3)
24: exceptions← exceptions ∪ e
25: if ∥e∥ = limit then
26: offset← offset+ limit
27: else break
28: end if
29: end while
30: start← start+min(∥types∥ − start, step)
31: end while
32: numExceptions← ∥exceptions∥

Algorithm 3 Compute exceptions to a SubClassOf axiom
using contributions B and C.
Output: numExceptions, and a list of these exceptions.
Require: numConfirmations ̸= referenceCardinality

1: limit← 1000
2: q1 ← SPARQL query presented in Fig. 6
3: types← eval(q1)
4: start← 0
5: step← 50
6: limit← 10000
7: while start ̸= ∥types∥ do
8: end← start+min(step, ∥types∥)
9: q2 ← SPARQL query presented in Fig. 7

10: using VALUES { ti ∈ types, i ∈ [start, end] }
11: exceptions← exceptions ∪ eval(q2)
12: start← start+min(∥types∥ − start, step)
13: end while
14: numExceptions← ∥exceptions∥

8

	Introduction
	Preliminaries
	OWL SubClassOf Axioms
	An Evolutionary Approach to OWL Axiom Extraction
	A Possibilistic Heuristic to Evaluate SubClassOf Axioms

	Contributions
	Multi-Threading System
	A Heuristic to Avoid Redundant Computation
	Optimizing the Chunking of SPARQL Queries

	Experiments
	Conclusion
	References

