Foundations of Unconstrained Collaborative Web Browsing with Awareness

Maria Aneiros

Vladimir Estivill-Castro

School of Computing and Information Technology
Griffith University
Brisbane 4111, QLD Australia

Abstract

Research has focused significantly in enabling the
Web (WWW) for Computer Supported Cooperative Work
(CSCW). However, surfing, the most common use in the
WEB, remains an individual, rather than group activity.
Previous attempts to provide collaborative browsing capa-
bility constrain some users to the command of a selected
user who controls the browsers of others. We adapt the tech-
nology of unconstrained distributed collaborative editors to
develop unconstrained collaborative Web browsing. How-
ever, the effective collaboration is dependent on the aware-
ness of context and group activity. We develop the history
mechanisms for our solution to provide 4 types of awareness
commonly discussed in the literature of CSCW.

1. Introduction

The World Wide Web was labeled as a technology to
revolutionize human interaction and communication, very
much as when the TV and the telephone were invented.
Interestingly enough, the World Wide Web has also been
named as a ubiquitous and powerful enabler for Computer
Supported Cooperative Work (CSCW). Nevertheless, the
most fundamental activity in the Web, surfing (and explor-
ing) its contents remains an individual activity, and not a
collaborative, shared and partnered activity. Those systems
that offer Web surfing for groups essentially deliver the pos-
sibility of a master and a group of followers [28]. The mas-
ter controls and drives the path of visitation while the others
watch. Of course, the control can be passed to another in the
team, and the old master becomes an observer. As a family
watching TV with one remote control, the holder of the re-
mote control switches channels at will, forcing the others to
follow a navigation path. We propose here Unconstrained
navigation in a Collaborative Surfing Session. For the anal-
ogy of a family watching TV, this is equivalent to everybody
having a remote control. It may seem impossible to achieve
collaboration if all members of a surfing session have equal

power and control. The purpose of this paper is to describe
our solution to this challenge.

The avenue to provide a solution is the distributed nature
of collaborative Web surfing. Distribution provides other
resources, since participants are not facing the same moni-
tor (as in the family TV analogy), but spatially distributed
(although our solution will work if several or one user are
operating one or more browsers on the same monitor). Any
participant using its own browser faces the delay of the In-
ternet infrastructure for the WEB. That is, visiting pages
at remote sites imposes a delay to retrieve such content (of
course, caches, proxies and other alternatives shortcut this,
but new site visits have delay). Thus, even in the current
model of collaborative surfing (with a master surfer and
its followers), the slave followers must (1) wait for signals
from the master and then download the page designated by
the master, or (2) a central system downloads the page des-
ignated by the master and supplies it to all followers. This
constrains the surfing by the followers even more. We aim
for a system where each participant can visit a new site and
expect to obtain the content with equivalent (no more) delay
as if operating independently from the group.

The technology we propose for our solution is based on
the technology for Unconstrained Distributed Cooperative
Editors (UDCE) [24, 25, 29]. Here, several authors are
concurrently editing a common document over a distributed
computer network in real time. Unconstrained collabora-
tion and good responsiveness demand a replicated architec-
ture. Local edition commands are applied to the local copy
immediately, and no participant exercises control or privi-
leges over the others. Thus, Section 2 will show that an Un-
constrained Collaborative WEB Surfing Session (UCWSS)
reduces to an Unconstrained Distributed Cooperative Edit-
ing Session (UDCES). This reduction is to demonstrate the
feasibility of the solution and follows many common re-
ductions in computability. For example, multiplication can
be performed by repeated addition, or NP-hard problem re-
ductions show that one problem could be solved if another
problem’s solution was used as a subroutine. Thus, we show
that we can achieve UCWSS if we use UDCE.

Proceedings of the IEEE/WIC International Conference on Web Intelligence (WI'03)

0-7695-1932-6/03 $17.00 © 2003 IEEE

YF]',F.

COMPUTER

SOCIETY

We do not advocate that a UDCE should be under each
collaborative surfing session. If fact, we believe that collab-
orative surfing demands awareness [18]. In simple terms,
for the collaboration to be effective, participants must be
aware of the involvement and participation of others. We
will detail this more in Section 3. While awareness has been
the focus of work on UDCE [3, 7] not so much emphasis is
placed on historical awareness.

One of the basic abstract structures constructed during
Web surfing is the history of the path of visitation (the stack
that allows to back-step). It is fundamental for a sense of
status of the session and the surfer’s awareness of its current
and past visits through the WEB [6, 16]. Thus, we argue
that UCWSS must construct a collectively built history of
visitation. Moreover, this abstract structure will not only
provide awareness to the group, but also the base for other
smart computer tools to synthesize useful information for
the group (what are common interests could be extracted
from such a structure).

In Section 4, we will present the foundations that show
that UCWSS with history translates to the problem of Col-
laborative Unconstrained Distributed Edition of a stack. We
will then show that the technology for UDCE can be sim-
plified to obtain feasible and efficient Collaborative Uncon-
strained Web Surfers.

Section 5 discusses our implementation of these ideas
in a simple prototype. Section 6 contrasts our work with
previous research. Finally, Section 7 discusses our work
with respect to previous work and highlights the avenues
open by our results.

2. Unconstrained Collaborative Web Surfing

Unconstrained means concurrent but free access at any
time and it has been argued that is fundamental to allow nat-
ural information flow among multiple users [25, and refer-
ences]. Consider the following definition for Unconstrained
Collaborative Web Surfing Sessions (or UCWSS).

Definition 1 Two or more users are surfing the Web collab-
oratively through two or more Web clients (browsers). The
surfing is unconstrained, in that each action on a browser
operates at least as if this was as a browser operating in-
dependently of the others. Independently in the sense that
the other browsers do not prevent this browser from obtain-
ing the requested contents as it would do if operating alone.
Naturally, if all browsers are accessing the same proxy or
are running on the same machine the action of one may
inflict performance degradation on the others, but we con-
sider this effect of one browser on the performance of an-
other as part of the de facto effects of the Web technology
even for non-collaborative, independent browsers. Thus,
this effect will be ignored in what follows.

Unconstrained collaborative surfing does not prevent any
participating browser from obtaining content at any time.

Thus, each participant browser can replace at any time
the contents it is displaying to its user in order to fulfill a
command by its user (to go back, to go to a specific site,
or to follow a link). But with collaborative browsing, an-
other browser may attempt to push into the display some
other content. We refer to the other browser as remote.
Note that our aim is not to push content, but to preserve
the work/surfing of others for further reference. How shall
the local browser synchronize the content obtained follow-
ing local user commands while allowing remote browsers
suggestions for content?

Consider now the technology offered by UDCE. This
allows a group of distributed users to manipulate indepen-
dently and in unconstrained fashion a collection of objects
in a document. That is, the editor enables each user to issue
commands to insert, update and delete objects in the docu-
ment. Insert adds an object in a designated position, delete
removes the object while update modifies properties of a
designated object. Unconstrained implies that whenever a
user is in a position to meaningfully apply a command to its
local copy, the user can do so (is not restricted). For exam-
ple, a user can update an object still present in its local copy
although the object has been deleted by another remote user
but network latency has not forwarded the delete operation.
The UDCE technology solves three problems: Causality
violation, Divergence and Intention Violation.

Perhaps convergence is the most natural to expect. If the
editors are working on the same document, after all com-
mands from all users have been collected, the document
should reach a state that is consistent and in agreement with
all users. In fact, this can be achieved if we place the objects
in a document under a central repository or database and we
serialize the editing commands from distributed users in the
very same fashion as databases ensure consistency of their
information. The side effect that we want to avoid is the ad-
ditional latency that this solution provides because the op-
eration on an object may need to wait for another operation
to finish. Unconstrained means that operations take effect in
local copies immediately and independently of other editing
commands on the same object by remote editors. Conver-
gence under unconstrained editing can not be achieved by
central server solutions, since they introduce lag attributable
to the central server and remote clients.

Causality respects the logical sequence of operations.
For editing, if a user inserts an object into the document
and then updates one of it properties, such modifications to
the document can not be reflected in a remote site by first
updating the property and later inserting the object. In the
contents of browsing Web sites, if a user visits site A and
then selects a link on A to go to site B, then remote users in
the session can not be shown site B before site A.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the IEEE/WIC International Conference on Web Intelligence (WI'03)
0-7695-1932-6/03 $17.00 © 2003 IEEE

Intention preservation implies that the intention of a
command should survive the effects of commands at re-
mote editors. For example, let the object be the string
‘ABCDE’ and the local user request INSERT ‘1’ AT POSI-
TION 2 expecting to obtain ‘A1BCDE’. But another user’s
command deletes the first two characters expecting to re-
move ‘A’ and ‘B’ to get ‘CDE’. Then, perhaps the result
should be ‘1CDE’ to preserve the second editor’s wish to re-
move ‘A’ and B’ and the first editor’s wish that the inserted
character should be before ‘C’. Note that applying the local
command followed by the remote results in ‘BCDE’ while
applying the remote followed by the local results in ‘C1DE’.
This may be unsatisfactory to the intentions of both. Uncon-
strained Collaborative Editing makes no attempt to preserve
and manage semantic intentions [25].

We use this illustration of collaborative editing for de-
scribing our reduction. In fact, this reduction is, in itself, a
specification to what UCWSS are required to support.

The reduction is conceptually simple. Each uncon-
strained collaborative browser is mounted on a collabora-
tive unconstrained editor. For simplicity, we say that the
browser is required to display different content when its
user has requested to go back or to follow a link (by using
a URL from history, favorite bookmarks, following a link
in the current display or typing a target URL). The request
to display different content is translated in the browser into
the following sequence of operations.

1. Retrieve the desired content as a standard browser.
2. Issue the operation ‘Select All’ to the local UDCE.
3. Issue the operation ‘Delete’ to the local UDCE.

4. Issue the operation ‘Insert’ to the local UDCE and pro-
vide the contents just retrieved.

UDCE handles Convergence, Causality and Intention
preservation. With this reduction we observe the follow-
ing. Clearly, the availability of UDCE makes available
Unconstrained Collaborative Web Surfing Sessions. As a
specification, an UCWSS is an environment that offers at
least the functionality obtained by this conceptual reduc-
tion. It provides unconstrained surfing with Convergence,
Causality and Intention Preservation. We are not suggest-
ing here that actual implementation of UCWSS should be
constructed in this way. We are just demonstrating the fea-
sibility of their existence.

3. Awareness

Awareness of one’s participation is central to collabora-
tion with others. Naturally, awareness of the presence of
others facilitates cooperation since one can assist others or
request assistance from others. Awareness is also central

to guarantee the context and the environment of collabora-
tion with respect of individual interests. In particular, pri-
vacy may be severely eroded if one’s surfing session is ob-
served by others without consent. Thus, awareness is nec-
essary for effective Collaborative Web surfing. Note that
awareness in the context of CSCW has been defined as “an
understanding of the activities of others, which provides a
context for your own activity” [7]. Many tools have been
proposed to facilitate the coordination among people [18,
and references] and to help communication and collabora-
tion. In particular, the trade-off between the requirements
of individuals (emphasis on control) and the requirements
of groups (emphasis on awareness) has been explored in the
context of workspace navigation [12]. This group aware-
ness [18] is catered for in our UCWSS by an application
that will inform users when their session is part of a col-
laborative session, allowing them to disconnect or join at
will. Even within a collaborative surfing session, users may
chose to veto their visitation to a page from view by the rest
of the group.

Notably, information about what has happened before
and who else is around is needed in shared workspaces.
These issues are fundamental aspects of what has been
called workspace awareness [18]. We suggest that the his-
tory of the navigation path in UCWSS provides what has
happened before. We will also suggest how this structure
provides the awareness about others.

The third type of awareness is contextual awareness
which relates to the application domain, rather than the
users [18]. Here, we want to identify what content is in-
teresting for the community. For our UCWSS, we propose
to synthesize the history of navigation paths into editorial
pages and into summaries of collective interests.

Finally, we deal with the fourth type of awareness, pe-
ripheral awareness [18] by presenting our collective history
as an optional display in the GUI that constitutes a browsing
session and placing it away from the display of Web pages
(like a tool-bar).

4. The Group Unified History

We have seen is Section 2 that it is feasible to have
UCWSS. However, browsers with only this capability
would provide no awareness and thus fail short of being
useful tools for CSCW. We emphasize here that in order
to satisfy the four aspects of awareness, the browsers in a
UCWSS should at a minimum compose a Group Unified
History (GUH) [1]. This is analogous to current browsers
history mechanisms that allow users to return to previous
pages under the model of a stack (last in - first out storage
structure). Empirical studies carried out in 1997 found that
58% of navigation is backtracking [27]; later, in 2001 it was
found to be much higher, 81% [5]. We suggest that the GUH

YF]',F.

COMPUTER
SOCIETY

Proceedings of the IEEE/WIC International Conference on Web Intelligence (WI'03)
0-7695-1932-6/03 $17.00 © 2003 IEEE

is built automatically while registered users are collectively
browsing the WWW and it should reflect the recency of vis-
itation. It can be thought of as an editable document, with
limited functionality, where new sites are added at the end
of the document.

An advanced sense of awareness is provided when this
list is analyzed and useful contents made public. This public
GUHS could be compared to WWW sites that show entire
collections of bookmarks for specific topics. GUHS could
become valuable Knowledge Management assets within an
organization, i.e. a Knowledge map that could be useful, for
example, for training new employees.

We now show that such GUH can also be realized with
the technology of UDCE. The GUH would be modeled as
a shared document that can be edited in an unconstrained
cooperative distributed fashion. But we will take advantage
of the fact that the applicable operations are restricted to
a stack. In particular, when a user in a UCWSS moves
to a new site, this corresponds to inserting at the end of the
history. The item inserted is an identifier of the page visited,
like an URL and is considered atomic.

Thus, we review the consistency model of UDCE ap-
plied to GUH. The model has three properties: conver-
gence, causality preservation, and intention preservation.
Convergence requires that all copies of the GUH be iden-
tical after the same collection of operations. Thus, we re-
quire that eventually all local copies of GUH converge to
the group’s GUH, even if different users have locally fol-
lowed different paths. Essentially, the collective visitation
path should became the same to all involved.

We propose here that to maintain a true unconstrained
character of collaborative surfing, the divergence of paths
among synchronous users does not impose in any of them
the refreshing of their browser’s contents. The system will
peripherally update the local GUH.

4.1 The Consistency Model

Consider collective unconstrained editing of the GUH
by distributed browsers. First, we define the operations.
When a user manipulates a browser to display content by
following a URL(using URL from favorite bookmarks, fol-
lowing a link in the current display, typing a target URL
or using a URL from history), we consider the browser is
issuing a PUSH(URL) into the collective GUH. When the
user presses the BACK button, this issues also a PUSH(URL).
Only when a designated UNDO button is used, the user in-
structs a POP(URL) to the GUH and the resulting content
on display is as with the BACK button (the previously vis-
ited page by the user). We also allow for a PREVIOUS but-
ton. This does not affect the GUH but refreshes the local
display with the previous WEB-page to the current top of
the GUH(note that the previous page to the top may be in

the GUH because of a remote visit by another user and the
local browser may have not yet displayed this content). The
NEXT button refreshes the display with the next WEB-page
indicated by the GUH unless already at the top. NEXT is
the reverse of PREVIOUS and neither of them change (edit)
the GUH.

A PUSH(URL) can be applied by the user at any time.
A POP(URL) can only be applied if the current URL on
display is exactly the same as the last on the local GUH.
A situation where UNDO is not applicable is if a user Alice
visits URL A, then A is reflected on Bob’s browser who
uses a link in A to retrieve URL B. Then, B is reflected
(pushed) into Alice’s browser. Alice will be able to UNDO
A only if Bob undoes B first.

In contrast to the nomenclature for UDCE, we dis-
tinguish between a remote operation reflected on a local
browser, and a remote operation executed (happening) at the
local site. By reflected (pushed) we mean the content visited
by the remote user is displayed in the local browser after the
OK of the local user. By executed (happening) we mean tat
the local copy of the GUH is affected (i.e. updated) by the
remote operation. Happening is managed without user in-
teraction because it does not affect the user’s main view, but
only the peripheral (and optionally displayed) GUH. Note
that a local operation always happens and is reflected lo-
cally (thus, it can never be the case that it happens but is not
reflected). This is because local operations happen and are
reflected by immediate local execution.

We are now in a position to formulate a consistency
model for the GUH similar to UDCE [25]. We now define
a casual (partial) ordering relation on operations in terms of
their generation and execution sequences.

Definition 2 (Causal ordering relation “—”’) Given
two operations O, and Oy generated at sites i and j
respectively, then O, — Oy, if and only if

LOCAL CASE. i = j and the generation of O, happened
before the generation of Oy, or

REMOTE CASE. i # j an the execution (happening) of O,
at site j happened before the generation of Oy, or

TRANSITIVE CLOSURE. There exists an operation Oy
such that O, — O, and O, — O.

Note the following observation.

Proposition 1 IfO,, Oy and O, are all local, O, happened
before Oy and Oy, happened before O, then O, happened
before Q...

So, locally, the relation HAPPENS _BEFORE is transitive. A
distributed system that maintains the causal ordering rela-
tion “—” is the extension of the natural local expectation
to unconstrained collaborative surfing. That is, the causal

YF]',F.

COMPUTER
SOCIETY

Proceedings of the IEEE/WIC International Conference on Web Intelligence (WI'03)
0-7695-1932-6/03 $17.00 © 2003 IEEE

[0 \
ai &, 0, BigEy
|| ™,
I". 0,8 QE‘_’_\ =
0, ‘8 B4 =
b ——

1 B COAIRE
|
| iR o BTk
51 “simok

L.ig
(a) (b)

Figure 1. (a) A sequence diagram of a non acceptable
situation. The mice icons mean the generation of an opera-
tion. The display icons mean their reflection (and thus, their
execution) at a site. We have O, — O, because O, hap-
pens after Oy, is site 5. Note that the browser at j not only
has executed (updated its GUH with O,) but also reflected
(updated its display). We have O, — O, because O, hap-
pens before Oy in site ¢. Thus, O, should not happen after
O is site j. (b) A sequence diagram of an independent op-
eration. The file icons mean the happening (updating) of a
GUH. The operation O is a direct typing of an URL with-
out reference to an updated GUH.

ordering relation defines formally one aspect of what is re-
quired. It is required that the local transitivity extends re-
motely. A situation like Figure 1 (a) must never occur; that
is, we have O, — Op and O, — O, but O, — O, is
false. Because computer networks introduce random de-
lays, the relay of O, from site ¢ to site j may get delayed so
much that Oy, arrives first at 5. In our implementation, oper-
ation Op will not happen at j because O; has an operation
id (through a State Vector) [26] indicating dependency on a
previous operation O,,.
Now we can introduce the notion of independence.

Definition 3 (Dependent and independent operations)

Dependent operations. Given two operations O, and Oy,
if Oy = Oy, then Oy is dependent on O,

Independent operations. Given two operations O, and
Oy, they are independent if neither O, — Oy nor
Ob — Oa.

Figure 1 (b) illustrates an independent operation O .. At site
J we assume that O, is a fetch of a WEB page by typing in
the URL. Although the GUH at site 5 has been updated by
the arrival of O, and Oy, these have not been reflected in the
display. O. is independent on both O, and Op. Any order of
display for O, would maintain causal ordering. In fact, site
1 may reflect O, after Oy, while site j reflects O, by the OK.
Note that, in the example of Figure 1 (b) site ¢ may end up
with a list of visited pages that look like O, Oy, O, while

site § may end up with a list that looks like O, O,, O,.
Eventually, this must be a commonly edited object. That is,
this must be the unconstrained editable global GUH. Thus,
the following definition.

Definition 4 (Consistency model) A collective surfing sys-
tem that collectively and unrestrictedly edits a GUH is con-
sistent if it always maintains the following three properties:

Convergence. Whenever the same set of operations have
happened at a set of sites, all copies of the GUHS at
those sites are identical.

Causality preservation. For any pair of operations O,
and Oy, if Oy — Oy, then O, happens before Oy,

Intention preservation. For any operation O, the effects
of executing O at all sites is the same as the intention
of O at its generation, and the effects of executing O
does not change the effects of independent operations

to O.

We do not demand that O, — Oy, implies O, reflected be-
fore Oy. This gives the freedom to users for which both O,
and Oj, were remotely generated to skip reflecting O, if they
are more interested in Op. But, if they just click OK repeat-
edly, those pages in the GUH that have not been reflected
at their site will be reflected in the order of the GUH. For
instance, in Figure 1 (b), successive OK clicks reflect O,
and Oy at site j (both have already happened). But the user
at j could have used the GUH to visit O, directly.

Our definition of consistent model above mirrors the def-
inition for collaborative unconstrained editing systems. It
specifies what UCWSS are. All terms, like causal preser-
vation, happens before, — and so on appear in the defi-
nitions given before, except for effect and intention. Our
claim is that, in the case of GUHS, all possible definitions
one may wish to make are such that they are covered by
the first two properties. That is, we only need algorithms
for convergence and causality preservation and we will ob-
tain algorithms for intention preservation. UCWSScan be
implemented with less machinery than UDCE.

Theorem 1 If a system for GUHS is convergent and pre-
serves “—”, then the system is consistent.

Proof: Implementation of the operations on a GUH con-
sists of implementation of PUSH and POP operations on a
stack. For this, we present an editing system that works on
strings of symbols from an alphabet 3. This system has two
operations.

1. INSERT[S,p](C') means insert string S € X* at posi-
tion p > Ointo C.

2. DELETE[n,p](C') means delete from C' as many as . >
0 symbols starting from position p > 0.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the IEEE/WIC International Conference on Web Intelligence (WI'03)
0-7695-1932-6/03 $17.00 © 2003 IEEE

P
(et | corlge |l = [e | Bbua

Figure 2. GUHSs after a few operations by three partners
and some network delay.

Here ¥* means the language of all strings of 0 or more sym-
bols in ¥ (as commonly used for regular expressions) and a
position in a string C' = ¢q, ..., ¢; means the gap between
c;—1 and ¢; (with the understanding that, for p = 1, this is
the position before all symbols in C' and forp = t + 1 is
the position after all symbols in C). Insertion into an empty
string C' gives the insertion string S as a result.

A system based on these two simple operations under a
text data model is powerful enough to emulate real editing
systems as vi and emacs [19, 20] and has been used in the
literature of UDCE before.

Now we show that we can implement a GUH on such
system. Simply, make X the set of URLs. Then

1. PUSHWURL) of GUH=[URLy,...,URL;] is
conceptually implemented by INSERT[URL,t +
1([URLy,. .., URLy)).

2. pOP(URL) on
is conceptually
DELETE[1,t]([URL;, ..

GUH=[URL,,...,URL]
implemented by
., URLy)).

Now, the effect of an operation depends only and can be
correctly interpreted on its own context. But then, the exe-
cution effects of independent INSERT/DELETE operations
in a text document model will not interfere with each other
because all operations in this conceptual implementation of
GUHS are strings of size 1. The conditions for an INSERT
operation not to interfere are fulfilled because we only
insert a string of size one. DELETE/UNDO is only allowed
at the site of generation, only removing one item and in a
context that has nothing after it. Q.E.D

The proof emphasizes that intention can only be expressed
in terms of a context of where the operation is to occur. For
example, delete the string of symbols ‘12’ after the second
‘A’ in "BAC1123CA112’. However, in a GUH with only

T

Figure 3. After Charles’ operation arrives everywhere.

PUSH and POP there is no facility to express context. The
only reference to position is implicit, the top of the stack,
but the operation can not be qualified by what is already
in the stack. Thus, the position of the operation cannot be
qualified by what is already in the stack. In fact, absolute
positions are not reflected in a stack and relative positions,
like ‘keep URL on top of the stack’ would constrain all
other browsers to slaves.

5. Prototype

We have implemented the algorithms in a prototype
using JAVA applets. The techniques are essentially the
State Vectors, timestamps and the algorithm known as the
“undo/do/redo” scheme [8, 26]. Our code has been instru-
mented to verify scenarios with network delays. For exam-
ple, when a browser fetches a page, we can hold the mes-
sage out of this participant to the other participants, as if the
network was delaying it. Simulations of reversal of order of
messages on the network are to be instrumented. For illus-
tration here we consider an session with 3 participants. We
call them Alice, Bob and Charles and they join the UCWSS
in that order (so on concurrent independent operations, Al-
ice’s take preference over Bob’s and these over Charles’).
Alice visits page A but network delay prevents this happen-
ing (and thus reflected) at Bob’s and at Charles respective
browsers. Then, Bob visits page B; independently and we
assume that the network relays immediately this to remote
participants, and thus happens in the others GUH. Then,
Charles visits page C after B; but this does not happen
in Alice’s nor in Bob’s browser because of network delay.
Concurrently and independently to Charles visit to C', Bob
visits page B». Figure 2 is a screen shot of the 3 applets
for the respective GUHS of the participants and applets of
respective chat boxes. The right most chat-box and GUH
is Alice’s while the top left is Bob’s and the bottom left is
Charles’. Items in the GUHs are identified by a color per

YF]',F.

COMPUTER
SOCIETY

Proceedings of the IEEE/WIC International Conference on Web Intelligence (WI'03)
0-7695-1932-6/03 $17.00 © 2003 IEEE

B | v | s | e | e | oo e | i] I | B

Figure 5. GUHSs are all the same after all operations are
received by all sites.

participant (as is common in CSCW [3, 8]). Alice’s URLs
are red, while Bob’s are blue and Charles’ are green. We see
that Alice’s does not have a green URL while Bob has only
blues (his local operations) and Charles has a blue (B1) and
his local green.

Now, Figure 3 shows the GUHS after packets communi-
cating Charles’ operation arrive at remote sites forcing the
update in GUHS. The green URL is at the top on all GUHS.

When Bob’s second operation visiting B happens at re-
mote sites (Figure 4) we see that Bob’s URL for By mod-
ifies Alice’s and Charles GUHS by placing itself under
Charles operation.

Finally, we let the first operation overall, Alice’s visit to
A to be communicated to remote sites. The red URL now
updates the GUHS and goes at the bottom of everybody’s
stack (refer to Figure 5). We see that all GUHS converge.
Note that the chat boxes and the GUHS display as a stack
can be placed on the background or on a peripheral region
of the screen and are updated automatically.

6. Previous and Future Work

Several examples of collaborative Web browsers have
been described in the literature. GroupWeb [21] and Group-
Scale [10] focus on one user controlling the browser of oth-
ers, or a user tracing what others are doing [11]. Because
of their architecture and specialized browsing requirement
standard browsers can not joining the sessions. So others
have focused on other WEB technologies [2], like replac-
ing HTML elements with Java applets that establish a con-
nection to a central server [13], and using JAVA and prox-
ies [4]. We emphasize on the unconstrained nature of our
approach and its applicability to all client/server WEB tech-
nologies. Thus, our contribution is more fundamental, be-
yond the debate on the particular WEB technologies to build
prototypes. More recent work has remained synchronous,
constrained and master/slave based [9, 15].

Other work has focused on the applications, like cus-
tomer support in banking [14] or distance learning [22].
Previous work has stressed that collaboration within the
same display is also important [17]. Our presentation here
applies to those applications and to an unrestricted number
of instances of a browser operating on the same or remote
displays in unrestricted networks (not restricted to LANS,
for example, as is the case of [9]).

7. Final Remarks

Since the first papers [21] on group surfing were pub-
lished, more relaxed models than master-slave and “what-
you-see-is-what-I-see” have been sought. Once the funda-
mentals of UCWSS are in place, we can see that our pro-
posal provides even more flexibility. In particular, the items
on the GUH can be treated as objects with properties. One
of these properties could be its list of owners. The first time
the URL is used, the user at that browser becomes the only
owner, further reflections of this page in browsers of other
users add those to the list of owners. This mechanism al-
lows flexibility for the deletion of items form the GUHS.
For instance, previously we indicated that if Alice visited
A, and A’s reflection on Bob’s browser is used to visit B,
then Alice would have to wait for Bob to remove B so Al-
ice could remove A. With lists of owners, Alice would sim-
ply remove herself from the list of owners of A. Then, if
Bob also removes himself as an owner of A, the URL A is
deleted. The algorithms for this are not much more com-
plex, and could simply be algorithms for collaborative edit-
ing of objects with properties [23]. Thus, we see that we
have provided a very powerful mechanism to achieve col-
laborative unconstrained surfing sessions.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the IEEE/WIC International Conference on Web Intelligence (WI'03)
0-7695-1932-6/03 $17.00 © 2003 IEEE

References [15] Y. Laurillau. Synchronous collaborative navigation on the
WWW. CHI-99 extended abstracts on Human factors in
[1] M. Aneiros, V. Estivill-Castro, and C. Sun. Group Unified ig;l/fu;eurl di}:t t;r;l;efsp - 308-309, Pittsburgh, USA, 1999.
Histories — an Instrument for Productive Unconstrained ’ Lo, .
CoBrowsing Submitted manuscript, 2003. [16] A. Lee. I.nvestlgatlons into History Tool.s for Use{' Sup.porl.
. PhD thesis, Department of Computer Science, University of
[2] R. Bentley, T Horstmann, and J. Trevor. The world wide Toronto, Ontario, Canada, 1992.
web as enabling technology for'CSCW: The case of BSCW. [17] H.Lieberman, N. Van Dyke, and A. Vivacqua. Let’s browse:
Computer Supported Cooperative Work: The J. CSCW, 6(2- a collaborative web browsing agent. M. Maybury, ed., IUI
3):11.1_134’ 1997.)) 99. 1999 Int. Conf. Intelligent User Interfaces, pp. 65-58,
[3] E. Bier and S. Freeman. MMM: a user interface architec- Redondo Beach, LA, 1999. ACM.
ture for shared editors on a single screen. UIST Fourth An- [18] O. Liechti and Y. Sumi. Awareness and the www. Int. J.
nual Symposium on User Interface Software and Technol- Human-Computer Studies, 56(1):1-5, 2002. Editorial.
o0gy. ACM Symposium on User Interface Software and Tech- [19] A. Prakash and M. Knister. A framework for undoing ac-
nology, pp. 78-86, MY, 1991. ACM, ACM. tions in collaborative systems. ACM T. Computer-Human
[4] G. Cabri, L. Leonardi, and F. Zamborelli. Supporting coop- Interaction, 4(1):295-330, 1994.
erative WWW browsing: a proxy-based approach. IEEE 7th [20] M. Ressel, D. Nitsche-Ruhland, and R. Gunzenhiuser.
Euromicro Workshop on Parallel and Distributed Process- An integrating, transformation-oriented approach to concur-
ing. PDP’99, pp. 138-145, Funchal, 1999. rency control and undo in group editors. M. Ackerman, ed.,
[5] A. Cockburn and B. McKenzie. What do web users do? an 1996 ACM Conf. on Computer supported cooperative work,
empirical analysis of web use. Int. J. of Human-Computer pp. 288-297, NY, 1996. ACM, ACM Press.
Studies, 54(6):903-922, 2001. [21] G. S. and R. M. GroupWeb: A WWW browser as real time
[6] A.Dix and R. Mancini. Specifying history and backtrack- groupware. ACM Human Factors in Computing Systems,
ing mechanisms. Formal Methods in Human-Computer In- CHI Companion, pp. 271-272, Vancouver, Canada, 1996.
teraction, Formal approaches to computing and information [22] T. Souya, M. Kobayashi, S. Kawase, and K. Ohshima. Joint
technology, Chapter 1, pp. 1-23. Springer Verlag, 1998. class experiments based on realtime web-browser synchro-
[7] P. Dourish and V. Bellotti. Awareness and coordination in nization. 3rd Asia Pacific Computer Human Interaction
shared workspaces. J. Turner and R. Kraut, eds., ACM (Cat. No.98EX110), pp. 367-372, Shonan Village, 1998.
Conf. Computer Supported Cooperative Work (CSCW’92), IPS], IEEE Press.
pp. 107-114, Toronto, Ontario, 1992. [23] C. Sun and D. Chen. Consistency maintenance in real-time
[8] C.Ellis and S. Gibbs. Concurrency ontrol in groupware sys- collaborative graphics editing systems. ACM T. Computer-
tems. ACM SIGMOD Int. Conf. Management of Data, pp. Human Interactzqn, 9(1):1_.41’ 2002. o)
339-407, 1989. [24] C. Sun and C. Ellis. Operational transformation in real-time
[9] A. Esenther. Instant co-browsing: Lightweight real-time group editors: Issues, algorithms and achl.evements. 1998
collaborative web browsing. 11th Int. World Wide Web ACM Conf. Computer-Supported Cooperative Work, pp. 59~
Conf., Honolulu, Hawaii, USA, 2002. CD-ROM Posters 1, g&sslflf“;f’ }’LA’;JSZ‘;; ;g99§' @iﬁ; I:ﬁzvgoré‘flgf gcsﬁév_
ISBN 1-880672-20-0. iné co7nve.rge1;ce. casuzi’lit};-prese,rvation . and .intention-
[10] T. Graham. Groupscape: Integrating synchronous group- R . .
. , preservation in real-time cooperative editing systems. ACM
ware and the wqud wide web. INTERACT 97, pp. 547-554, T. Computer-Human Interaction, 5(1):63—108. 1998.
Sydney, Australia, 1997. Chapman and Hall. [26] C.Sun, Y. Yang, Y. Zhang, and D. Chen. Distributed concur-
[11] T. Gross. Supporting collaboration and cooperation in digi- rency control in real-time cooperative editing sysems. J. Jaf-
tal information environments. Workshop on Collaboration far and R. Yap, eds., Asian Computing Scince Conf., pp. 84—
and Cooperative Information Seeking in Digital Environ- 95, Singapore, 1996. Springer Verlag LNCS 1179.
metns, Seatle, WA, 1998. CSCW-98. [27] L. Tauscher and S. Greenberg. How people revisit web
[12] C. Gutwin and S. Greenberg. Design for individuals, design pages: Empirical findings and implications for the design
for groups: tradeoffs between power and workspace aware- of history system. Int. J. Human Computer Studies, Special
ness. ACM Conf. Computer Supported Cooperative Work issue on World Wide Web Usability, 47(1):97-138, 1997.
(CSCW’98), pp. 2017-216, Seattle, WA, 1998. [28] H. Wagner. Tracking the navigation behavior of web com-
[13] S. Jacobs, M. Gebhardt, S. Kethers, and W. Rzasa. Fill- munities. Master’s thesis, Department of Computer Science,
ing HTML forms simultaneously: Coweb-architecture and U. of Munich, Germany, 2002.
functionality. 5th Int. World Wide Web Conf., vol. 28, pp. [29] Y. Yang, C. Sun, Y. Zhang, and X. Jia. Real-time cooperative

(14]

1385-1395, Paris, 1996. Computer Networks and ISDN
Systems no.7-11, Elsevier, Netherlands.

M. Kobayashi, M. Shinozaki, T. Sakairi, M. Touma, S. Dai-
javid, and C. Wolf. Collaborative customer services us-
ing synchronous web browser sharing. ACM 1998 Conf.
Computer Supported Cooperative Work, pp. 99-108, Seat-
tle, WA, 1998. ACM.

editing on the internet. /IEEE Internet Computing, 4(3):18—
25, 2000.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the IEEE/WIC International Conference on Web Intelligence (WI'03)
0-7695-1932-6/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

