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Abstract. It has been widely recognised that matchmaking is an impor-
tant component of heterogeneous multiagent systems. Several researchers
have developed powerful techniques for the matchmaking problem in gen-
eral. There are also specific representation of agent capabilities such as
DAML-S which provide a more specific framework for matchmaking.
Most approaches to matchmaking have assumed a sequential search for
an agent with matching capabilities. This may become intractable when
the number of available agents gets large. In this paper, we consider
how matchmaking can be developed into agent directories that can be
searched and maintained efficiently. Our main contribution is to show
how matchmaking with DAML-S specifications can be integrated with
efficient methods for searching and maintaining balanced directory trees.
We also report on experimental results using an implementation based
on generalised search trees.
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1 Introduction

For distributed systems information sharing is an inherent, core problem. Still
most of the systems (DNS, LDAP) focus on distribution or management issues
and worry less about the expressiveness of the described entries and the power
of the query process. When talking about applications using intelligent agents
we consider entities loosely coupled with rich runtime interactions (e.g. coor-
dination, cooperation, negotiation). In this case the focus is not only on being
able to determine relevant partners of interactions (which requires expressive
descriptions of advertisements and of user request) but also on a finer grained
control of the query process, leaving room to smarter behaviour - like the capa-
bility of using components slightly different from the ones initially requested or
composing several partial results for providing a response to the original query.

This report is organised as follows: in Section 2 we present the current context
regarding structural description formalisms. In Section 3 we describe a number
of models for service directories (UDDI and DAML-S). Also we introduce a sim-
ple Service Description model and a possible mapping to and from UDDI and



DAML-S. Then in Section 4 we show how structural descriptions (in particular
OWL Lite) can be encoded numerically and how that encoding can be applied
to service descriptions. Next in Section 5 we take a more detailed look at the
matchmaking process and we isolate five types of possible complete and partial
matches. In Section 6 we put the matchmaking process in the context of large di-
rectories where efficiency is an issue, which usually leads to the creation of search
structures or indexes. We describe relevant work in the area of multidimensional
access methods and in particular the Generalised Search Tree structure (GiST).
Also we show how to create using GiST a search tree of Service Descriptions en-
coded as numeric multidimensional data. Section 7 shows how partially matching
services can be composed to fullfill a requested service. In Section 8 we present
some implementation details and we report on some experimental results. Fi-
nally in Section 9 we draw some conclusions and we talk about possible future
directions.

2 Structural Description Formalisms (Context)

Description logic is a well established field in the domain of Knowledge Repre-
sentation. One important contribution to the field was KL-ONE [2] for which the
subsumption mechanism was proved later to be undecidable [19]. Good overviews
of systems for knowledge representation with analisys of tractability regarding
different combinations of features can be found in [13] and [5]. Work has also been
done lately in an approach that also takes into consideration the computational
resources required for the implementation of a practical system [14]. In terms of
language development there is a trend pushing the more academic approaches
like OIL [6] to approaches closer to current web technology like DAML+OIL [3]
and now OWL [22] and OWL Lite [21].

2.1 OWL Lite Model

Web Ontology Language (OWL) is the last step in the evolution of a number
of description logic languages towards standardisation and industrial use. OWL
Lite is a restricted version of OWL but is completely contained by it. As shown
in Figure 1 an OWL Lite ontology may include the following elements:

— Class - which can have taxonomic relations with other classes (subClassAs,
sameClassAs)

— Property - which can have taxonomic relations with other properties (sub-
PropertyOf, samePropertyAs, inverseOf). A property can also specify a do-
main of zero or more classes and a range of zero or more classes.

— Restriction - which is defined between a given class (subClassOf) and a given
property (onProperty). It can specify “allValuesFrom” or “someValuesFrom”
restriction on the range of a given Property. It can also specify cardinality
restrictions (minCardinality, maxCardinality, cardinality).

— Instance - which must be a subclass of class Thing. OWL Lite allows the
specification of equality and inequality relations between instances (sameln-
dividualAs, differentIndividualFrom).
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Fig.1. OWL Lite Model

3 Directories of Services Models (Context)

A good body of work exist in the area of matchmaking including LARKS [20],
and the newer efforts geared towards DAML-S [18]. A previous approach [16]
for using DAML-S was based on the ConGolog planning framework [10]. Other
approaches include the Ariadne mediator [15]. Work has also being done for
mapping DAML-S on UDDI [17].

3.1 UDDI Model

The Universal Description, Discovery and Integration (UDDI) [4] is the indus-
try’s effort for creating an open specification for directories of service descrip-
tions. It builds on existing technology like XML, SOAP and WSDL.

UDDI v.3 specifies a data model (Figure 2) with 4 levels: business entities
which provide services, for which bindings are described in terms of tModels.
Note that there is a complete containment for the first three (business, service,
binding) but not for the fourth - tModel - which is linked in by reference. This
data model can be managed trough an API covering methods for inquiry, pub-
lication, security, custody, subscription and value sets.

As it can be seen in Table 1, almost all find XX methods of the inquiry API
(apart find relatedBusiness which works in a qualitatively different way) can
specify keyedRefferences in form of indetifierBags or categoryBags (Figure 2) and
can make references to tModels - directly by keys in a tModelBag or indirectly
through a find_tModel subquery.
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Table 1. UDDI v.3 Inquiry API - find XX methods




3.2 DAML-S Model

DAML-S is the DAML [3] effort for describing semantic Web Services. DAML-S
aims to automate tasks like service discovery, composition, execution and inter-
operation.

Profile 0..* input Parameter
Description

0..* output

propertyName: string
0..* precondition

presents 0..* effect

describedBy
refersTo restrictedTo

l\ ServiceModel
support:

ServiceGrounding
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Fig. 3. Model for DAML-S v0.7

In DAML-S v0.7 a Service is defined by three components (Figure 3): a pro-
file, a model and a grounding. The Profile specification was designed to enable
automatic matchmaking and discovery by providing information on the capa-
bilities or needs of a service. The Profile class of the DAML-S ontology allows
the definition of functional parameters - inputs, outputs, preconditions and ef-
fects (IOPEs), and also allows for the definition of non-functional parameters
like human contacts, rating, etc.

For any of the IOPEs a DAML-S profile can define zero or more values ex-
pressed trough a ParameterDescription construct. Each ParameterDescription
is defined by a name, a “refersTo” which specifies the kind of Property that is
defined and a “restrictedTo” which specifies the possible values (range) of the
defined Property either as a class or as a restriction of a class to a given set of
instances. Properties can also be organised as hierarchies trough the “subProp-
ertyOf” attribute.

User services define their profiles by creating ontologies with classes that
extend the Profile class or that extend existing well established profiles for a
given domain.

3.3 Service Description Model

For the purpose of this paper we assume a simplified model (Figure 4) that
covers both UDDI and DAML-S. Our model includes only a top level container



- Service Description which refers to one or more KeyValuePair elements. Each
KeyValuePair has exactly one key and a set of one or more values. Keys and
values can be expressed in terms of classes and values can be expressed in terms
of classes or instances. Classes are organised as hierarchies with equalities using
“subClassOf” and “sameClassAs” relations.

subClassOf | 1..* 0..*| sameClassAs

Class
: : k%
. | ServiceDescription . KeyValuePair .
1% _— value
: ClassOrindividual
1
uDDI: : businessEntity : keyedRefference : tModel String
DAML-S: : Profile ParameterDescription Property Class, instance

Fig. 4. Proposed Model for Service Description

We show next a possible mapping between the models. An UDDI businessEn-
tity construct or a DAML-S Profile class can be seen as top-level containers
similar to our ServiceDescription map. The KeyValuePair is analogous to the
UDDI keyedRefference or to the DAML-S ParameterDescription. Since UDDI
tModels and DAML-S Properties support inheritance (using derivedFrom and
respectively subPropertyOf constructs) we assimilate them with our notion of
Classes. Each KeyValuePair also has defined a symbolic name as a string for
differentiating between pairs with the same key value.

Finally our model can hold for each key a set of values. They are expressed
as either a Class or a Class instance. The equivalent to UDDI would be a string
(from a “value set” of possible values per tModel) and the equivalent to DAML-S
would be a Class or an instance (a class restricted using a “hasValue” construct).
We choose to have a set and not a single value since in the ServiceDescription
container keys have to be disjoint. As such “keyValues” of keyedReferences on
the same tModel or the “restrictedTo” values of multiple DAML-S PropertyDe-
scription “referring” to the same property are represented in our model by a set
of values collated together under the same key - the tModel or respectively the
“refersTo” property.

Still as described above in Section 5.2, properties of Service Descriptions de-
scribe the “specification” of the service in terms of logical constraints. Currently
there is no standard way (e.g. for DAML-S) for specifing such formulas so we
propose an aproach based on version of FIPA-SL [8] retstricted to well formed
formulas including constructs like AND, OR, NOT and variables.

In our approach Figure 5 we first convert a source Service Description to it’s
canonic normalised and we obtain a disjunction of conjunctive service descrip-
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Fig. 5. Converting Service Descriptions with FOL expressions to CNF

tions as above. Each of the descriptions can contain positive or negative (NOT)
terms and variables. Since this generalisation is simple we are not going to make
use of it in the rest of this paper but we consider it implicit.

4 Numerically encoding Structural Descriptions

The main barrier towards a fully automated web is the way to describe the
meanings of the published information such that machines could interpret it. The
Semantic Web community is making efforts in that direction trough a number
of languages, specifications and tools (e.g. RDF, RDFS, OWL).

In this paper we are concerned only with a more narrow scope - the repre-
sentation of class knowledge using a language recently adopted by the W3C -
the Web Ontology Language (OWL).

Let’s consider the example ontology from the OWL web site [22]. As defined
by the specification the root of any OWL class hierarchy is the class Thing.
Animal is a subclass of Thing and Female and Male are subclasses of Animal.
Animal subsumes also Person. Classes Man and Woman inherit multiply from
Male and Person, respectively Female and Person. Class HumanBeing has a
“sameClassAs” relation with class Person and is a subclass of Thing.

The main idea of the encoding that we propose is that any class in the
hierarchy can be associated with one or more intervals. Intervals can be contained
in other intervals but are never overlapping. In Figure 6 we give a possible such
encoding for the OWL example ontology.



Thing
[0.0,1.0)
Animal HumanBeing
[0.0,0.10) [0.10,0.20), [0.022, 0.023)
Male Female Person
[0.0,0.01) [0.01,0.02) [0.10,0.11), [0.02,0.03)
Man Woman
[0.0,0.001), [0.100,0.101) [0.01,0.011), [0.101,0.102)
[0.02,0.021), [0.021,0.022)

Fig. 6. Example ontology from the OWL web site

Now responding to subsumption questions like Person subsumes Man, Per-
son subsumes Male or HumanBeing subsumes Man is straightforward: one of the
intervals of Man [0,0.001), [0.100,0.101), [0.02,0.021) is included in one of the in-
tervals of Person [0.10,0.11), [0.02,0.03); none of the intervals of Male [0,0.01)
is included in any of the intervals of Person; finally one of the intervals of Man
[0,0.001), [0.100,0.101), [0.02,0.021) is included in one of the intervals of Human-
Being [0.10,0.20),[0.022,0.023).

4.1 Encoding Single Inheritance hierarchies

In this section we address the basic problem of numerically encoding class/property
hierarchies where only single inheritance is allowed. We describe only class hier-
archies with subClassOf relations because the encoding of property hierarchies
is very similar - instead of subClassOf we use subPropertyOf.

Static hierarchies As a first encoding scheme we consider a simple approach
where we label in order the leaves of the hierarchy with unit intervals and then we
compute intervals of the parent as the union of the intervals of the children. In the
example from (Figure7 (a)) E, F are leaves of the hierarchy which we represent
as the intervals E [0,1), F [1, 2). B is the parent of both E and F and as such we
compute the representation B [0,2) as the union of [0,1) and [1,2). In turn A is
the parent of B [0,2) and C [2,5) so we will represent it as A [0,5). We recursively
continue to do that until we reach the root of the tree where we stop - in our case
we get root [0,7). This encoding completely fullfills our objective stated above:
subsumption can now be treated like a simple interval inclusion problem. Let’s
suppose that we want to determine subsumption relations between query H [3,4)



and A [0,5), B[0,2), C[2,5). It is easy to determine that A or C subsume H ([3,4)
is included in [0,5) or in [2,5)) but not B ([3,4) is not included in [0,2)). In the
wider context this would mean that a services specifying H could be matched
with a service specifying A or C but not with with a service specifying B.

root [0,7)

E[0,1) F[1,2)G[2,3) H[3,4) I[45) J[5,6) KI[6,7)

Fig. 7. Encoding of a static hierarchy

Dynamic hierarchies The scheme above is simple, easy to implement and
has very loose limitations related to how numeric values are represented by the
underlying system. However it applies only to static hierarchies - if additions or
deletions are made at different levels at least part of the hierarchy needs to be
readjusted. Another drawback is that in the case of deletion it is possible for a
new element to have the same representation. Since representations are used to
build further structures that may be costly to adapt, we consider next a more
complex approach which allows for the representation of dynamic hierarchies.

The dynamic encoding scheme will have two levels: one addressing the child-
child relation and one the parent-child relation. First each (direct) parent/child
relation encompasses locally an interval between 0 and 1. The children have
assigned upon insertion an integer key which is unique and persistent at the
parent. Using a dividing function dependent on the key, each child is assigned
also an interval. At the second level of the scheme, each parent is assigned also
a global interval (e.g. when playing in turn the child role). Local child intervals
are then scaled to the global parent interval and global child intervals are in turn
computed.

For encoding the local interval we have explored first (Figure 8 (a)) a function
involving the division of the length of the previous interval using a given factor p
; this gives us an inverse exponential inverpP(z) = z% (we use p=2). Still as it
can be seen also in it’s graphic Figure 9 - invexp2 this function rapidly narrows
the key interval leading to loss of precision.

Another idea (Figure 8 (b)) for the encoding of the local interval is to linearly
divide an interval obtained as before in k parts ; this gives us a linear inverse
exponential function:
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Fig. 8. Encoding of a dynamic hierarchy

linKinvexpP(z) = zﬁ + (2%k) * 1 * Iﬁ (we use p=2, k=5).

As it can be seen on Figure 9 the function linbinvexp2 allows for a slower
narrowing of the interval and gives more choices for domain specific cases that
could use different values for k (e.g. for k=50 graphic lin50invexp2 shows a
function which for keys between 0 and 20 is almost linear).

Finally local child intervals are scaled to the global parent intervals and
global child intervals are computed (Figure 8 (c)). The scheme uses the start of
the global parent interval as an offset to which it is added the size of the parent
interval scaled with the local child interval.

Figure 8 (d) shows overall effect of the encoding on a hierarchy where B,
C and D are children of A, C has in turn children E, F and G. Determining
now subsumption relations between B [0,0.1), C [0.1,0.2) and H [0.110,0.111) is
trivial (the interval of H is included in C but not in B so we can easy say that
C subsumes H but B doesn’t subsume H).

One key question still is the physical limit of such an encoding scheme given
by the architecture underlying the implemented system. When using an en-
coding with a division factor of p and a linear factor of k and considering
the smallest positive real number that can be represented on a system to be
Lyinpositive We can compute two limits: the maximum number of entries that
we can have on the first level of the hierarchy MaxzClassNo = logpm
and the maximum number of levels that we can have on the first entries of a level
MazxLevel No = log , -————. Note that those are the maximum bounds for

PLminpositive
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Fig. 9. Evolution of intervals values for division functions for invexpP p=5 and linK-
invexpP for p=2, k=5 and for p=2, k=50

classes and levels (since for any level lower that the first we are going to have
less classes per level and for any entry different than the first one we are going to
have less possible sub levels per entry). For k=5 and p=2 and a system encoding
real numbers as 64 bits doubles acordingly to IEEE 754 floating-point ”double
format” (like for example a J2SE Java’™ VM) we have MazClassNo = 1071
and MazLevel No = 462.

4.2 Encoding Multiple Inheritance relations

In this section we address the problem of encoding class or property hierarchies
where multiple inheritance is allowed. Again the encoding is described only in
terms of classes since the encoding of properties is very similar (subPropertyOf
instead of subClassOf). The main idea of the encoding is to transform multiple
inheritance hierarchies into single inheritance hierarchies and then use the tech-
nique above (Section 4.1) for representing classes as intervals. For this purpose
we augment the initial tree-model with a one-to-many mapping table where for
for each multiple inheritance class (node in the tree on the left, Figure 10) we
have a mapping to one or more single inheritance classes (tree on the right). We
use a nomenclature where single inheritance classes have the same name as the
originating multiple inheritance class but followed by the suffix “i”, i=0..n and
n is the cardinality of the one-to-many relation (e.g. the multiple inheritance
class X maps to the single inheritance classes X_0, X_1, etc.).

We take as an example a multiple inheritance class hierarchy with class A as
the root and classes B, C and D as children of A.

First (Figure 10) we consider the case of multiple inheritance of class E from
C and D. For each of the superclasses we first add a single inheritance node of E:
E_0 subClassOf C_0 and E_1 subClassOf D_0. Then we define the one-to-many
relation for E: E=E 0, E_1.
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Fig. 10. E subClassOf C and D.
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Fig. 11. F subClassOf E.

Next (Figure 11) we examine the case when we add F subClassOf E. E sub-
suming F, and C and D subsuming E means that C and D must also subsume
F. This means that F must create single inheritance nodes for all single inheri-
tance nodes of E. So for each of E_0 and E_1 we add F_0 and F_1 such that F_0
subClassOf E_0 and F_1 subClassOf E_1.

A0
A A=A_0 ~
B=B_0
C=C_0
p D=DO B_O co DO
B E=E_0,E_1
F=F_0,F_1
EO E_1
G=G_0,G_1,G_2
F O F1
G
G_0 G_1 G_2

Fig. 12. G subClassOf B, F.

As a third example (Figure 12) we take the case of class G which inherits
multiply from B and F. To do that we have to introduce for any mappings of
B and F single inheritance nodes G and add those nodes to the mapping of G.
This will create G_0 subClassOf B, G_1 subClassOf F_0 and G_2 subClassOf F_1
and the mapping G=G_0, G_1, G_2.

In conclusion for defining subClassOf(X,Y) we have to create the mapping
of Y to a number of single inheritance classes, mapping formed by creating for

any single inheritance class X_i in the map of X a single inheritance class Yi in
the map of Y:



map(Y) =Y i s.t. VX 4 € map(X), subClassO f(X 4,Y _i)

But in order to respond to subsumption queries we need also to encode the
relations in the single class hierarchy as a intervals. An encoding of the tree
using the scheme lindinvexp2 for dynamic hierarchies can be seen in Figure 13.
Now responding to subsumption queries like B subsumes G, B subsumes F or C
subsumes F is straightforward: G_0 [0,0.01) is included in B.0 [0,0.10), there is
no F.i such that F.i is included in B_.0 and F_0 [0.10,0.101) is included in C_0
[0.10,0.20).

A_0[0,1)

B O co D_0
[0,0.10)  [0.10,0.20)  [0.20,0.30)

[ |
EO E 1
[0.10,0.11)  [0.20, 0.21)
[ [
FoO F1
[0.10,0.101)  [0.20,0.201)
I I
1 G2

.10,0.1001) [0.20,0.2001)

GO
[0,001) |

o ®

Fig. 13. Numeric encoding of class hierarchy using dynamic linsinvexp2 scheme

So subsumption between classes X and Y boils down to determining if any
of the classes in the map of Y is subclass of any of the classes in the map of X:

subsumes(X,Y) =3X i € map(X) AIY 4 € map(Y) A
subClassOf(Xi,Y _5)

4.3 Encoding Equality Relations

In this section we extend even more our encoding scheme by considering hier-
archies which allow for the specification of equality relations between nodes. As
described in DAML+OIL axiomatisation [7] a sameClassAs relation is equiva-
lent with two subClassOf relations:

sameClassAs(X,Y) & subClassOf(X,Y) A subClassOf(Y, X)
The same applies also for samePropertyAs and subPropertyOf relations:
samePropertyAs(X,Y) < subPropertyOf(X,Y) A subPropertyOf(Y,X)

We present next only the encoding regarding the sameClassAs relation be-
cause the one for samePropertyAs is very similar. Based on the axioms above



the encoding of the sameClassAs relations is an extension of the algorithm for
multiple inheritance presented previously (Section 4.2). Still we have to avoid
the creation of recursive loops that would occur if we would use directly the
technique for multiple inheritance. For that the process has to have two steps -
first we create two new temporary maps and then we add them to the current
maps:

newmap(X) = X i s.t. VY i € map(Y), subClassO f (Y _i, X 1)

newmap(Y) =Y 4 s.t. VX i € map(X), subClassOf(X4,Y )

map(X) = map(X) Unewmap(X)

map(Y) = map(Y) U newmap(Y)

Let’s consider a hierarchy with initially four classes: A as the root and B, C
and D as children.
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Fig.14. E sameClassAs F

In a first example (Figure 14) we introduce classes E subClassOf C and F
subClassOf D with the map E=E_0 and F=F_0. If we introduce also the rela-
tion E sameClassAs F we need to create and add to the map two more single
inheritance nodes E_1 and F_1 (E_1 subClassOf F_0 respectively F_1 subClassOf
E.0).

A A=A_0

B=B_0

C=C_0

B C p D=D_0
E=E_0,E_1,E_2
E < > F F=F_0,F_1,F 2

Fig.15. E sameClassAs F

We consider next (Figure 15) a case where class E is subClassOf B and F has
a multiple inheritance from C and D. This will yield in the map E=E_0, F=F 0,
F_1. If we introduce the relation E sameClassAs F we have to add to the map
of E - E_1 and E_2 and to the map of F - F_2.

Finally we consider a more complex example (Figure 16) where E subClassOf
C and D, F subClassOf B and E and G subClassOf D. Introducing the relation F



A A=A_O
B=B_0
C=C_0

B p D=D_0
E=E_0,E_1
F=F_0,F_1,F_2,F_
G=G_0,G_1,G_2,G_3

F €«<—»G

Fig.16. F sameClassAs G

sameClassAs G yields in four more classes to be added to the single inheritance
tree and to the maps of F and G: F_2 and G_1, G_2, G_3.

A0

[0,1)
B_O c.o D0
[0,0.10) [0.10,0.20) [0.20,0.30)

I
E O E 1 /

[0.10,0.11) [0.20,0.21)

F.0 F 1 F2 G0
[0,0.01) [0.10,0.101) [0.20,0.201) [0.21,0.22)
1 1 1 1

G.1 G.2 G_3 F_3

[0.0,0.001) [0.10,0.1001) [0.20,0.2001) [0.21,0.2110)

Fig. 17. Numeric encoding of class hierarchy in Figure 16 using dynamic lin5invexp2
scheme

4.4 Numeric Encoding of Structural Descriptions and OWL Lite

By using the encoding schemes presented previously (Section 4.1, 4.2, 4.3) we
are able to cover the majority of the features of the OWL Lite language. Still
for a number of features like Restriction “cardinality” and “someValueFrom”
or Property “inverseOf”, where more approaches are possible, determining the
best one definitely requires more work and experimentation on the topic. Also
since we consider here only encoding of class-level knowledge we don’t address
equalities and inequalities for individuals (“samelndividualAs”, “differentIndi-
vidualFrom”).

4.5 Numeric encoding of service descriptions

Based on the previous Section 3.3 and on Sections 4.1, 4.2, 4.3 the numeric
encoding of a service description is now clear: the map between sets of intervals
representing properties and sets of intervals representing classes or values can be



seens as a set of rectangles in a bidimensional space having on one axis Classes
and on the other Properties.

We take as an example the case of a service description with two proper-
ties propA and propD which have as values the classes classE and respectively
classC (Figure 18 (c¢)). As it results from Figure 18 (a) propD multiple inherits
from propB and propC such that it is going to be represented by a set of two
single inheritance classes - propD_0 and propD_0 and their associated intervals.
Similarly classE multiple inherits from classB and classD such that it is also
going to be represented by two single inheritance classes / intervals - classE_0Q
and classE_1.

As such the service description above can be represented in a bidimensional
space as a set, of four rectangles (propA_0 x classE_0, propA_0 x classE_1, propD_0
x classC_0, propD_1 x classC_0).

Property Property mapping: Thing Class mapping:
propA=propA_0 classA classA=classA_0
propB=propB_0 classB=classB_0

propA propB propC  propC=propC_0 classB classC=classC_0
propD=propD_0, propD_1 classD classD=classD_0
propD classE=classE_0, classE_1
classF=classF_0, classF_1
classE classF
(a) Property hierarchy (b) Class hierarchy
Properties
. - propD_1
Service Description:
propA=classE Lo
propD=classC propD_0| @ :
propA_O D
T N N A -
T >
@9 09 {0} Classes
& N
N & F

(c) Numeric encoding of a service description

Fig. 18. Numeric encoding of a service description

5 Matchmaking

A model accepted [20], [18], [23] by the research community would describe
matchmaking as the sum of two processes:

“Matchmaking = Signature Matchmaking + Specification Matchmaking”



5.1 Signature matchmaking

Signature matchmaking deals with determining the class subsumption relation
between different class attributes of a query service and a library service. A
number of possible signature matches have been identified by Paolucci [18].

5.2 Specification matchmaking

Specification matchmaking deals with determining a constraint subsumption re-
lation between constraints set of a query and a library services. Since general
subsumption between constraints (even when reduced to Horn clauses) is in-
tractable, a common approach is to first infer from the constraint set the possi-
ble values of the attributes of Q and S (e.g. # subsumption mechanism used in
LARKS [20]). Then the constraint subsumption process boils down to determin-
ing a subsumption relation between sets of possible attributes values of Q and S.
In a number of possible specification matches have been identified by Zaremski
[23].

5.3 An example

1 S1
MediaProviderProfile o T
MusicStyle style: Classic style: Classic
Speci ” i
bitrate: int VT N\ R
Q2 S2
Classic style: Opera style: Instrumental
Rock Ja
/q b\ “ Q3 s3
| Opera | |Instrumenta| | style: Pop & Rock style: Jazz & Rock
(a) MediaProviderProfile (b) Deployed
classes instances

Fig. 19. A network of media providers

Let’s consider as an example the problem of matchmaking in a network for media
sharing. Media providers advertise their capabilities and consumer user agents
define their requests in terms of MediaProviderProfiles (Figure 19 (a)). This class
specifies a style of music, a speed and a bitrate.

In the network (Figure 19 (b)) there are a number of such providers and
consumers. For example, Q1 is searching for providers of Classic music. S1 will
always be able to fullfill such a request since it provides exactly Classical music
and the music provided by S2 will also satisfy in all conditions this request since
Instrumental music is a particular kind of Classic music. Q2 prefers Opera and
his request could be fullfilled by S1. This assumes that either Q2 or S1 would fil-
ter out from the Classic music that S1 could provide only the Opera. Q3 prefers



Pop and Rock and it could use S3 but under the constraint that the requests will
be only for Rock. This example shows that even when services do not exactly
match specification, it may still be possible or necessary to use them in specific
instances. Thus, partial matches are also important.

5.4 Supported types of matchmaking

MusicStyle

Exact match Container match

MusicStyle

- Contained match

, Nearest
---3._ neighbour

,~~" Constraints .“‘:‘
i user=Rock '

Overlap match Failed match

Fig. 20. Signature matching

The outcome of the matchmaking process could be one of the following relations
between a query service Q and a library service S (examples in Figure 20 and
Figure 21):

— Exact - S is an exact match of Q. In our example this is the case of Q1 and
S1 for signature matching and Q4 and S4 for specification matching.

— Contained - Q is contained in S. In this case S could be always used instead
of Q. This is also known as a plug-in match. In our example this is the case
for Q1 and S2 for signature matching and Q5 and S5 for specification.

— Container - Q contains S. In this case S could be used when additional
constraints are specified. In the case of several S’s, discrimination between
them could be done based on those constraints. For signature this is the case
with Q1 and S2. For specification this is the case for Q6 and S6.

— Overlap - Q and S have a given intersection. In this case runtime constraints
both over Q and S have to be taken into account. For signature this is the
case of Q3 and S3. For specification this is the case for Q7 and S7.



— Failed - there is no intersection. In this case the system could use a “nearest
neighbour” technique to provide services which are as close as possible of Q.
For signature this is the case of Q2 and S2. For specification this is the case
for Q8 and S8.

" User Constraints
H speed=[4,6] !

Speed Speed Speed \ N _ K
(ops) A (ops) A (ops) A " piates(e4.00] -
8 8 8 ’,QG
S5 -K
6 |---- S4 6 |---of--- 6 |f---cf--e
T
4 |- ! 4 |o--epeo = L R it
2 2 2 i
» » »
32 64 96 128 Bitrate 32 64 96 128 Bitrate 32 64 96 128 Bitrate
(bits) (bits) (bits)
Exact match Contained match Container match
, Constraints
Speed h User: speed<96 H Speed N """ t
A .. Provider: speed>64 .-’ ’ eares N
(kbps) \-_____r ________ - (kbps) ‘\ ~<. nheiahbour _,—’
8 |-v-oeee- - 8
Q7
6 |- 6
1
.
4 |pe e 4
S7 . .
2 i 0 . 2
: > Lo >
32 64 96 128 Bitrate 32 64 96 128 Bitrate
(bits) (bits)
Overlap match Failed match

Fig. 21. Specification matching

6 From matchmaking to indexing

Since advertised capabilities or user requests can be expressed as multidimen-
sional data a natural extension would be to assimilate the matchmaking process
to a multidimensional access. In a real world environment we could expect that
directories with numerous stored advertisements will be created. In this case the
matchmaker would have to efficiently deal with data organisation and retrieval.
The need for efficient matchmaking would lead to the creation of indexes and
search structures for directories.



6.1 Multidimensional Access Methods

There is a lot of work in the database community regarding the indexing and
storage of multidimensional objects from rectangles, polygons, CAD drawings
to images. A good survey of those methods [9] identifies a number of generic
approaches for managing multidimensional data:

— transformation - which deals with managing high dimensional objects by
transforming them to simpler representations (e.g. points with more dimen-
sions or sets of intervals in a single dimension). In this category are algo-
rithms like the zkdB™ tree, BANG file or z-ordering.

— overlapping regions - objects are assigned to data buckets which are allowed
to mutually overlap. The main problem of this approach is of course that the
overlap might increase the number of paths that we have to follow. Example
algorithms are the R tree, the R* tree or the skd tree.

— clipping region - objects are assigned to data buckets that are not allowed to
mutually overlap. The advantage is obviously in the smaller number of paths
that queries have to follow (in the case of point queries a single path from
the root to the leaf is sufficient). The main problem with clipping resides
with the insertions and deletions phases which have higher overheads due to
the fact that objects not fitting exactly in one data bucket have either to be
duplicated or to be split between buckets. Examples are the extended KD
tree, the Rt tree

— multiple layers - this can be seen as a variant of the overlapping regions
approach. The advantage of this technique is the possible higher selectivity
during search. Disadvantage are fragmentation, large searches for particular
types of queries, ambiguities regarding layer selection and the clustering of
data spatially close but placed on different layers.

6.2 Generalised Search Tree (GiST)

As allot of solutions have been proposed for managing multidimensional data
work has been done for isolating the common approach that all these solutions
take. Hellerstein [12] proposed as an unifying framework the Generalised Search
Tree (GiST).

The design principle of GiST starts from the observation that search trees
used in databases are balanced trees with a high fanout in which the internal
nodes are used as a directory and the leaf nodes point to the actual data. Each
internal node holds a key in the form of a predicate P and can hold at the
maximum a predetermined number of pointers to other nodes (usually function
of system and hardware constraints like filesystem page size). To search for
records that satisfy a query predicate Q the paths of the tree that have keys P
that satisfy Q are followed. So in GiST terms - any requirement for a general
search tree is that the search key of a given node is a predicate that holds for all
the nodes below.
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Fig. 22. Generalised Search Tree

A large number of existing tree algorithms can be recasted in terms of GiST:
BT, R tree, R* tree (by slightly modifying the GiST insertion algorithm), ex-
tended KD trees, etc. GiST is quite well adopted by both academic (Postgresql)
and industrial (Informix) DB communities for defining access methods to custom
data types.

The architecture of GiST is split in two parts: key methods (that have to
be implemented for any new application) and tree methods (which are to be
provided by toolkits supporting GiST).

Any key has to provide the following methods (there are two more optional
methods Compress and Decompress that we don’t list here):

— Consistent(E,q) - given an entry E=(p,ptr) and a query predicate q returns
false if p q can be guaranteed unsatisfiable, true otherwise.

— Union(P) - given a set P of entries (p1,ptry)...(pn,ptr,) returns some predi-
cate r that holds for all entries stored below ptry...ptr,,.

— Penalty(E;,E») - given two entries E;=(p;,ptr1) and Eo=(p2,ptrs) returns a
domain specific penalty for inserting Es in the subtree rooted at E;. Typically
the penalty metric is some increase of size from E.p; to Union(E;,E»).

— PickSplit(P) - given a set P of M+1 entries (p,ptr) splits P into two sets of
entries P, P2, each of size at least kM. The choice of the minimum fill factor
for a tree is controlled here.

The tree methods trough which an application usually interacts with the
GiST tree are:

— Search(q) - returns entries that satisfy the predicate q.

— FindMin(q), Next(q) - efficiently searches a tree when a linear ordering of
the domain exists.

Insert(E) - inserts an entry into the tree.

— Delete(E) - deletes an entry from the tree.



6.3 Utility Service Description Operations

We first introduce a number of utility operations on which we rely later when
defining mandatory GiST operations.

— Equals(Q,S) = (| Keys(Q) |=| Keys(S) |) A VK, € Q,3K,; € S s.t.
K, =K, ANQ(K,) = S(Ks)).

— Contained(Q,S) =VK,; € Q,3K; € Ss.t. K, C K A
Q(K,) C S(Ks), isInput(K,) V isPrecondition(Kg)
S(K ) C Q(Ky), isOutput(K,) VisEf fect(K,)

where we assume the existence of four property keys Kinput, Kprecondition,
Koutputs Kegfect and we define isInput, isOutput and isEffect as isInput(K,) =

K, C Kinput, etc. We define is Precondtion(K;) = —isInput(K,)V —isOutput(K,)V

—-isEf fect(K,) since we assume that all constraints that are non-functional
constraints can be treated as preconditions.

— Container(Q, S) = Contained(S, Q).

— Qverlapping(Q,S) = 3K, € @ st. IK; € S,(K; C K;V (K, C K;) A
(Q(K,) € S(K,) VQ(K,) € S(Ky)).

6.4 GiST Related Service Description Operations

In this section we defined the mandatory operations that keys of a GiST tree
must implement.

Consistent(Q,S) We define the Consistent(Q,S) predicate to be the same as
the Contained(Q’,S’). Q’ S’ are transformation of Q and S by unification and
variable substitution. This is equivalent to the 6§ subsumption used by LARKS
[20]:

Consistent(Q, S) = Contained(Q’, S"), bindings = unify(Q’',S"),
Q' = substitute(bindings, Q), S' = substitute(bindings, S)
Union(Sy, ..., Sn) We use the following formula for defining the union of ser-

vice descriptions Si, ..., Sp:

Union(St, ..., Sn) = Sy s.t. VS;,i = 1.n,VK; € S;,



Su(K") = Si(Ki) U Su(K"), K" € Sy, K; C K/,

Su(K;) = Si(K;) U Su(K") AK' AVK" € S,, K" C K;
Su(Ky) =0,

Su(K;) = Si(K3), otherwise

In other words we handle each key K; of service description S; in one of the
three ways:

— if we find in the current union result S, a key K in which K; can be
contained we just “add” S;(K;) by doing an union with the current S, (K,)
values. Note that since keys of a service description are disjoint if K, exists
it is unique.

— if the above case doesn’t occur then for the set of all keys K which are
contained in K; (and which we could track when we search for K!) we do
two things: create the union of their values including K; and add it to the
result as S, (K;) ; remove from the results all S, (K!).

— if it not the case of any of the above then just add S;(Kj;).

Penalty(Q,S) The definition of this operation is heavily related to the def-
inition of Union(Si,...,Sn) above (6.4) and represents something equivalent
with the increase of area between S and Union(Q,S) as suggested by Heller-
stein [12]. By area we understand the product between key and value sizes (
| K| *|S(K)|) and by size we understand the sum of interval dimensions (
| S(K) |= Xvies(x) high(I) — low(I) ). The total area increase is computed as
the sum of area increases each key K, of Q would bring if we would union Q
and S.

Penalty(Q,S) =>_d, s.t. VK, € Q,

(| K5 | +(] QKq) US(KY) | — | S(KY) ),
IK! € S,K, C K!

| Ko | * | QK US(KY) | — [ KJ | x| S(KY) |,
AK! AVK" € S,K" C K,

| Ky | * | Q(K,) |

L otherwise

PickSplit Finally for the PickSplit operation we took an approach inspired by
Gutman’s R-tree [11] quadratic algorithm. We start by picking two seed entries
- the pair of entries with the biggest Penalty between them. We use the seeds
as first elements of two groups in which we are going to split the entries of the
node. Then we pick in turn from the entries not yet assigned to a group one
that has the biggest preference for any of the two groups (maximum difference
between the Penalties of adding the entry to each of the two groups).



6.5 Query predicates for GiST

Query predicates for GiST are used when searching for a query Q in the tree.
As the query propagates from root to the leaves it evaluates at each node S the
contained predicate to determine which search paths (sub-entries) to take. The
definitions of these predicates rely on the Service Description utility operations
Equals, Contained, Container and Overlapping defined above and on the level (S)
function which returns the level in the tree of a given node (0 if S is a leaf of the
tree).

Equals(Q,S), level(S)=0
— EqualsP(Q,S) = { Contained(Q, S), otherwise

— ContainedP(Q, S) = Contained(Q, S)

Container(Q,S), level(S)=0
— ContainerP(Q,S) = { Overlapping(Q, S), otherwise

— QOwerlappingP(Q, S) = Overlapping(Q, S)

7 Dealing with partial matches

As seen previously (Section 5) when matching queries and services there could
be the fortunate case that services match exactly or can be fully substituted
(equals or contained match) but there could be also the case that services match
only partially (container or overlaps match). In the latter case our goal is to
try to fullfill the initial request by composing together the partially matching
services.

First we have to provide some more clarifications on the semantics of the
considered example: a query represents the styles of music that an user might
possibly request and a service advertises the possible styles of music for which it
could successfully fullfill a request. As such query @10 will mean that the user
could request a Jazz, Pop or Rock melody. S10 is able to fullfill requests for
Jazz or Pop styles and S13 for Opera and Instrumental styles.

The process for determining a composed service from a serie of partial matches
will be as following;:

— when a container or overlap query is submitted the system determines a list
of matches. In our example (see Figure 23 (a)) for query Q10 and a request
for containment matching services - S10, S11 and S12 will be returned; in
the case of query Q11 and request for overlapping match services S11, S12
and S13 will be returned.
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style: Jazz &Pop

Q10

style: Jazz &Pop & Rock

11

S12

style: Pop & Rock

style: Rock & Jazz

Qi1

style: Rock & Opera

13

style: Opera & Instrumental

(a) Deployed services

(b) Containment relations

Fig. 23. Composing partial matching (contained or overlapping) services.

— we compute the additional constraints of the query for which certain services
can be used. In @10 the user requests Jazz so S10 or S11 will be used ; if
the user requests Pop then S10 or S12 will be used. Similarly in the case
of Q11 when the user requests Opera S13 will be used and when the user
requests for Rock either S11 or S12 will be used.

— finally for a given query the system returns a software switch that indicates
for a given user constraint which services will be possible to use. In the case
of 10 we will have:

switch(Q10)
Jazz — S10V S11
Pop — S10vVv S12
Rock — S11v S12

Similarly in the case of Q11 we will have:

switch(Q11)
Rock — S11v 512
Opera — S13

8 Implementation and Results

We have implemented a prototype system which has an ontological repository
for dealing with class encoding as intervals, an instance repository for dealing



with the encoding of values as intervals and a Service Description repository
for storing and retreiving numerically encoded services. The Service Descrip-
tion repository is a GiST based tree and can handle basic functionalities like
insert, search and delete. We created also a testbed by implementing a number
of random generators for ontologies, values and service descriptions.

We have used the testbed to experiment with insertion algorithms and we
have made comparable measurements between a tree using for insertion the
classic GiST algorithm and another using reinsertion as specified for R* trees
[1].

The results show that the R* scheme performs slightly better than GiST but
also induces bigger fluctuations of resource usage. To give an idea on perfor-
mance, trees with 10000 entries require around 3 seconds for an insertion and
have a depth of 4 levels. Matches are extremely fast in the order of milliseconds.

9 Conclusion and Future work

In this paper we have considered matchmaking of capabilities and requests of
distributed systems with focus on UDDI and DAML-S. We have provided a sim-
ple model for Service Descriptions and possible mappings from it to the former
two. We also proposed a numeric representation that transforms matchmaking
into the problem of finding intersections between rectangular structures in hy-
perspaces.

Then we have used this fact to develop efficient methods for accessing and
maintaining directories of services.

Doing that gives us a consistent advance over existing directory systems: first,
the query process can take from the beginning into account all possible dimen-
sions of a query and of stored data. In contrast, current systems (e.g. databases,
LDAP, etc) usually deal with complex queries over complex data by decompos-
ing them into simpler queries over simpler data and obviously introducing an
overhead. The inherent flaw of such an approach is that the real nature (e.g.
containment, similarities, etc) of the data cannot be captured.

Second - complex matches (contains, container, overlaps) can be easily com-
puted giving more opportunities to smarter systems to accomplish requested
functionality. In particular we show how several partially matching services can
be composed for providing the requested service.

Finally, this kind of representation is suitable for creating large indexes -
which are going to be mandatory when directories with large amount of stored
data are going to be built.

Our contribution is also to provide an implementation (Section 8) where Ser-
vice Descriptions can be stored and retrieved. We also create a testbed for de-
termining quantitative aspects of the tree system and we report some figures
regarding number of entries, tree depth and insertion times. A number of op-
timisations of the implementation are possible and we consider them as future
work.



Future work would also include more experimentation on different methods
for organising the tree (e.g. combining machine learning with dimensional esti-
mations) and trying to fine tune the approach for usage in different application
domains (small number of classes / large number of instances or vice-versa).

Another promising direction is the distribution and maintenance of the index
on several sites. This will have to integrate into the approach also a number of
issues specific to distributed systems.
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