
Implementing BDI Continual Temporal Planning for Robotic Agents

Alex Zanetti†, Devis Dal Moro∗, Redi Vreto∗, Marco Robol∗, Marco Roveri∗, and Paolo Giorgini∗
∗Department of Information Engineering and Computer Science - University of Trento, Trento, Italy

{alex.zanetti,redi.vreto}@alumni.unitn.it, {marco.robol,marco.roveri,paolo.giorgini}@unitn.it
†Eurecat - Technology Centre of Catalonia, Catalonia, Spain

devis.dalmoro@alumni.unitn.it

Abstract—Making autonomous agents effective in real-life
applications requires the ability to decide at run-time and a
high degree of adaptability to unpredictable and uncontrollable
events. Reacting to events is still a fundamental ability for an
agent, but it has to be boosted up with proactive behaviors
that allow the agent to explore alternatives and decide at run-
time for optimal solutions. This calls for a continuous planning
as part of the deliberation process that makes an agent able
to reconsider plans on the base of temporal constraints and
changes of the environment. Online planning literature offers
several approaches used to select the next action on the base
of a partial exploration of the solution space. In this paper, we
propose a BDI continuous temporal planning framework, where
interleave planning and execution loop is used to integrate online
planning with the BDI control-loop. The framework has been
implemented with the ROS2 robotic framework and planning
algorithms offered by JavaFF.

I. INTRODUCTION

Autonomous systems are widely adopted in industrial envi-
ronments where they are used in strictly controlled areas, such
as assembly lines in the industry or automated warehouses in
logistics. Along this, there is a growing interest in adopting
autonomous systems in more complex and highly dynamic
applications in which they are required to deal with unexpected
events (e.g, the interaction with humans or with other robotic
systems), or changes in objectives (e.g., deal with new high-
priority activities). This demands fast adaptation to promptly
respond to the perceived changes, and to take decisions and
actuate them having not yet performed complete reasoning on
the problem, but having only explored partially the solution.

Recent frameworks enabling a robotic agent to au-
tonomously deliberate have been proposed [1]–[9], but they
are still in an early stage and present a number of open
problems (e.g., they provide planning functionalities, but they
are not supported by any deliberative functionalities making
planning unusable in real scenarios). [10] proposed a BDI
(Belief-Desire-Intention) [11] architecture, called ROS2-BDI,
able to use the beliefs of an agent to reason about goals and
elaborate plans to achieve them. The proposed architecture
supports i) BDI-based deliberation to develop agents with tem-
poral planning capabilities; ii) deadline-aware prioritization of
desires; iii) preemption of running plans with lower priority.
This architecture, despite being able to generate new plans

M. Robol and M. Roveri are partially supported by the project MUR
PRIN 2020 - RIPER - Resilient AI-Based Self-Programming and Strategic
Reasoning - CUP E63C22000400001. M. Roveri and P. Giorgini are partially
supported by the PNRR project FAIR - Future AI Research (PE00000013),
under the NRRP MUR program funded by NextGenerationEU.

in response to dynamic changes in the environment suffers
from the problem that before starting any actions, the agents
shall generate a full plan to achieve its goals. Moreover,
it may exhibit continuous run-time failure and subsequent
replanning to try to adapt to the contingencies thus preventing
fruitful progress towards the goal. In the setting of AI planning
it has been studied the problem of generating more robust
plans able to adapt to a set of contingencies [12], [13],
the problem of continual planning while acting [14]–[16] or
interleaving planning and execution [17], [18]. However, all
these approaches are rather limited: they assume a classical
plan-act sequence [12], [13], consider only motion-planning
while acting [14]–[16], need to specify when and how to
switch from planning to execution [17], [18], do not show
temporal planning capabilities (a fundamental element for
continual planning in realistic scenarios).

In this paper, we make the following contributions. First, we
specify a new BDI architecture that extends ROS2-BDI [10]
to i) allow an agent to take decisions and actuate them having
not yet computed a complete plan for the active goals, but
only explored partially the solution; ii) handle preemption
of running plans to deal with changes in the objectives
and/or to execute the new plan or the remaining partial plan
towards the goal computed while executing the previous one.
Second, we specify how to modify a state-of-the-art temporal
planning algorithm to support continual temporal planning
(provide intermediate candidate solutions to execute, while
continuing the search). Third, we implemented the continual
temporal planning algorithm in a new temporal planner, named
CJFF, built on top of JavaFF [19]. The novel framework has
been implemented on top of the ROS2-BDI leveraging our
CJFF. Finally, we demonstrate the practical applicability of
the novel implemented framework through its application in
a highly dynamic resource collection robotic scenario where
we compare the approach of ROS2-BDI baseline with our
extended ROS2-BDI framework. The results show that on
average the new approach results in shorter plans w.r.t. the
baseline, thus indicating the ability of the new framework to
adapt more easily to contingencies.

The paper is organized as follows. In Sec. II we briefly
present the baseline. In Sec. III we describe the novel BDI
architecture and the algorithm for continual temporal planning.
In Sec. IV we discuss the implementation within the ROS2-
BDI framework, and in Sec. V we present the results of the
validation of the proposed framework. In Sec. VI we discuss
the related work, and finally, in Sec. VII we draw conclusions

ar
X

iv
:2

30
9.

00
32

7v
1 

 [
cs

.R
O

] 
 1

 S
ep

 2
02

3



Fig. 1: Architecture of a ROS2-BDI agent. Circles are ROS2 nodes,
arrows and buses (rectangles) represent communications.

and outline future works.

II. BASELINE

In this work, we build on i) JavaFF, a PDDL 2.1 temporal
planner developed in Java; ii) ROS2-BDI, a BDI framework
implemented on top of ROS2. In the rest of this section, we
summarize the respective main concepts.

PDDL 2.1 [20] is the ”standard” formalism adopted for
modelling the knowledge and the behaviour of agents consid-
ering that actions might last some known amount of time. In
PDDL2.1, the effects and conditions for each action might
apply before, during and/or after its execution. PDDL 2.1
compliant planners are capable of computing time-triggered
plans to go from an initial state to a goal one, each action
is associated with a start time and a given duration, and
multiple actions can occur concurrently. JavaFF [19] is a re-
implementation for didactic purposes of the MetricFF [21] in
Java, with also support for PDDL2.1 temporal planning. Being
developed for didactic purposes, its heuristic and performance
did not age well compared to other state-of-the-art PDDL
2.1-compliant planners, such as POPF [22] or OPTIC [23].
However, the underlying framework is robust, modular, and
relatively easy to modify and build on w.r.t. other more
efficient temporal planners.

ROS2-BDI [10] is a BDI framework for developing dis-
tributed autonomous robotic systems built on top of Plan-
Sys2 [9] within ROS2 [24]. It supports BDI-based deliberation
through the generation of time-triggered temporal plans thanks
to the POPF [22] integrated within PlanSys2. Figure 1 depicts
the architecture of a ROS2-BDI agent. ROS2 nodes (depicted
as circles) encapsulate the core functionalities of the agent.
The communication of nodes within an agent and among
agents happens through communication channels (named top-
ics within ROS2). ROS2-BDI core nodes mainly deliver the
following features: i) Belief Management ii) Multi-Agent
Requests handler iii) Scheduler (desire prioritization and pre-
emption) iv) Check over the running plan’s context and desired
deadline conditions v) Event Listener. The Scheduler node
provides the handling of prioritization of running intentions

Fig. 2: Architecture of the reasoning and acting framework.

and goals, interfacing with a) the PlanSys2 [9] reference
framework for PDDL 2.1 temporal planning within ROS2, b)
and with the Plan Director to demand either their execution or
abortion. Given a plan along with its preconditions, desired
deadline and context conditions, the plan director is used
to trigger, monitor and abort its execution. Once a desire is
activated and a plan for fulfilling it is demanded for execution,
it is run through its termination: either by failure or success.
Plans and action executions strongly rely on PlanSys2. Finally,
the Event Listener enforces the belief revision and option
generation functions for the ROS2-BDI agent.

III. A BDI ARCHITECTURE FOR CONTINUAL PLANNING

The BDI model is progressively adopted into autonomous
agents to mimic human behaviour and make them able to deal
with complex problems by adapting their reasoning and acting
to changes happening in their environment while operating. A
set of plans is provided in their knowledge base to reach the
desires with alternative solutions. Planning capabilities allow
agents to synthesize new plans to reach a given goal starting
from given initial conditions. Only when a complete plan has
been computed, the agent starts its execution. However, when
the environment changes repeatedly, the capability to plan a se-
quence of actions to perform while acting (known as continual
planning) is of primary importance to leverage opportunities
and tackle contingencies of the evolving scenarios. Agents
featuring continual planning and execution can i) start exe-
cuting a plan when it is not yet complete, focusing first on the
immediate things perform, and ii) adapt their course of actions
along with the changes in the environment and in the goals
they’re trying to pursue. In the following, first, we describe
how to extend a BDI architecture equipped with deliberation
capabilities to support continual temporal planning, and then
we illustrate the most relevant features needed for smooth
integration. Namely, i) plan failure forecasting, ii) run-time
goal revision, iii) rescheduling in case of an improved solution
is found.

A. Reasoning and acting framework

Fig. 2 shows the core architectural components of the
proposed BDI model with continual planning and concurrent
execution. On the left, the BDI reasoning model includes



the Continual Planner, the Goal Reasoner, and the Intention
Scheduler. In the middle, the BDI sensing and execution model
includes the Executor and the Events Monitor, respectively
acting and sensing to/from the Environment.

The Goal Reasoner, given the agent behavioural model,
creates new goals and pushes them in the desire set. Then, it
activates a goal (from the desire set), selected on the basis of
preconditions and priorities. The Continual Planner redefines
the considered planning problem for each received goal, taking
into account updates about the state of the agent and of
the world. Solutions are continuously produced accordingly.
The Continual Planner adopts a novel search approach, which
allows the exploration of the solution space step-by-step.
Intuitively, the search is performed considering a limited
search horizon, so that, at each iteration, it incrementally
refines the previous plan adding new actions towards the goal
and/or completely revising the plan to handle contingencies.
Therefore, partial plans produced by each search iteration do
not necessarily bring to the final goal. Classical temporal
planning heuristics are used by the Continual Planner while
computing each partial plan to choose among the most promis-
ing alternative actions (see Sect. III-B for more details). The
Intention Scheduler is responsible for mantaining a queue of
plans as received by the Continual Planner, for their execution
by the Executor. A plan can either be i) a continuation of
a previous plan, or ii) an alternative (e.g., a better solu-
tion) which might imply deviating from current execution
and discarding previously queued plans. Respectively, those
lead to i) enqueueing of the received incremental plan or
ii) replacement of all the plans in the queue with the new
one. In this last case, it might also tell the Executor to arrest
earlier the plan in execution at the point at which the new plan
will apply. The Executor is responsible for i) the execution
of a plan by checking the applicability of each of the actions
within the plan before dispatching the execution of the action
itself; ii) monitoring the correct termination of the dispatched
actions to decide whether to proceed with the execution of the
remaining actions in the plan or stop it and notify the failure to
activate further reasoning; iii) interrupting the execution of the
current plan when requested by the Intention Scheduler. The
Events Monitor senses the environment and actions execution
status and updates the knowledge of the agent accordingly.

Fig. 3 provides details of the Continual Planner, here rep-
resented as composed by two sub-components: an Execution
Simulator and a Planning Search. The Execution Simulator
receives updates from the Events Monitor and consequently
updates its internal representation about the Execution State
of plans (running, successful, failed) including Committed
Actions, part of the plan that it is committed to executing, also
considering additional constraints (e.g., the minimum number
of committed steps). The Forecast Plan Failure component
of the Execution Simulator provides forecasting capabilities to
verify whether the current plan is going to fail in its execution.
This is performed by progressing the current state of the
world guided by the plan (considering their pre-conditions
and effects). If for some reason (e.g., a precondition of an

Fig. 3: Details of the Continual Planner.

action in the plan does not hold), then it informs the Planning
Search to find another alternative plan. If the simulation of
the plan succeeds, then the progressed state (named Planning
Initial State) is sent to the Planning Search for continuing the
previous search. The Planning Search component receives in
input the Planning Initial State, the goal to achieve, and the set
of actions to orchestrate to build a solution plan. In Sec. III-B,
we detail how to modify a temporal planning search to behave
as discussed above.

B. Search components for continual planning

In AI planning, the search for a plan to achieve the goal
is performed by incrementally by expanding and visiting the
search space (see [25] for details). Heuristics can be adopted
to drive the search to converge faster towards the goal. Such
searches typically use algorithms based on an open and a
closed list to store nodes of the search space during the search
(open list to store the states yet to expand, and closed to
store the states already expanded). All these search algorithms,
according to a a given expansion strategy (e.g., A*, best-first,
depth-first), (i) select a state from the open list, (ii) expand it
(e.g., by considering applicable/relevant actions), (iii) add all
the generated states in the open list and (iv) iterate until the
goal is reached or no solution is found (open list is empty);
Finally, a solution plan is given in output or the non-existence
of the solution is returned.

We propose a variant of the classical search to support
execution at planning time, in a concurrent, temporal, round-
based and continual fashion. The proposed search is built upon
a classical offline totally-ordered forward search [25], now
splitted into search rounds which incrementally move ahead
in the search space. As soon as the first search round produces
a partial plan, execution can start without having to wait for the
complete plan. Intuitively, each round executes only a limited
number of expansion iterations before exiting to then resuming
from the most promising state: a) search starts/resumes from
the last round most promising state, then b) expansion strategy
is applied and open and closed lists are updated appropriately
and c) iterations continue until a round-termination condition
is satisfied (e.g., goal reached, new depth reached, number of



newly expanded nodes reached) then the most promising state
is returned by the search round. Re-rooting happens between
rounds, clearing out the whole closed list and filtering the
open to keep only states with the same plan prefix as the
one in the new found plan. Then, this plan prefix is truncated
from everywhere so that the next search will see the current
state, effectively as the root one. To compute the plan as soon
as possible, a greedy expansion strategy is initially adopted.
Still, in the case of no solution found, the search switches to
a non-greedy search used as a fallback expansion strategy.
The search runs concurrently with plan execution which, step-
by-step, consumes plans and commit for execution. When a
plan is committed for execution, the expectation is to reach
the projection of the current state after the plan, since the
request for abortion of commitment is not allowed. In the
case of failure in the execution of actions, a goal change, or
an improved plan, continual search revision re-configure the
search to adapt. The search is reinitialized from the committed
projection state. When the plan is produced, the old plan,
queued but yet not committed for execution, is early aborted
and replaced with the new plan. However, if the search does
not produce the new plan within the time window covering the
current execution commitment, the search becomes outdated
and needs to be reinitialized again from the newly committed
projection state.

a) Continual goal revision.: In a BDI agent, goals
are fulfilled separately, for example, with plans executed in
sequence. However, optimization may be possible, e.g. an
overall-shorter plan may exists that fulfill multiple goals. Still,
goals are pushed to the agent at execution time, for example
after observation of the environment, when the fulfillment of
a previous goal has already started. Under this condition, a
revision of currently active goal is needed to generate an
overall-shorter new plan across goals. The Goal Reasoner
component (see Fig. 2) supports continual goal revision, based
on domain-specific user-specified rules, so that current goal
could be revised to include new ones, then fulfilled with a
possible overall-shorter plan. So far we support a very simple
rule that computes a revised goal as G′′ = G ∩ G′ that
considers the old goal G and new goal G′. Since G′′ is more
specific than its base version G, the revision of a goal may
not be always affective. A rules-based mechanism is used to
specify the conditions for revision, goal-by-goal.

b) Improve solution.: However, a complete plan may
finally be found earlier before the execution terminates, so
that there is still time for the planner to improve the solution.
Our framework adopts two efficiently-different searches, first,
a quick greedy search looks for the first viable solution,
and then, a non-greedy search tries to optimize it. If an
improved plan is found, it is scheduled in the waiting queue,
by requesting an early arrest of all scheduled actions diverging
from the improved plan. To be schedulable, when produced,
the plan must be non-outdated with respect to the updated
execution state.

C. Forecasting plan failure

Uncontrollable events that may happen in the environment
can cause failures in the execution of plans. In classical
planning agents, a plan execution failure directly triggers a
re-planning. Our architecture continuously simulates the exe-
cution of the current plan from the current state, so to forecast
a possible failure. The simulation consists in progressing the
current state by applying the actions in the plan, checking
if the action preconditions hold, and then updating the state
with the action’s effects, otherwise reporting failure. Failure
is also reported if the plan does not allow goal achieve-
ment. Whenever a plan simulation fails, two cases need to
be considered. The failure is forecasted to occur within the
committed actions: in this case, nothing can be done to avoid
the natural failure of the plan. The failure is forecasted to
occur after the committed actions: in this case, an alternative
plan is generated by initializing a new search starting from a
committed state (the state resulting from the simulation of the
committed actions from the current state).

IV. IMPLEMENTATION IN ROS2-BDI

We implemented the proposed framework on top of ROS2-
BDI [10]. To this extent, we first extended Java-FF to support
the proposed continual temporal planning, and this results in a
new tool named CJFF 1; then we extended ROS2-BDI [10] to
support the proposed continual planning reasoning 2; in addi-
tion, we also revised PlanSys2, to support continual planning
execution, and adopted it as ROS2 planning system 3.

a) Continual JavaFF.: We implemented the proposed
continual planning algorithm sketched in the previous sections
in a new planner called CJFF (Continual JavaFF). CJFF
builds on and extends JavaFF [19] to fulfil the need for
a general-purpose, PDDL 2.1 compliant, temporal planner.
JavaFF, although it offers obsolete heuristic w.r.t. other state-
of-the-art temporal planners, offers a totally-ordered forward
chaining approach, its implementation is clear, modular and
flexible, thus making it a good fit for the first implementation
of our planning search. For CJFF we leverage the two search
strategies provided by JavaFF, namely greedy Enforced Hill
Climbing (EHC) and Best First Search (BFS) both based on
a Relaxed Plan Graph (RPG) heuristic extended to deal with
temporal actions [19].

We wrapped CJFF into a RCLJava [26] ROS2 node, so
to support its integration into a ROS2 framework. The node
consists of two main threads: i) a control thread that commu-
nicates with the other ROS2 nodes of the architecture through
specific ROS2 topics to enable monitoring search progresses
and controls planning and replanning phases; ii) a search
thread responsible for the search. CJFF exposes ROS2 services
to trigger a new search from scratch (using an initial state
computed directly via the PDDL-encoded problem). CJFF

1CJFF can be found at https://github.com/RTI-BDI/JavaFF.
2The extended ROS2-BDI framework is available at https://github.com/

RTI-BDI/ROS2-BDI-ONLINE/tree/ojff.
3The adopted ROS2 planning system, a revised version of PlanSys2, is

available at https://github.com/RTI-BDI/ros2 planning system.

https://github.com/RTI-BDI/JavaFF
https://github.com/RTI-BDI/ROS2-BDI-ONLINE/tree/ojff
https://github.com/RTI-BDI/ROS2-BDI-ONLINE/tree/ojff
https://github.com/RTI-BDI/ros2_planning_system


Fig. 4: The ROS2-BDI architecture for continual planning.

also publishes its search progresses i.e., ordered incremental
plans, where the plan baseline specifies the situation in which
each incremental plan can be executed. In addition, CJFF
expects to get execution status information to update the
plan execution state and committed status. CJFF computes
committable states of the plan where no open action exists4,
considering also a minimum number of actions specified by
the user. Computation of the ”projected state” that the agent is
committed to reaching is performed via simulation, applying
the expected effects of the upcoming actions in the executing
plan. The same mechanism is used to forecast plan failure, as
detailed in Sect. III-C.

b) Extending ROS2-BDI architecture.: We implemented
the high-level architecture described in Sect. III to support
continual planning building on top and extending the ROS2-
BDI [10] with the CJFF functionalities. The resulting ROS2
architecture is depicted in Fig. 4. The architectural components
of Fig. 2 and 3 are here implemented into ROS2 nodes,
modifying and extending ROS2-BDI core nodes, as follows:
i) CJFF replaces the PlanSys2 ROS2-BDI component for
offline planning; ii) Online Scheduler replaces the ROS2-BDI
Scheduler; iii) Executor, still based on PlanSys2, has been
re-implemented to allow for the safe termination of the execu-
tion of a plan (early arrest). The original ROS2-BDI scheduler
activates a goal only when provided with a complete solution

4The search performed by JavaFF to compute a time-triggered plan lever-
ages a reduction to classical planning by creating a classical planning problem
where each temporal action is encoded with so-called snap-actions [27]. Once
a classical planning solution is computed, we need to check the consistency
of the temporal network induced by the computed classical plan. If consistent,
then a time-triggered plan is extracted. Otherwise, the search continues. We
refer the reader to [27] for further details.

plan for the goal itself, and after verifying deadlines. CJFF
may not provide a complete plan all at once, thus the Online
Scheduler shall activate the goal without knowing whether a
complete plan exists. Similarly to ROS2-BDI Scheduler, it
checks whether the precondition holds, and deals with goal
priorities. The Online Scheduler initializes CJFF to start a new
search as soon as a goal has been activated. Then it waits for
the search progresses (e.g., give possibly new partial plans).
CJFF generates and publishes the new possibly partial plans
as a continuation of the previously computed ones, or a new
plan to be used in place of the one currently in execution.
The Intention Scheduler monitors the CJFF node to decide
how to proceed, i.e., enqueue the new partial plan, or ask
the Executor to safely terminate the plan in execution, and
then proceed with the new one (see Sect. III). The Online
Scheduler is also responsible for revising the goals within the
Gaol Reasoner as explained in Sect. III-B0a. The preemptive
mechanism of the original ROS2-BDI Scheduler was also
modified to request the Executor to safely terminate the plan
in execution before switching to the activation of a higher
priority desire. The Executor, based on PlanSys2, has been
also thoroughly modified to support the safe termination of
the plan currently in execution. In particular, let π be a time-
triggered plan currently in execution containing an action A.
The request of the safe termination after A requires waiting
also the termination of all the other actions Bi ∈ π whose
execution started before A naturally finishes. Finally, each
Action Executor publishes the respective execution status (e.g.,
running, success, fail) so that other ROS2 modules, e.g., the
CJFF node can intercept to decide what to do next.

V. VALIDATION

In order to validate our novel approach, we conceived a
scenario where there are several recycling agents able to move
in a 2d grid map with static and known a priori obstacles (e.g.,
walls), and (pseudo) randomly moving obstacles (e.g., people)
whose movements are not known a priori, and whose presence
can only be discovered through sensing while moving (the
agent can sense free locations within a given distance from its
position). Each agent can move (from one cell to an adjacent
one, known to be free), pickup a litter, and recycle it.
All these actions are durative actions with an associated known
duration. Each agent has the desire to collect and dispose of
all the litter he discovers in the nearest bin, and shall not
move to a location occupied by one of the moving obstacles
or by another agent. New litters may appear randomly in the
grid and contribute to changing the goal of the agents when
discovered.

Fig. 5 shows the validation scenario, in which the recycling
agent (here represented by the robot) move on the grid to
collect garbage (here represented by ducks). The validation
scenario has been implemented in a ROS2-based simulation
environment 5. Specifically, simulation environment is pro-
vided by Webots, a simulator for robotic systems that comes

5The implementation of the validation scenario based on Webots is available
at https://github.com/RTI-BDI/Redi-Webots-scenarios.

https://github.com/RTI-BDI/Redi-Webots-scenarios


Fig. 5: Validation scenario implemented in the Webots simulator.

with ready-to-use robot models, already bundled with the
ROS2 protocol 6. Being implemented on top of ROS2, these
same experiments could be easily repeated with real robots
with no additional coding or configuration, except for minor
settings. We also created a corresponding PDDL 2.1 domain
specifying the predicates needed to encode the scenario (e.g.,
free(x,y) and litter(x,y) to indicate resp. whether
location x,y is free and the presence of a litter in x,y), the
different actions (e.g., move), and pickup).

For the validation, we considered a simple 7x7 map with
the static obstacles positioned as per Fig. 5 7. Because of
a low-level bug in PlanSys2 related with the construction
of Behavior Trees, we restricted the analysis to one single
agent. To compare the new ROS2-BDI framework with the
old one we created pseudo-random simulations where there is
one recycling agent, two persons that will follow a predefined
circular path (not known by the agent) each performing a step
forward along the respective path for move ∈ {4, 8} times,
three litter items placed in the map, however only the position
of k litt ∈ {2, 3} are known by the agent. We also consid-
ered different sizes det area ∈ {1, 2, 3} of the detection area
of the agent. (An assignment to move,det_area,k_litt
defines a situation.) We measure the number of steps required
by the recycling agent to dispose of all the placed litter
items on the map. For a fair comparison of the new ROS2-
BDI framework and the previous one, we integrated into the
old ROS2-BDI framework JavaFF, such that it can be used
in offline runs, replacing the default (more efficient) POPF
planner used within PlanSys2. Finally, for each situation, we
performed 4 runs and collected the average number of moves
of the recycling agent to dispose of all the litter items. We
remark that, a comparison of computation time between the
original ROS2-BDI framework and the one proposed in this
paper, would not be fair because here we care about plan
quality (number of steps performed by the recycling agent)
rather than on the time to compute plans (that depends on the
implementation language and heuristic used for the search).

6More on Webots can be found at https://cyberbotics.com/.
7A video of the validation scenario can be found at https://github.com/

RTI-BDI/iros2023/raw/main/on moving SR 400 LS 800 DC 4.mkv.

Setup Offline Online
µ+

µ σ µ σ

move=4, det area=1, k litt=2 56.0 2.3 42.5 9.8 13.5

move=8, det area=1, k litt=2 58.5 6.8 43.0 10.1 15.5

move=4, det area=2, k litt=2 58.5 3.3 36.0 0.0 22.5

move=8, det area=2, k litt=2 58.0 5.9 35.5 6.0 22.5

move=4, det area=3, k litt=2 66.0 4.0 42.5 10.5 23.5

move=8, det area=3, k litt=2 57.0 4.2 42.0 6.3 15.0

move=4, det area=1, k litt=3 48.0 0.0 43.5 5.5 4.5

move=8, det area=1, k litt=3 57.8 0.5 36.0 2.8 21.8

move=4, det area=2, k litt=3 48.0 0.0 35.5 2.5 12.5

move=8, det area=2, k litt=3 57.0 1.2 37.0 11.6 20.0

move=4, det area=3, k litt=3 48.0 0.0 42.0 8.2 6.0

move=8, det area=3, k litt=3 48.0 1.6 39.5 17.2 8.5

TABLE I: Evaluation results.

We run all the tests on a notebook equipped with an Intel©
2.80GHz i7™ CPU with 16GB of RAM, running Linux.

The results are reported in Table I. The first
column reports the considered parameter setting
(move,det_area,k_litt), the second and fourth
columns are the average (µ) number of steps performed
by the recycling agent in four runs, the third and fifth
columns are the respective standard deviation. Finally, the
sixth columns (µ+) is the difference of the second and fourth
columns (it represents the average number of additional steps
performed by the offline approach).

The results (see Table I) clearly show that in all consid-
ered situations the new ROS2-BDI framework equipped with
continual planning requires on average a smaller number of
moves to dispose of all the litter items. The results also show
that in the first six situations (where one litter item is detected
while moving) the improvements are higher. This is due to
the fact, that in the previous ROS2-BDI framework each time
encounters a failure in the execution for an obstacle or the
discovery of a new litter item needs to compute a full plan
from its current position, while the new one is equipped with
continual planning can easily adapt the not yet executed plans
to avoid the obstacle and to dispose of the newly detected
litter items. The results also show that when the recycling
agent is able to observe things within a proper anticipation
window (i.e., not too late, not too early that’s det_area=2
for the scenario), and there is not much movement and we
see the greatest improvement. This is due to the ability of the
new ROS2-BDI approach to modify the solution plan to also
fulfil the goal of disposing of the newly discovered litter item.
However, when the movement rate increases and the detection
area is not optimal, the improvements reduce. For instance,
when det_area=1, the recycling agent discovers the new
litter item too late, going toward a sub-optimal solution and
bumping more frequently into occupied cells, due to its limited
knowledge of the current world status. When det_area=3,
a ”ping-pong” behaviour can potentially happen; this is due
to the fact that the agent has to pass through a large set of
cells, and because of the broad detection area, the computed
plan might be invalidated since the agent may discover one
of the locations to visit with that plan being occupied (despite
the location might be free when effectively reached). In this

https://cyberbotics.com/
https://github.com/RTI-BDI/iros2023/raw/main/on_moving_SR_400_LS_800_DC_4.mkv
https://github.com/RTI-BDI/iros2023/raw/main/on_moving_SR_400_LS_800_DC_4.mkv


case, a new plan to avoid the detected obstacle is generated.
This problem could be alleviated by introducing an additional
functionality that instead of simulating the whole plan, only
the first N actions are simulated, and if no invalidation
is detected, then continue the execution thus delaying the
replanning. (This functionality is left for future development.)
The results show also that similar considerations hold when
all the three litter items are already known since the beginning
(last six rows in Table I). Here the new ROS2-BDI framework
allows for easily adapting the plan in execution to avoid newly
discovered obstacles.

VI. RELATED WORK

The problem of designing complex and intelligent au-
tonomous architectures for the robotic setting has been the
subject of several works [1]–[6], [8], [9], [28]. All these
works suffer of severe limitation. Some are not addressing au-
tonomous deliberation (e.g. [4]) and rely on pre-loaded plans.
Others like e.g. CogniTAO [5], CORTEX [6], SkiROS2 [7],
ROSPlan [8], and PlanSys2 [9] have the ability to automati-
cally generate new plans for handling contingencies. However,
all these frameworks first generate a full plan for the given
goal before starting its execution. When the execution of a
plan fails because of e.g. an unexpected contingency, a new
full plan is generated and then executed. Moreover, all these
frameworks lack of several BDI capabilities like e.g. detection-
reaction, multi-agent interaction mechanisms, and automatic
generation of new desires. The ROS2-BDI framework [10]
overcomes many limitations of all the previous approaches by
providing BDI capabilities. However, even in this framework,
the execution of a plan happens only after the generation
of a complete plan to achieve a goal. In our framework,
we extend the ROS2-BDI framework to integrate continual
planning while executing the plan, thus enabling an agent to
i) start acting before a complete plan has been generated; ii)
quickly adapt the agent’s intentions to possible contingencies
that may happen while executing.

In [17] a framework for interleaving action and planning
with operational models has been proposed: whenever a task
during execution needs to be refined a planner is invoked.
Similarly to our case, the planner searches from a given depth,
it returns the computed task refinement and starts its execution.
In parallel, it continues the search to refine the given task.
Differently from our case, they consider instantaneous actions,
and the approach has not been used within a BDI framework.

In [14] it has been proposed a software system integrating
perception, planning, and real-time control where planning and
execution can occur in parallel: while executing an action, the
motion planning of the immediate next action is computed
concurrently. A similar approach was also presented in [15]. A
framework for reactive run-time composition (with no search
to guide the agent towards goal achievement) of pre-defined
skills has been proposed in [16].

Other researchers addressed the problem of interleaving
planning and acting with stochastic approaches, focusing
more on theoretical aspects, such as the completeness of the

solution, and less on the scalability and feasibility of such
approaches to real-world use cases [12], [29], [30]. In [13]
it has been proposed an approach based on planning under
partial observability that allows for generating conditional
plans that depending on the sensing execute a different course
of instantaneous actions. Such plans can then be encoded as
reconfigurable behaviour trees [31] to facilitate their execution
in the robotic setting. However, all these works first compute
a plan and then they try to execute it and do re-planning in
case of execution failure.

[18] presents an algorithm for continual planning where
in the planning domain one has to complement the classical
specification of the actions with constructs to describe why
and when the agent should switch between planning and
acting. Their algorithm enables agents to deliberately postpone
parts of their planning process and actively gather missing
information relevant for subsequent refinement of the plan.
This work is limited to instantaneous actions, assumes no
concurrent execution of actions, requires a specialized search
algorithm and a modification of the PDDL problem to include
special constructs to specify the strategies governing the switch
between planning and acting. In our approach, we overcome
their limitations by considering durative actions, and relying
on PDDL 2.1 that is used by a state-of-the-art planning algo-
rithm slightly modified to realize the continual planning and
execution through interaction with the whole BDI architecture.

VII. CONCLUSION AND FUTURE WORK

We proposed a novel architecture for continual tempo-
ral planning in the BDI model. The architecture has been
implemented as a significant extension of ROS2-BDI. We
carried out an experimental validation to compare the continual
planning with the previous ROS2-BDI framework within a
scenario simulated by interfacing the developed framework
with the Webots simulation environment. The experiments
showed improved results compared to ROS2-BDI.

This work constitutes the basis for a variety of future
work such as: i) Extension of this work to a full-fledged
real-time framework to guarantee schedulability in terms of
computational capacity on the line of [4], [32]; ii) Improv-
ing the forecasting plan failure through more sophisticated
prediction mechanisms based on e.g., machine learning or
statistical reasoning; iii) Capability of storing for later efficient
reuse plans synthesized in a previous run; iv) Considering
dynamic search interval that auto-adapt to the world dynamic;
v) Extending validation in a multi-agent scenario, considering
cooperative versus competitive behaviours; vi) Extending the
support to alternative planning approaches including non-de-
terministic [13], [33] and probabilistic planning.

REFERENCES

[1] S. Gottifredi, M. Tucat, D. Corbata, A. J. Garcı́a, and G. R. Simari, “A
BDI architecture for high level robot deliberation,” Inteligencia Artif.,
vol. 14, no. 46, pp. 74–83, 2010.

[2] A. van Breemen, K. Crucq, B. Krose, M. Nuttin, J. Porta, and E. De-
meester, “A user-interface robot for ambient intelligent environments,” in
Proc. of the 1st Int. Workshop on Advances in Service Robotics,(ASER),
2003.



[3] B. R. Duffy, R. Collier, G. M. O’Hare, C. Rooney, and R. O’Donoghue,
“Social robotics: Reality and virtuality in agent-based robotics,” in Bar-
Ilan Symposium on the Foundations of Artificial Intelligence: Bridging
theory and practice (BISFAI-99), Ramat Gan, Israel, June 23-25, 1999,
1999.

[4] F. Alzetta and P. Giorgini, “Towards a real-time BDI model for ROS 2,”
in WOA, ser. CEUR Workshop Proceedings, vol. 2404. CEUR-WS.org,
2019, pp. 1–7.

[5] CogniTAO-Team, “CogniTAO (BDI),” http://wiki.ros.org/decision
making/Tutorials/CogniTAO.

[6] P. Bustos, L. J. Manso, A. Bandera, J. P. B. Rubio, I. Garcı́a-Varea, and
J. Martı́nez-Gómez, “The CORTEX cognitive robotics architecture: Use
cases,” Cogn. Syst. Res., vol. 55, pp. 107–123, 2019.

[7] A. S. Polydoros, B. Großmann, F. Rovida, L. Nalpantidis, and V. Krüger,
“Accurate and Versatile Automation of Industrial Kitting Operations with
SkiROS,” in TAROS 2016, ser. LNCS, vol. 9716. Springer, 2016, pp.
255–268.

[8] M. Cashmore, M. Fox, D. Long, D. Magazzeni, B. Ridder, A. Carrera,
N. Palomeras, N. Hurtós, and M. Carreras, “ROSPlan: Planning in the
Robot Operating System,” in ICAPS 2015. AAAI Press, 2015, pp.
333–341.

[9] F. Martı́n, J. G. Clavero, V. Matellán, and F. J. Rodrı́guez, “Plansys2:
A planning system framework for ROS2,” in IROS. IEEE, 2021, pp.
9742–9749.

[10] D. Dal Moro, M. Robol, M. Roveri, and P. Giorgini, “Developing bdi-
based robotic systems with ros2,” in Advances in Practical Applications
of Agents, Multi-Agent Systems, and Complex Systems Simulation.
The PAAMS Collection, F. Dignum, P. Mathieu, J. M. Corchado, and
F. De La Prieta, Eds. Cham: Springer International Publishing, 2022,
pp. 100–111.

[11] A. S. Rao and M. P. Georgeff, “Modeling rational agents within a BDI-
architecture,” in KR. Morgan Kaufmann, 1991, pp. 473–484.

[12] S. Z. Luis Pineda, “Realtime Concurrent Planning and Plan Execution
in Stochastic Domains,” p. 8, Nov. 2015.

[13] P. Bertoli, A. Cimatti, M. Roveri, and P. Traverso, “Strong planning
under partial observability,” Artif. Intell., vol. 170, no. 4-5, pp. 337–
384, 2006.

[14] R. Simmons, “Concurrent planning and execution for autonomous
robots,” IEEE Control Systems Magazine, vol. 12, no. 1, pp. 46–50,
1992.

[15] J. Zelek and M. Levine, “Local-global concurrent path planning and
execution,” IEEE Transactions on Systems, Man, and Cybernetics - Part
A: Systems and Humans, vol. 30, no. 6, pp. 865–870, 2000.

[16] Y. Pane, V. Mokhtari, E. Aertbeliën, J. De Schutter, and W. Decré, “Au-
tonomous runtime composition of sensor-based skills using concurrent
task planning,” IEEE Robotics and Automation Letters, vol. 6, no. 4, pp.
6481–6488, 2021.

[17] S. Patra, J. Mason, M. Ghallab, D. S. Nau, and P. Traverso, “Deliberative
acting, planning and learning with hierarchical operational models,”
Artif. Intell., vol. 299, p. 103523, 2021.

[18] M. Brenner and B. Nebel, “Continual planning and acting in dynamic
multiagent environments,” Autonomous Agents and Multi-Agent Systems,
vol. 19, pp. 297–331, 12 2009.

[19] A. I. Coles, M. Fox, D. Long, and A. J. Smith, “Teaching forward-
chaining planning with JavaFF,” in Colloquium on AI Education,
Twenty-Third AAAI Conference on Artificial Intelligence, July 2008.

[20] M. Fox and D. Long, “PDDL2.1: an extension to PDDL for expressing
temporal planning domains,” J. Artif. Intell. Res., vol. 20, pp. 61–124,
2003.

[21] J. Hoffmann, “The metric-ff planning system: Translating ”ignoring
delete lists” to numeric state variables,” CoRR, vol. abs/1106.5271, 2011.

[22] A. J. Coles, A. Coles, M. Fox, and D. Long, “Forward-chaining partial-
order planning,” in ICAPS 2010. AAAI, 2010, pp. 42–49.

[23] J. Benton, A. J. Coles, and A. Coles, “Temporal planning with
preferences and time-dependent continuous costs,” in Proceedings of
the Twenty-Second International Conference on Automated Planning
and Scheduling, ICAPS 2012, Atibaia, São Paulo, Brazil, June 25-19,
2012, L. McCluskey, B. C. Williams, J. R. Silva, and B. Bonet, Eds.
AAAI, 2012. [Online]. Available: http://www.aaai.org/ocs/index.php/
ICAPS/ICAPS12/paper/view/4699

[24] “ROS2 - Robot Operating System version 2,” 2022, https://docs.ros.org.
[25] M. Ghallab, D. S. Nau, and P. Traverso, Automated planning - theory

and practice. Elsevier, 2004.

[26] “RCLJava - ROS2 Client Library for Java,” 2022, https://github.com/
ros2-java/ros2 java.

[27] A. Coles, M. Fox, K. Halsey, D. Long, and A. Smith, “Managing
concurrency in temporal planning using planner-scheduler interaction,”
Artif. Intell., vol. 173, no. 1, pp. 1–44, 2009.

[28] E. Scala and P. Torasso, “Proactive and reactive reconfiguration for the
robust execution of multi modality plans,” in ECAI, ser. Frontiers in
Artificial Intelligence and Applications, vol. 263. IOS Press, 2014, pp.
783–788.

[29] M. Littman, J. Goldsmith, and M. Mundhenk, “The computational
complexity of probabilistic planning,” Journal of Artificial Intelligence
Research, vol. 9, 08 1998.

[30] J. Rintanen, “Constructing conditional plans by a theorem-prover,”
Journal of Artificial Intelligence Research - JAIR, vol. 10, 05 2011.

[31] P. de la Cruz, J. Piater, and M. Saveriano, “Reconfigurable behavior
trees: Towards an executive framework meeting high-level decision
making and control layer features,” 2020. [Online]. Available:
https://arxiv.org/abs/2007.10663

[32] A. Traldi, F. Bruschetti, M. Robol, M. Roveri, and P. Giorgini, “Real-
time BDI agents: A model and its implementation,” in IJCAI. ijcai.org,
2022, pp. 511–517.

[33] A. Cimatti, M. Do, A. Micheli, M. Roveri, and D. E. Smith, “Strong
temporal planning with uncontrollable durations,” Artif. Intell., vol. 256,
pp. 1–34, 2018.

http://wiki.ros.org/decision_making/Tutorials/CogniTAO
http://wiki.ros.org/decision_making/Tutorials/CogniTAO
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4699
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4699
https://docs.ros.org
https://github.com/ros2-java/ros2_java
https://github.com/ros2-java/ros2_java
https://arxiv.org/abs/2007.10663

	Introduction
	Baseline
	A BDI architecture for continual planning
	Reasoning and acting framework
	Search components for continual planning
	Forecasting plan failure

	Implementation in ROS2-BDI
	Validation
	Related Work
	Conclusion and future work
	References

