
VU Research Portal

Configuring Web Services, Using Structuring and Techniques from Agent
Configuration
van Splunter, S.; Sabou, M.; Brazier, F.M.T.; Richards, D.

published in
IEEE/WIC International Conference on Web Intelligence (WI'03)
2003

document version
Publisher's PDF, also known as Version of record

Link to publication in VU Research Portal

citation for published version (APA)
van Splunter, S., Sabou, M., Brazier, F. M. T., & Richards, D. (2003). Configuring Web Services, Using
Structuring and Techniques from Agent Configuration. In IEEE/WIC International Conference on Web
Intelligence (WI'03) (pp. 153)

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

E-mail address:
vuresearchportal.ub@vu.nl

Download date: 19. Mar. 2024

https://research.vu.nl/en/publications/344ce104-6a8b-49d0-8479-154463d88ae0


Configuring Web Services, using Structuring and Techniques from Agent

Configuration

S. van Splunter
1
, M. Sabou

1
, F.M.T. Brazier

1
, D. Richards

2

1
Department of Computer Science

2
Department of Computing

Vrije Universiteit Amsterdam Macquarie University

Amsterdam, The Netherlands Sydney, Australia

<sander, marta, frances>@cs.vu.nl richards@ics.mq.edu.au

Abstract
This paper explores the use of an Agent Factory for

the composition of web services. Previous work proposed

a structuring approach for automated reconfiguration of

agents by an Agent Factory. The question is whether the

same approach can be applied to web service

composition, i.e. whether DAML-S descriptions of web

services offer enough structure for automated

configuration by the Agent Factory. An example trace of

the Agent Factory for configuration of DAML-S web

services illustrates this approach.

1. Introduction 

The increasing proliferation of web services offers a

means of addressing the ever-increasing demand for

applications. The real value of web services is in their

composition. Web service composition is not just an

alternative to application development, but a means of

reducing the application backlog problem providing new

and value-added functionality. It is encouraged by three

facts: many services are moving online; WS conform to

the HTTP protocol which makes integration easier, and

many independent providers have related services that

need to be combined to satisfy user requirements [1]. 

A myriad of products and solutions support

composition of web services, many of them coming from

earlier workflow and business process engineering

approaches (e.g. [2]). However, workflow approaches do

not handle dynamic and distributed composition of web

services: workflow management systems (WFMS) do not

all share the same workflow syntax and semantics, and do

not support changes to workflow definitions [3].

Commercial solutions tend to be tools with a supporting

methodology to capture the process flows from a human

designer. Some techniques (e.g. [4, 5]) that claim

dynamic composition, rely on the requestor and provider

having already been matched. Composition involves

determining which implementation of a service is most

appropriate based on the constraints specified by the user.

These approaches can be classified to be, at most, semi-

automatic.

A number of approaches (e.g. [6], Racing1) provide

web services with agent-like behaviour through the use of

agent wrappers. [7] use wrappers so that web sources can

be queried in a similar manner to databases. Alternative

agent-based approaches to web services are provided by

[8] and SWORD [1] who offer model-based approaches

and deductive reasoners to derive a composition. [3] use

construction scripts and composite logic to define how

the services in a component can be combined,

synchronised and co-ordinated. Typical of many

approaches to composition, these approaches focus on the

latter half of the system development life cycle. In [1] and

[8] the goal is to determine if a set of services fulfils the

specification. In all three they use a reasoner to derive a

plan.

This paper seeks to fill a gap in the current work by

offering an approach that is truly automatic and spans the

whole system development lifecycle from requirements

specification to system execution. The building blocks are

web services. The emerging DAML-S standard is used as

a description language to reason about web services. The

main question addressed in this paper is whether DAML-

S descriptions of web services offer enough structure for

automated configuration by the Agent Factory.

Section 2 considers the two main technologies

involved: web services and the Agent Factory. Section 3

presents our ideas about how to combine the two

technologies. An example of the use of the Agent Factory

for web service composition is given in section 4.

Discussion and future work are given in the final two

sections.

2. The two technologies

This section introduces the two technologies combined

in our work: web services and the Agent Factory.

2.1. Web services 

A web service (WS) is a (self-contained) software

1 http://www.zsu.zp.ua/racing/

Proceedings of the IEEE/WIC International Conference on Web Intelligence (WI’03) 

0-7695-1932-6/03 $17.00 © 2003 IEEE



component that allows access to its functionality via a

web interface. WSs communicate by employing

established protocols for message transport and encoding.

Industry efforts have identified major issues related to

WSs and have developed a set of proposals for each.

Figure 1 (adapted from [9]) depicts the WS architecture:

each layer corresponds to the main areas within the WSs

field and includes the effort/s that appear to have the most

support as a standard in that particular area. The academic

work reported in this paper is positioned in italics. At the

transport level, WSs rely on traditional web protocols.

The Simple Object Access Protocol (SOAP) is an XML-

based communication protocol that allows exchange of

data via typed messages and remote calls. The service

description layer includes the XML-based Web Service

Description Language (WSDL). The next layer is split

into two main types of WS technologies: ones that

support single service advertising and discovery, and ones

that support service composition. For service registration

and discovery there is the Universal Description,

Discovery and Integration (UDDI) standard service

repository. For specifying service composition there are

many possible languages, including the Business Process

Execution Language for Web Services (BPEL4WS) [10]

depicted in Figure 1. BPEL4WS has grown out of two

earlier languages: Web Services Flow Language (WSFL)

(IBM) [11] and XLANG (Microsoft) [12]. The influence

of its developers makes its acceptance as a standard

likely.

Publication and

Discovery: UDDI
WS Composition:

BPEL4WS, Agent Factory

Service Description Layer: WSDL, DAML-S

XML messaging layer:  SOAP

Transport Layer: HTTP, SMTP, FTP

Applications Layer

Figure 1: Overview of WS technology 

SOAP, WSDL, UDDI, and BPEL4WS are the

standard combination of technology to build a WS

application. However they fail to achieve the goals of

automation and interoperability because they rely on a

priori standardisation and require humans in the loop

[13]. To support reliable, large-scale interconnectivity of

web services by software, computer-processable

semantics, which include the properties, capabilities,

interfaces, and effects of the service [8] are needed. 

The Semantic Web community proposes the use of

semantics for WSs for this purpose. There are a number

of efforts in this area, but the work gaining the most

attention is an approach developed by a large coalition of

researchers, known as DAML-S[14]. 

DAML-S facilitates automatic discovery, invocation,

composition, interoperation and monitoring of WSs

through their semantic description. It is a DAML+OIL

ontology conceptually divided into three sub-ontologies

for specifying what a service does, how the service works

and how the service is implemented. Accordingly, each

DAML-S description has three major parts: the Profile,

Process and Grounding. 

2.2. Agent Factory

An Agent Factory (AF) [15] is a service for automated

(re-)design of software agents. An Agent Factory service

distinguishes three main sub-processes: 1) (Re-)design; 2)

Building block retrieval; and 3) Assembly. The (Re-)

design process produces a specification of an agents

configuration, given a set of qualified requirements.

Building block retrieval is based on queries with

functionality, behaviour and state. In Assembly,

operational code is assembled on the basis of an

operational configuration specification. This paper

focuses only on the (Re-)design process, also referred to

as the Design process. 

This Design process is one of configuration based on

the Generic Design Model (GDM) as presented in [16]. In

short, the assumption behind this model is that both

requirements and their qualifications, and the description

of an artefact evolve during a design process. 

design
process

co-ordination

requirement 
qualification set 

manipulation

design object 
description 

manipulation

Design

initial process 
objectives
initial set of 
qualified
requirements
initial design 
object
descriptions

design process 
evaluation
set of qualified 
requirements
and
assessments
design object 
descriptions
and
assessments

design process objectives

initial 
RQS

DOD
assessment

DOD

design process evaluation

overall design 
strategy to RQSM

overall design 
strategy to DODM

RQSM
process
evaluation DODM 

process 
evaluation

intermediate 
RQS

initial DOD

intermediate DOD assessment

RQS

RQS assessment

Figure 2. Composition of processes of the
design process in the generic model of design.

Figure 2 shows one level of composition of the

processes distinguished within the model, and the types of

input and output involved. The refinements of these three

processes are not further depicted (see [16] for a

description of a formal specification including details on

additional process composition, information flow, control

flow, generic information types and generic knowledge

bases). The left hand side describes the input information

to the design process; the right hand side describes the

output information. The design process is shown to be

composed of three sub-processes: design process co-

ordination, requirement qualification set manipulation,

Proceedings of the IEEE/WIC International Conference on Web Intelligence (WI’03) 

0-7695-1932-6/03 $17.00 © 2003 IEEE



and design object description manipulation. The process

Design Process Co-ordination (DPC) co-ordinates the

design process itself by issuing information related to

overall design strategies on the basis of progress reports

of the manipulation components and given design process

objectives. An example of a design process objective that

needs to be guarded by DPC is, e.g., available time or

budget. The process Requirement Qualification Set

Manipulation (RQSM) manipulates sets of requirements

(RQS), on the basis of an overall design strategy,

information from Design Object Description

Manipulation (DODM), and given sets of qualified

requirements. Requirements can be, e.g., refined, added,

or receive another qualification to focus DODM. The

process DODM manipulates descriptions of design

objects (DOD), on the basis of an overall design strategy,

information from RQSM, and given design object

descriptions. Manipulations of a DOD can be additions,

modifications, or deletions of domain object information.

One important assumption on which the design model

and thus the Agent Factory is based, is that the artefact,

i.e. the agent, has been designed to be re-designed.  This

implies three things [17]. First, agents have a

compositional structure with reusable parts, building

blocks. Second, at least two levels of description of agent

configurations are defined: conceptual and operational. In

the Re-design process of the Agent Factory operational

building blocks include implementation details needed by

the Assembly process to create realisations of conceptual

building blocks. Third, there are ontologies to describe

the functionality, behaviour, and state of agents and their

components. The assumption that an agent must have a

compositional structure, relies on the availability of

compositional models of agents, e.g., ZEUS [18], the

GENERIC AGENT MODEL [19], and the JADE AGENT MODEL

[20].  

Descriptions of an artefact in which function, state,

and behaviour are specified translate directly to the

components, data types, and co-ordination patterns.

These structures are essential for the Agent Factory [17].

Components refer to the (active) processes distinguished

within an agent (which may in turn be composed). They

are modelled as building blocks, which, less

conventionally, can also contain open slots. Slots for

components define constraints for the functionality of the

component that may be inserted and an interface.

Components specified with building blocks can therefore

be partial specifications of a process. Examples of such

partial specifications are agent models.

Data types refer to the information exchanged and

manipulated by components. Each data type represents a

specific piece of information. Data types can be either

primitive or composed. In the Agent Factory data types

are also modelled as building block possibly with open

slots. Slots for data types define an interface and

constraints with respect to the required semantics.

Co-ordination patterns are used to define the temporal

sequence and dependencies between tasks. Co-ordination

patterns specify the activation of tasks, and information

flow between tasks. The tasks specified in a co-ordination

pattern may be directly mapped onto components, but this

is not necessarily the case. A simple example of a co-

ordination pattern is one that specifies the behaviour of a

composed component: all of the tasks in a co-ordination

pattern are directly mapped to sub-components. A task

may, however, involve a number of components that are

not part of the same composed components.  This requires

the specification of a more intricate mapping. Co-

ordination patterns can be specified for both conceptual

and operational building blocks. For further motivations

and background to this structuring approach of the

artefact, see  [17]. 

3. Composing WS with the Agent Factory
The previous section distinguishes three processes

within the AF. This section focuses on the design process:

the configuration of web services, given the relevant

building blocks. Building block retrieval and assembly

are not addressed. 

The AF operates on building blocks (concerning

components, data types and co-ordination patterns). Web

services have a very similar metaphor: they are

components that operate on data types and can be

composed using composition patterns. However, because

WSs are self-contained, there is a much stronger link

between its elements than in the case of the AF Each web

service is in fact a component, and its inputs and outputs

are data types. The internal working of the web service or

a specification of combination of multiple web services is

a co-ordination pattern. This implies that a web service is

fully described by the combination of the three available

types of building blocks. Because WSs do not contain

open slots, in our focus, they are therefore simple

building blocks. The AF and WSs employ both a

conceptual and an operational description. DAML-S is

used to specify conceptual building blocks and WSDL to

express operational level details. DAML-S contains a

Profile, a Process and a Grounding.

The Profile describes what the service does. The

primitives for the functional description of the service

consisting of Inputs, Outputs, Preconditions and Effects

(IOPE’s) are most relevant in the context of this paper. 

The Process presents the internal working of the

service in terms of the internal processes, their process

model and the internal data-flow. It is envisioned that this

information is useful for monitoring the execution of the

service. The Process describes the IOPE’s of the service

from a different perspective, but naturally links between

the Profile and the Process of the model exist. The Profile

Proceedings of the IEEE/WIC International Conference on Web Intelligence (WI’03) 

0-7695-1932-6/03 $17.00 © 2003 IEEE



IOPE’s refer to the corresponding IOPE’s in the Process.

Note that both parts of the description augment the

described elements with domain level concepts pre-

defined in an external ontology. Taken together they

represent the conceptual level description of the service.

The Grounding specifies the operational level details

of the service by linking the conceptual level descriptions

to the WSDL description of the service. Finally, the

WSDL file contains the implementation details of the

service such as message formats and access protocols. 

Table 1 summarises the DAML-S primitives used to

describe AF components, data types and co-ordination

patterns.

Table 1. The relation between AF artefact
structures and DAML-S concepts.

AF artefact

Structure

Related DAML-S concepts

Components - Service (with Process, Profile and

Grounding)

Data types - IO’s (in Profile, Process, and Grounding)

- External ontologies

Co-ordination

patterns

- ControlConstructs for CompositeProcess

- Pre-conditions and Effects 

Components: A DAML-S Service is a component. Its

Profile describes the functionality of the service and its

Process its behaviour. Its Grounding builds a bridge from

conceptual to operational level. Theoretically, DAML-S

allows grounding a single conceptual description to

multiple operational descriptions. However, to avoid

confusion, we opted for the simplified version of a one-

to-one correspondence between conceptual and

operational descriptions. This is a simplification also for

the AF, which allows conceptual models to have more

than one implementation model, and vice versa.

Data types: At a conceptual level, data types are

described by the IO’s in the Profile and Process model.

As a DAML+OIL-based ontology, DAML-S offers “rich

typing”, which enables the expression of data types and

the relationships between data types. At the operational

level, data types are described in WSDL. Note, however,

that within DAML-S the mapping from conceptual to

operational data types is restricted to a one-to-one

mapping. 

Co-ordination patterns: DAML-S supports the

description of co-ordination patterns via the Process

Model, which uses a set of ControlConstructs (e.g.

Sequence, Split, Choice) to define the internal control of

the internal processes. Pre-conditions and Effects (PE’s)

can be used to express dependencies between web

services. Within the Profile description, only PE’s

concerning the usage of the whole service are specified.

The Process description can describe specific PE’s that

occur during the use of the web-service. Thus the Process

description of a composite process using

ControlConstructs and PE’s, is a single co-ordination

pattern that has been instantiated and is only useful

possibly for matching or monitoring purposes but not for

dynamic composition. 

In summary the DAML-S WS description language is

sufficiently expressive for specifying conceptual and

operational building blocks. 

4. An example

This section illustrates the use of the Agent Factory for

the composition of WS, for a specific domain. Section 4.1

describes the scenario. Section 4.2 elaborates on the

example design trace of a configuration process.. 

4.1. The scenario 

The example chosen to illustrate how the AF can be

used to configure WS is that of the creation of a

browseable portal for bibliographic data2.. The

bibliographic data is originally expressed in a number of

BibTeX files.

The portal makes use of a set of web services (denoted

in small capitals): BIB2RDF, ISESAME, SIA, and ESESAME.

These WSs can bez used either individually or in

composition, depending on, e.g., the format of the files, or

availability of the information in a Sesame repository. In

the scenario presented in this section all of these WS are

needed.

First, each BibTeX file is converted to RDF(S) using

the  BIB2RDF service, then saved in Sesame3, a web-

accessible RDF(S) repository and query engine, by the

service ISESAME. The merger of multiple BibTeX files

most often results in implicit redundancies as different

owners of these bibliographies use syntactically different

resources to denote the same author. To make this

information explicit sets of redundant resources on

authors are identified and labelled with the

sameIndividualAs DAML tag by the SIA

(SameIndividualAs) service. To determine the

redundancies: all data is extracted from Sesame with the

service ESESAME and sent to the SIA service. The results

and extracted data are reinserted into the repository of

Sesame using ISESAME. Finally, portal creator software,

not represented as a separate WS, creates the portals of

publications by querying Sesame.

2 The services used in this example have been developed within the

context of the SW@VU project, see

http://www.cs.vu.nl/~mcaklein/SW@VU/
3 http://sesame.aidministrator.nl

Proceedings of the IEEE/WIC International Conference on Web Intelligence (WI’03) 

0-7695-1932-6/03 $17.00 © 2003 IEEE



Table 2. Initial Requirements

ID Description

rqi1 Create input for portal creator p1

rqi2 Input I1 is generated from references in BibTeX

files

The initial requirement set formulated for the design

process is depicted in Table 2. Rqi1 states that the user

wants to use portal creator p1, the portal from the

SW@VU-project . This means that: the input I1 of portal

p1 needs to be created from multiple BibTeX files (rqi2).

Table 3 states the additional requirements, resulting

from the usage of portal p1. Portal p1 accesses the

information for the portal creation from a Sesame

repository (rqp13), which must contain references (rqp14),

and p1 should be able to access this information without

worrying about authors being referenced differently

(rqp15).

Table 3. Requirements of portal creator p1

ID Description

rqp13 Input Iportal must be in a Sesame repository

rqp14 Input Iportal contains set of references

rqp15 Input Iportal has one unique identifiers for each

author

Within the trace in section 4.2 decisions in the design

are made based on observations of conflicts, or of details

within WS descriptions. As a reference point these

observations are given beforehand:

- Sesame can handle double identifiers for the same

instance if they are marked as being equal. This

functional property is also stated in ISESAME.

- The input for ISESAME specified in its Profile is data,

and references are a subtype of data. Conceptually

BibTeX files can be used as input for ISESAME.

- The input for ISESAME is specified in its Grounding

as RDF-stream, which is no subtype of data-stream.

Operationally BibTeX files can not be used as input

for ISESAME.

- A pre-condition of ISESAME is that its input needs to

be tagged with DAML:sameIndividualAs-tag before it

can handle double identifiers.

- The output of is SIA specified in its Profile as equal

authors. This implies that not whole references are

returned as output.

4.2 An example of design

As described in Section 2.2, the Agent Factory uses the

Generic Design Model as basis for the design process. In

this example reasoning about the design process (DPC),

reasoning about requirements and their qualifications

(RQSM), and reasoning about the design object

description (DODM) are separated. Only the first part of

the design trace is given. The design starts after the initial

requirements and the requirements of portal creator p1

have been communicated to the design process.

4.2.1. Step 1

DPC: The design process is started. The general strategy

is a top-down approach: to identify a component that

performs the required functionality.

RQSM: A relevant set of requirements must be compiled

from the total set of requirements. The requirement rqi1 to

create input for portal p1 is generalised to the requirement

rq6. And rqp13, and rqp15 are combined to formulate

requirements rq7  and rq8:

rq6 aggregate information in repository Rep1

rq7  Rep1 is a Sesame repository

rq8 Rep1 identifies same instances with single

identifier

This set of requirements is passed to DODM. 

DODM: The first structural aspect considered is

components. Functionally a web service is sought that can

store data in Sesame, and handle double identifiers for the

same instance if they are marked as being equal. This

functionality is covered by the web service ISESAME. In

the DAML-S profile the service category states that it

stores data in a Sesame repository, which can handle the

DAML:sameIndividualAs-tag for identifying double

instances.

4.2.2. Step 2:

DPC: Now the component for fulfilling requested

functionality has been found. This component needs to be

integrated for data-exchange.

RQSM: The relevant requirement on the data-exchange is

rqi2. This requirement is refined to rq9 and rq10.

rq9 Input are references

rq10 The input are BibTeX files

The set of rq9 and rq10 are passed to DODM. 

store in

Sesamedata

ISesame
RDF-stream

conceptual

operational

Figure 3. The ISESAME component

DODM: This step focuses on the structure data types. The

input and output on both levels of abstraction of the

component ISESAME are given in Figure 3. In this figure,

functionality is shown with ovals for descriptions on the

Profile-level, and the operational service is displayed in

rectangles. On the conceptual level the data exchange

Proceedings of the IEEE/WIC International Conference on Web Intelligence (WI’03) 

0-7695-1932-6/03 $17.00 © 2003 IEEE



poses no problems. ISESAME expects as input parameter

in the DAML-S Profile data, which is a superclass of

references.

On the operational level there is, however a conflict.

ISESAME expects an RDF-stream as input, specified in the

DAML-S Grounding. However, rq10 states that the input

should be BibTeX files. BibTeX is not of type RDF-

stream. To be able to be used as input for ISESAME, the

BibTeX files should therefore be translated into RDF.

The web service BIB2RDF is retrieved and included in the

configuration. This web service performs the translation

at the operational level. In Figure 4 the result of this

alteration is shown. 

store in 

Sesame

references

ISesame
RDF 

-stream

conc.

oper.

translate

Bib2RDF

references

Data-

stream

Figure 4. Configuration for translation and
storage

4.2.3. Step 3

DPC: Continue further integration of the components.

RQSM: The requirement rqi2 states that the input for the

portal is gathered from multiple BibTeX files. This is

included in requirement rq11.

rq11 Input consists of  multiple files

DODM: This step focuses on co-ordination patterns. For

the creation of the portal multiple BibTeX-files need to be

aggregated. Therefore BIB2RDF and ISESAME need to be

activated in sequence multiple times. This step results in a

control construct (not depicted).

Further reasoning on behaviour, remaining preconditions

and effects are checked for conflicts. There is one

remaining conflict with respect to ISESAME .  ISESAME

has an additional pre-condition to handle double

instances, its input has to be tagged beforehand with the

DAML:sameIndividualAs-tag. There is one web service,

which adds these tags for similar persons: SIA. This

service needs to be integrated within the composition.

Based on the operational in- and output, this service is

activated between the BIB2RDF and ISESAME web

services.

store in

Sesame

references

ISesame
RDF-stream

conc.

oper.

filter

names

SIA

references

Data-

stream

translate

references

equal

authors

Bib2RDF

RDF-stream

Figure 5. Configuration with error on conceptual
data exchange

However, this results in a data exchange conflict at the

conceptual level. SameIndividualAs does not produce

references as output, but equal authors, as shown in

Figure 5. This difference does not show when only

considering the XML-data types in the Grounding

document. The solution to this problem involves multiple

steps, which are not further elaborated The resulting

configuration is given, without the information flow for

simplicity, in Figure 6. In this configuration, the

references are translated and stored in the Sesame

repository, until all files are handled, after which the

double author-names are filtered. The tags on equal

author-names and the references are then stored together

in a Sesame repository, this is the input for the portal as

was requested by the user. 

As shown in this trace, reasoning on function, data and

behaviour is possible using DAML-S descriptions. 

store in

Sesame

ISesame

conc.
oper.

filter

names

SIA

translate

Bib2RDF

store in

Sesame
extract from

Sesame

ISesame ESesame

Figure 6. Resulting configuration, without
showing details on exchanged data. 

5. Discussion

The use of components and reusable patterns is a

recurring theme in a number of research efforts. The work

by [21], also called the Agent Factory, is based on the

notion of design patterns to assist the design of multi-

Proceedings of the IEEE/WIC International Conference on Web Intelligence (WI’03) 

0-7695-1932-6/03 $17.00 © 2003 IEEE



agent systems.  They have developed the PASSI

methodology and an extended-UML CASE tool to help

human designers design an agent. In the analysis/design

phase, sequence diagrams are used to model protocol

descriptions and class diagrams and OCL constraints are

used to specify agent interactions and the knowledge

agents have. The various diagrams may be compiled to

generate an agent skeleton, database of patterns, reports

and design documents. The Agent Factory allows the user

to choose either the FIPA-OS or JADE platform. While

there is much overlap at a superficial level between their

work and ours, their approach aims to support developers

to design agent systems while our approach is to

automatically design agents. The use of the AF for web

services is a further distinguishing feature.

This paper has shown that the concept of an Agent

Factory such as the one described in [15] can be used to

automatically configure WS. The design model on which

the Agent Factory is based, is one of configuration, in

which reasons about requirements is an explicit

configuration, in which reasoning about requirements is

an explicit part of the design process. 

WSs have many attractive features. First, they fit in the

compositional view of our AF, they can easily be treated

as agent components. Second, because they employ

standard web protocols for interaction they are easy to

integrate at the operational level. Further, the use of a

semantic language for describing components at a

conceptual level is promising. Despite these positive

conclusions there are a set of open issues to be

considered.

(1) Control. In this paper, only sequential activation of

web services has been considered, and not parallel

activation.  This is an issue not only for configurations of

web services distributed over multiple servers, but also

for services on the same server. DAML-S does not have a

means to express co-ordination of multiple services;

DAML-S can only express control patterns within one

service.

(2) Complex services.  Complex services, composed of

atomic services, cannot be described with DAML-S [22].

(Note that processes, however, may be composed). 

(3) Extensibility. Szyperski [23] identifies that, today,

services are almost completely self-contained, not

revealing any dependencies on other services. This limits

the reusability of these web services in different contexts.

Further, Szyperski states that, for reuse, the context

dependencies have to be made explicit. Open slots as

implemented in the Agent Factory are a way to define

"dependencies" and to specify interfaces. A simple

example in which an implementation of a web service

operationally forces an open slot is a web service that has

as its input parameters the URL of the web service that it

has to use.  Our concern is that simply using IOPE's for

specifying dependencies between web services will not

suffice to support more complex configuration tasks.  As

the open slot concept is new to WSs, it is not directly

supported by DAML-S either. Extending DAML-S to

include a property isOpenSlot having as domain a Profile

instance and as range a Boolean value, is a possible

solution. A "True" value means that the specific Profile

instance must be considered as an open slot. For a

component that exposes an open slot, the corresponding

service will have a Profile instances marked as being an

open slot (i.e. the value of isOpenSlot is true).

(4) Limitations of DAML-S. The use of DAML-S is not

always straightforward [22]. The conceptual model

underlying DAML-S is imprecise. Different parts of the

language build on different metaphors (action/ function).

The links between these conceptual models are poorly

specified and often inconsistent. Within DAML-S there is

also little reference to standard Software Engineering

terminology: while basic concepts are employed (such as

"function/ method"), there are no directions given about

how to model more complex situations (such as

parametric polymorphism). This imprecise conceptual

model provided flexibility in modelling, but more often it

led to confusion.

6. Future work

Our current and future work focuses, and will focus on

three areas. First, to extend our experiments to more

complex services and composition scenarios that require

the full functionality of the Agent Factory. Second, to

find a way to express complex services and composition

of multiple services, elements that are necessary for

exploring the full potential of our design methodology.

Finally, to explore the use of composition languages

(BPEL4WS, WSFL, XLANG, WSCI, BPML) within the

Agent Factory. Our initial concern is that, for automated

knowledge and (advanced) process composition, semantic

information will be needed and that it cannot (yet) be

expressed by these industry standards, however newer

standards of, e.g., UDDI are moving to further integration

of meta-data enabling automated web service

configuration.

Acknowledgements

The authors wish to thank the project Semantic Web at

the Vrije Universiteit (SW@VU), for their web services,

N.J.E. Wijngaards for his work on the Agent Factory, and

Stichting NLnet for their support  (http://www.nlnet.nl/).

References

[1] Ponnekanti, S.H. and Fox, A. “SWORD: A Developer

Toolkit for Web Service Composition” In Proc. of The

Eleventh WWW Conference (Web Engineering Track),

Honolulu, Hawaii, May 7-11, 2002.

Proceedings of the IEEE/WIC International Conference on Web Intelligence (WI’03) 

0-7695-1932-6/03 $17.00 © 2003 IEEE



[2] Narendra, N. C. “AdaptAgent: Integrating Adaptive

Workflows and Multi-Agent Conversations for B2B E-

Commerce” In Proc. of International Conference on

Artificial Intelligence, Special Session on Agent-Oriented

Workflow Architecture for B2B, 2001.

[3] Yang, J. and Papazoglou, M. “Web Component: A

Substrate for Web Service Reuse and Composition” In

Proc. of the 14th International Conference on Advanced

Information Systems Engineering (CAiSE02), May,

Toronto, Lecture Notes in Computer Science, Vol. 2348,

p21-36, Springer, 2002.

[4] Casati, F., Ilnicki, S. and Jin, L. “Adaptive and Dynamic

Service Composition in eFlow” HP Technical Report,

HPL-2000-39, March, 2000,

http://www.hpl.hp.com/techreports/2000/HPL-2000-39.pdf

[5] Tosic, V., Pagurek, B., Esfandiari, B. and Patel, K. “On the

Management of Composition of Web Services” Workshop

on Object-Oriented Web Services - OOWS (at OOPSLA

2001), Tampa, USA, October 15, 2001. 

[6] Buhler, P. A. and Vidal, J. M. “Semantic Web Services as

Agent Behaviors” In B. Burg, J. Dale, T. Finin, H.

Nakashima, L. Padgham, C. Sierra, and S. Willmott,

editors, Agentcities: Challenges in Open Agent

Environments, pages 25-31. Springer-Verlag, 2003

[7] Knoblock, C.A., Minton, S., Ambite, J.L., Muslea, M., Oh,

J. and Frank, M. “Mixed-initiative, multi-source

information assistants” In Proc. of the WWW Conference,

pages 697--707, ACM Press, New York, NY, May 2001.

[8] McIlraith, S., Son, T.C. and Zeng, H., “Mobilizing the

Semantic Web with DAML-Enabled Web Services”, In

Proc. of the Second International Semantic Web Workshop

(SemWeb'2001), Hongkong, China, May, 2001.

[9] Van de Aalst, W. “Don’t Go with the Flow: Web Services

Compostition Standards Exposed” IEEE Intelligent

Systems, 18:1, 2003, 72-76

[10] XML Cover Pages. Business Process Execution Language

for Web Services (PBEL4WS).

http://xml.coverpages.org/bpel4ws.html.

[11] Leyman, F. “Web Service Flow Language (WSFL) 1.0”,

IBM, Armonk, NY, www-4.ibm.com/software/solutions/

webservices/pdf/WSFL.pdf, 2001.

[12] Thatte, S. “XLANG: Web Services for Business Process

Design”, www.gotdotnet.com/teaml/xml_wsspecs/xlang-

c/default.htm, 2001.

[13] Lassila, O. “Serendipitous Interoperability”, In Eero

Hyvönen (ed.): The Semantic Web Kick-Off in Finland -

Vision, Technologies, Research, and Applications, HIIT

Publications 2002-001, University of Helsinki, 2002

[14] The DAML Services Coalition “DAML-S: Web Service

Description for the Semantic Web”, In Proc. of The First

International Semantic Web Conference (ISWC), Sardinia

(Italy), June, 2002.

[15] Brazier, F.M.T., Wijngaards, N.J.E. “Automated Servicing

of Agents” AISB Journal, Special Issue on Agent

Technology, 1:1 (2001) 5-20

[16] Brazier, F.M.T, Van Langen, P.H.G., Ruttkay, Zs. and

Treur, J.  “On formal specification of design tasks” In

Proc. of the AAAI Workshop on Artificial Intelligence and

Manufacturing: State of the Art and Practice, AAAI Press,

1994, 30-39.

[17] Splunter, S. van, Wijngaards, N.J.E., Brazier, F.M.T.,

“Structuring Agents for Adaptation” In Alonso, E.,

Kudenko, D., Kazakov, D. (eds.) Adaptive Agents and

Multi-Agent Systems, Lecture Notes in Artificial

Intelligence (LNAI) 2636, Springer-Verlag Berlin.  2003.

[18] Nwana, H.S., Ndumu, D.T., Lee, L.C. “ZEUS: An

Advanced Tool-Kit for Engineering Distributed Multi-

Agent Systems”. Applied AI 13:1/2, 1998, 129-185.

[19] Brazier, F.M.T., Jonker, C.M., Treur, J. “Principles of

Component-Based Design of Intelligent Agents”. Data and

Knowledge Engineering 41 (2002) 1-28.

[20] Fabio Bellifemine, Agostino Poggi, Giovanni Rimassa:

Developing multi-agent systems with a FIPA-compliant

agent framework. Software - Practice and Experience

31(2): 103-128, 2001.

[21] Cossentino, M. Burrafato, P., Lombardo, S. and Sabatucci,

L. “Introducing Pattern Reuse in the Design of Multi-Agent

Systems”. AITA'02 workshop at NODe02 - 8-9 October

2002 - Erfurt, Germany.

[22] Sabou, M., Richards, D. and Splunter, S. van, “An

experience report on using DAML-S”, Workshop on E-

Services and the Semantic Web, Budapest, Hungary, May

2003.

[23] Szyperski, C. Component Software - Beyond Object-

Oriented Programming - Second Edition, Addison-Wesley

and ACM Press, ISBN 0-201-74572-0, 2002.

Proceedings of the IEEE/WIC International Conference on Web Intelligence (WI’03) 

0-7695-1932-6/03 $17.00 © 2003 IEEE


