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Abstract 

Recommender systems emerged to help users choose 
among the large amount of options that e-commerce sites 
offer. Collaborative filtering is one of the most success-
ful recommender techniques. In this paper we propose 
an approach to collaborative filtering based on the sim-
ple Bayesian classifier We propose a method of increasing 
the efficiency of naive bayes by applying a new semi ncùve 
Bayes approach based on interval estimation. To evalu-
ate our algorithm we use a database of Microso ft Anony-
mous Web Data from the UCI repository. Our empirical 
results show that our proposed interval based naïve Bayes 
approach outperforms typical naïve bayes1. 

1 INTRODUCTION 

The Web increasingly becomes a retailing channel of 
choice for millions of users. Nevertheless, e-commerce 
sites offer a large amount of options that can detract user 
to use the site. Automated methods are needed to provide 
users information to efficiently locate and retrieve informa-
tion they want in order to rescue the one to one relation-
ship that is in danger in e-commerce sites. Thus, recom-
mender systems have emerged to assist business in treating 
each customer individually. 

Much research has been done in applying intelligent 
techniques to provide user personal recommendations as an 
approach to solve the stated problem. One of the earliest 
and most successful recommender techniques is collabora-
tive filtering [15] [9]. Collaborative filtering is based on 
the assumption that finding similar users to a new one and 
examining their usage patterns leads to useful recommen-
dations being made for the newcomer. 

The task of collaborative filtering is to predict prefer-

1The research has been partially supported by Universidad Politécnica 
de Madrid under project WEBP-RT. 

enees of a user given a database of preferences usually ex-
pressed as numerical scores of other users. In this setting, 
the data is a collection of pairs of objects where each pair 
consists of a person and an item (i.e. Web pages, products). 
In the collaborative filtering task we are interested in mak-
ing predictions on how likely a person is to be interested in 
a particular item (page in our case) given information about 
their and other user's historical behaviors or interests. 

Memory-based collaborative filtering algorithms main-
tain a database of previous users preferences and perform 
certain calculations on the database each time a new pre-
diction is needed. The most common representatives are 
neighbor-based algorithms where a subset of users most 
similar to an active user is chosen and a weighted average 
of their scores is used to estimate preferences of an active 
user on other items [9] [17]. In contrast, model based algo-
rithms first develop a description model from a database and 
use it to make predictions for a user. In these approaches, 
collaborative filtering is perceived as a classification task. 
Published systems of this type include Bayesian networks 
[2] and classification-based algorithms [1]. Neighbor-based 
collaborative filtering algorithms are known to be superior 
than models based on terms of accuracy but their high la-
tency can be a drawback in systems with a large number of 
request to be preprocessed in real time. Moreover, as the 
number of items evaluated by an active user decreases the 
prediction accuracy on neighbour, systems deteriorates dra-
matically. In [14] a simple Bayesian classifier for collabo-
rative filtering is presented. The proposed model is applied 
both to user-based collaborative and item-based recommen-
dations. According to the authors, the Bayesian classifier 
outperforms typical correlation-based collaborative filtering 
algorithms. 

The majority of the approaches to the problem of collab-
orative filtering assume a data representation for each object 
and focus on a single relationship between the objects. In 
[5], the authors examine a richer model that makes it possi-
ble to reason about many different relations between the ob-
jects. This is specially important, in the context of the Web 
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where there is often more relational information than the 
simple person-item relationship. They also focus on model-
based methods and review the two side clustering model for 
collaborative filtering [7]. In [3] a new collaborative filter-
ing algorithm based on factor analysis is presented. The 
algorithm is based on a probabilistic model of user choice 
and on a probabilistic sound approach to dealing with miss-
ing data. The main drawback of the algorithm is that the 
model cannot be applied over binary recommendation sys-
tem. 

In spite of all the research that has been conducted on 
collaborative filtering in the last years, there are two chal-
lenges to solve [16]. The first problem of collaborative sys-
tem is the scalability of the algorithm. Due to the nature of 
e-commerce and in order to obtain a good recommendation 
millions of records have to be explored. The second chal-
lenge is related to the quality of the recommendation being 
done to the customer. The recommendation should be valu-
able. Like any other prediction systems in recommender 
systems the final decision can fall in one of the next cate-
gories: false negatives if the decision is not recommending 
a product that the user would have liked or false positive 
when the systems decision is to recommend a products that 
the user does not like. In e-commerce the most important 
error to avoid is false positive as the loyalty of consumer is 
questionable if the site recommends him to acquire some-
thing he does not like. 

In this work we present a new approach to collabora-
tive filtering based on naïve Bayes. The new approach is 
named Interval Estimation naïve Bayes (IENB). We pro-
pose to calculate the parameters of naïve Bayes with a con-
fidence interval and later to make an heuristic search for 
the best naïve Bayes classifier that can be extracted from 
the intervals. We evaluated this algorithm using a database 
of Microsoft Anonymous Web Data from the UCI reposi-
tory [13]. This new approach outperforms the simple naïve 
Bayes classifier and other variants specifically defined for 
collaborative filtering [11]. However, the learning time of 
our approach takes two or three hours. Therefore, depend-
ing on the task to be made, this algorithm will be useful or 
not. 

The rest of the paper is organized as follows. In sec-
tion 2 the naïve approach to collaborative filtering is briefly 
outlined. Section 3 is a brief introduction to statistical in-
ference. Section 4 contains the statistical demonstration of 
parameter estimation in naïve Bayes and Interval Estima-
tion naïve Bayes. Section 5 introduces the new approach 
Interval Estimation naïve Bayes. Section 6 shows how the 
new approach outperforms the previous approaches. Sec-
tion 7 presents the conclusion and the future lines of work. 

2 Naïve Bayes classifiers in collaborative fil-
tering 

The naïve Bayes classifier [4] [6] is a probabilistic 
method for classification. It can be used to determine the 
probability that an example belongs to a class given the val-
ues of variables. The simple naïve Bayes classifier is one of 
the most successful algorithms on many classification do-
mains. In spite of its simplicity, it is shown to be compet-
itive with other complex approaches specially in text cate-
gorization and content-based filtering. 

This classifier learns from training data the conditional 
probability of each variable X k given the class label c ; . 
Classification is then done by applying Bayes rule to com-
pute the probability of C given the particular instance of 
X\,..., X„, 

P{C = C¡\Xl = X!, . . . ,Xn = Xn) 

As variables are considered independent given the value 
of the class this probability can be calculated as follows, 

P{C = c¡|A'i = x i , . . . , Xn = xn) oc 
n 

P(C = ci)l[P(Xk=xk\C=ci) (1) 
k=1 

This equation is well suited for learning from data, since 
the probabilities P(C = c¡) and P(Xk = xk\C = c¡) 
may be estimated from training data. The result of the 
classification is the class with highest probability. 

In Pazzani and Miyahara [11] two variants of the simple 
naïve Bayes classifier for collaborative filtering are defined: 

1. Transformed Data Model After selecting a certain 
number of features, absent or present information of 
the selected features is used for predictions. That is: 

P{C = c¡ J Si = s 1 , . . . , Sn = Sn), (2) 

where r < n and S¡ G X¡,..., X„. S¡ variables are 
selected using a theory based approach to determinate 
the most informative features. This is accomplished by 
computing the expected information gain that the pres-
ence or absence of a variable gives toward the classifi-
cation of the labelled items. 

2. Sparse Data Model In this model, authors assume that 
only known features are informative for classification. 
Therefore, only known features are used for predic-
tions. That is: 

P(C = Ci\Xi = 1, X3 = 1,..., Xn = 1) (3) 



3 Statistical Inference 3.2 Interval Estimation 

Statistical inference studies a collection of data based on 
a sample of these ones. This sample represents the part 
of population considered in the analysis. Amongst other 
things, statistical inference studies the problem known as 
"estimation problem". The estimation of a parameter in-
volves both the usage of sampled data and some statistical 
tools. There are two ways of accomplishing this task: point 
estimation and interval estimation. In general, a parame-
ter estimator 9 is some random variable 9 that is expressed 
according to a random sample and whose goal is to approx-
imate the value of 9, 9(Ai,...,Xn). 

3.1 Point Estimation 

Point estimation uses a sample with the aim of assigning 
a single value to a parameter. This value must represent a 
good presumption of the real value. The assigned value is 
called a point estimation. Point estimation methods are used 
in order to obtain estimators that provide good features. 
Specifically, maximum likelihood method and method of 
moments are used in this context. Only the first one is de-
scribed, because it is used in naïve Bayes. 

Let A' be a random variable whose probability distribu-
tion is 

fix\9) 

A simple random sample of size n, A i , A 2 , . . . , Xn has 
as joint probability distribution 

fix 1,2-2, • • • ,Xn\9) 

This function depends on n + 1 variables. Nevertheless, 
it may be calculated only in terms of 9, if the xk values are 
fixed. This function of 9 is known as likelihood function. 

In this context, it is interesting to formulate that if a sam-
ple is given with particular x k values, a possible parameter 
estimation is the one that maximizes the likelihood function. 

xi,.. ., xn given =4> Likelihoodf unction = 

V(9) = f(x1,...,xn,9) 

To maximize a function is equivalent to maximize the 
logarithm of a function, because the logarithm function is 
strictly monotonically increasing. For this reason, it is pos-
sible to calculate the maximum value through the derivative 
of the logarithm of the likelihood function with respect to 
9, taking as maximum likelihood estimator the one whose 
derivative is equal to zero. 

d\ogV Á 
— = 0 (4) 

Interval estimation determines a possible range of val-
ues (values interval) and their associated probabilities for 
a parameter value. This parameter is often a proportion in 
the case of dichotomous variables and the average and the 
variance in the case of gaussian variables. 

This technique calculates for each sample an interval that 
probably contains the parameter. This interval is called con-
fidence interval. 

Obviously, this technique does not always achieve the 
right result. The probability with which an interval includes 
a parameter is known as confidence level. Significance level 
is the probability for the error of this fact. 

4 Parameter estimation in naïve Bayes and 
Interval Estimation naïve Bayes 

This section contains a formal analysis about the accu-
rate estimation of parameters in naïve Bayes and the confi-
dence intervals in Interval Estimation naïve Bayes. 

4.1 Point estimation of parameters in naïve Bayes 

In this section it is formally explained how to learn the 
parameters in a data modeling naïve Bayes. The obtained 
results are intuitive. 

Let V = ..., N} be a dataset of binary at-
tributes, that is x£ G {0,1}. Every instance x11 has as-
sociated a class label cf . Based on the class label it is 
possible to split the instances into different classes: A ' = 

is in class c ;}. We only consider the usage of two 
classes, which is called a Bernoulli process. The case with 
more classes is also straightforward and is called multino-
mial process. 

For each class the values P( A\, = 1|C = c¡) = 9'k must 
be estimated. The other probability, P(A\, = 0 |C = c¡) 
is given by the normalization requirement P(X/: = 0 |C = 
c¡) = 1 - PiAfc = 1\C = c¡) = 1 - 9'k. Making use of 
the standard assumption that data are generated in the same 
manner and independently, the probability with which the 
model generates the dataset A ' is, 

P{X')= n P{x"\C = a) 
1-iECi 

Taking into account the assumption of independence, 

P{Ai = x1,...,Xn = xn\C- = c¡) = 

n P ( X k = xk\c = a) 1 1 I - 0 Í ) 1 - * * 
k k 



It is important to remember that each term in the product 
above, xk, is zero or one. Therefore, only one factor will 
contribute to the calculus. If xk = 1 the factor 0'k will con-
tribute and if Xk = 0 the factor that will contribute is 1 — 0'k. 
Joining the two previous formulas and taking logarithms, 

iog(0 ; ) = l o g + ( 1 - 4 ) i°g( 1 - % )] 

Optimizing with respect to 0'k, that is, differentiating 
with respect to 0'k and making it equal zero, 

P ~ P 

To find a confidence interval with level of significance a 
for p we must consider, with a confidence 1 — a, 

that is, 

\Z\ < -a 

\P~ P\ ^ 

num. times xk = 1 for class c¡ 
P{Xk = xk\C = Ci) = - : num. times class is c¡ 

(5) 
With a very similar development of maximum likelihood 

estimation, the following result will be obtained 

» „ num. times class is c¡ 
P{C = Cj) = (6) 

num. oj total instances 

4.2 Interval estimation of parameters in IENB 

In the case of IENB what we want is to calculate the 
confidence intervals for the parameters. 

Given, A'i, Xn, • • •, Xn Ber(p), we want to estimate 
the parameter p. The most natural way to make this esti-
mation consists in defining the sum of the variables, which 
generate a binomial distribution, 

X = X1 + ...+Xn~>B(n,p) 

and taking as its estimator the random variable 

, X 
P = — n 

This means that as estimation of p we are taken the pro-
portion of success in the n experiments. 

The success distribution is binomial and it may be ap-
proximated by a normal distribution when the sample size 
is big, and p is a value not very close to zero or one. 

X B(n,p) =>• X Af{np, npq ) 

The estimator p is a scale transformation of X, conse-
quently, 

so, 

\p- p\ <~a\ — V n 

that can be summarized as, 

p = p± za 

having a confidence of 1 — a 

(7) 

This expression is quite difficult to compute, so it may 
be substitute for the next expression, 

5 Interval Estimation naïve Bayes - IENB 

We propose a new semi naïve Bayes approach named in-
terval estimation naïve Bayes (IENB). In this approach, in-
stead of calculating the point estimation of the conditional 
probabilities from data, as simple naïve Bayes does, we cal-
culate confidence intervals. After that, by searching for the 
best combination of values into these intervals, we seek to 
break the assumption of independence among variables in 
the simple naïve Bayes. Although we have used this algo-
rithm for collaborative filtering, it may be used in the same 
problems we use the simple naïve Bayes. 

There are three main important aspects in IENB algo-
rithm: 

• Calculation of confidence intervals 

Given the dataset, the first step we must do is to calcu-
late the confidence intervals for each conditional prob-
ability and for each class probability. For the calcu-
lation of the intervals we must first compute the point 
estimations of these same parameters (see section 4.1). 

In this way, each conditional probability that must be 
estimated from the dataset p'k r = P(Xk = xr

k\C = 
c¡ ) must be computed with the next confidence inter-
val, as we demonstrate in section 4.1. 



, .Pfc . r t i -Pfc . r ) «i , J A,M-Pí,r) 
Pk,r -aW jy >Pfc,r + -aW jy 

(8) 
For k = 1,...,??. A ¿ = 1 , . . . , | |C|| A r = 
l , . . . , | |A ' f c | | , where, 

r = possible values of variable 

pj, r = point estimation of the conditional probability 
P(Xk =xr

k\C = c¡) 

za = ( 1 — a) percentil in the A/"(0,1) 

N = is the number of cases in dataset 

Also, in a similar way, the probabilities for the class 
values pi = P(C = c¡) are estimated with the next 
confidence interval, 

N N 

where, 

p'i = point estimation of the probability P(C = c¡ 

za = ( 1 — a) percentil in the A/"(0,1) 

N = is the number of cases in dataset 

Search space definition 

Finally, each generated individual must be evaluated 
with a fitness function. In section 6.2 this function is 
defined. 

Heuristic search for the best individual 

Once the individuals and the search space are defined, 
we must run the optimization heuristic algorithm to 
search for the best individual. 

To make the heuristic search in this work we have used 
EDAs -estimation of distribution algorithms-. EDAs 
[12] [10] are non-deterministic, stochastic heuristic 
search strategies that form part of the evolutionary 
computation approaches, where number of solutions or 
individuals are created every generation, evolving once 
and again until a satisfactory solution is achieved. In 
brief, the characteristic that most differentiates EDAs 
from other evolutionary search strategies such as GAs 
is that the evolution from a generation to the next one 
is done by estimating the probability distribution of the 
fittest individuals, and afterwards by sampling the in-
duced model. This avoids the use of crossing or muta-
tion operators, and, therefore, the number of parame-
ters that EDAs requires is reduced considerably. 

6 Experimentation 

6.1 Dataset 

Once the confidence intervals are estimated from the 
dataset, it is possible to generate as many naïve Bayes 
classifiers as we want. We must only take a value in-
side each estimated confidence interval. 

In this way, each naïve Bayes classifier is going to be 
represented with the next tupia, 

/ A;F: A* "̂ LL̂ LL* (J?!, . . . )P||c|| iPl,li • ' ' ïPl, l i 
A | | C | | * A | | C | | * \ 

Pl,||A"i||' • • • ' P n, 11 A~n I ' (10) 

where, 

p* = selected values inside each confidence interval. 

Thus, the search space for the heuristic optimization 
algorithm is composed of all the valid tupias. A tupia is 
valid when it represents a valid naïve Bayes classifier. 
Formally, 

£ p ; = i A V f c V i £ p £ r = i ( ID 

In order to evaluate the presented approach (Internal Es-
timation naïve Bayes) for collaborative filtering a dataset of 
Microsoft Anonymous Web Data from the UCI repository 
[13] has been used. 

This dataset was created by sampling and processing 
the w w w . m i c r o s o f t . c o m logs and records the use of 
w w w . m i c r o s o f t . c o m by 32711 anonymous, random-
ly-selected users. Attributes of the table represent each 
of the 294 areas of the w w w . m i c r o s o f t . com web site 
and each record represents all the areas that a user has 
visited in a one week timeframe. Consequently if a user 
has visited a certain area along the specified period then 
the corresponding column will take 1 as the value and 
0 otherwise. This ends up with a very sparse and not 
balanced dataset. 

The dataset will be used to predict the areas of 
www . m i c r o s o f t . c o m that a new user will visit. 

After the learning and validation we will evaluate predic-
tion accuracy, learning time and speed of predictions. The 
accuracy will be measured via the leave one out method [8]. 

http://www.microsoft.com
http://www.microsoft.com
http://www.microsoft


6.2 Measuring prediction accuracy -Evaluation 
Function-

The percentage of successful prediction is the measure 
most frequently used to measure the quality of a classifier 
when we deal with balanced datasets. Nevetheless, when 
the training dataset happens to be not balanced this measure 
is not appropriate. As an example let's suppose that only 
1000 users from a total of 32711 have visited a certain page. 
A classifier with the following confusion matrix (see table 
1), in which no potential visitor is classified as so, would 
have an accuracy of 31711/32711 = 96.94%, which illus-
trates the fact that accuracy is not an appropriate measure of 
quality when dealing with sparse datasets. 

Classified as 
Real 0 1 
0 31711 0 
1 1000 0 

Table 1. An example of a confusion matrix 
Consequently, in order to measure the quality of predic-

tion we propose to use a new measure to balance the results. 
Given a generic confusion matrix (see table 2), the measure 
we propose to use is: 

( a d \ , 

Classified as 
Real 0 1 
0 a b 
1 c d 

Table 2. A generic confusion matrix 
This measure happens to be more realistic than accuracy 

in the example we are dealing with because it evaluates the 
percentage of visitors classified as visitors and the percent-
age of non-visitors classified as non-visitors independently 
and then calculates the average value. This measure will 
be used when evaluating results of the interval estimation 
naïve bayes 

It is also worth mentioning that in order to calculate the 
probability of a user to be classified as a certain class, the 
idea exposed in the variant Sparse Data Model (see equation 
3) defined by Pazzani and Miyahara has been used in our 
approach. 

6.3 Experimental results 

The presented approach has been used to predict if a user 
will visit one of the 18 most visited areas of the site. The 
most visited area has 10836 visitors and the less visited has 
1087 visitors. This range of visitors is enough to analyze 
the behavior of the interval estimation naïve bayes. 
Simple naïve Bayes, the variant Sparse Data Model de-
fined by Pazzani and Miyahara and interval estimation naïve 
Bayes have been executed on the training dataset. The re-
sults are shown in Table 3. The first two columns of the 
table represent the areas and the number of visitors for each 
area. The remaining columns shows the results of the exper-
iments. For each algorithm the evaluation function (Levai) 
is shown. As it was already mentioned, the evaluation func-
tion is the value that will be taken into account when quality 
is measured. 

simple NB PazzaniNB IENB Max 
Area Visitors fjsval fjsval ¡J'Y <tí 
'1008' 10836 63.03 70.59 71.73 
'1034' 9383 64.72 54.56 55.93 
'1004' 8463 54.12 53.95 55.75 
'1018' 5330 72.08 75.60 77.49 
'1017' 5108 62.39 68.96 71.15 
'1009' 4628 71.16 72.11 73.12 
'1001' 4451 71.75 77.49 78.58 
'1026' 3220 71.41 83.68 85.84 
'1003' 2968 72.21 78.39 79.54 
'1025' 2123 67.24 55.53 57.53 
'1035' 1791 75.97 88.64 89.54 
'1040' 1506 68.06 75.45 79.36 
'1041' 1500 71.74 79.61 80.77 
'1032' 1446 57.27 57.23 58.47 
'1037' 1160 68.40 79.26 80.99 
'1030' 1115 65.26 71.69 73.51 
'1038' 1110 73.52 80.58 83.66 
'1020' 1087 62.71 68.60 70.97 
Average 67.39 71.77 73.55 

Table 3. Experimental results for Interval Es-
timation naïve Bayes 

In order to evaluate the Interval Estimation naïve Bayes 
the following parameters have to be taken into account: 
(i) Prediction accuracy: Results from the experiments high-
light the fact that the new approach presented outperforms 
both simple naïve and the variant presented by Pazzani. 
The variant of Pazzani and Miyahara outperforms sim-
ple naïve Bayes in 4.38% and our new approach outper-
forms the last one in 1.78% and the simple naïve Bayes 
in 6.16%; (ii) Learning time: In this aspect results are not 
so clear. Simple naïve Bayes and the variant of Pazzani 
and Miyahara have a really short learning time. Few sec-
onds are enough for the learning. However, interval estima-
tion must make a heuristic search of the conditional prob-
abilities. The evaluation of each individual takes the same 



time as the evaluation of the simple naïve Bayes classifier. 
In conclusion, the learning time could be in the range of 
hours. However the learning process has to be executed 
only once so that this should not be a drawback of the algo-
rithm;(iii) Speed of predictions: Once the learning is made, 
the speed of the predictions has shown to be exactly the 
same for all the three algorithms. 

7 Conclusion and further work 

In this work interval estimation naïve bayes has been 
proposed as a new approach for collaborative filtering. Ex-
perimental results shown that our approach outperforms the 
simple naïve Bayes and other variants specifically defined 
for collaborative filtering. 

Nevertheless this is the first approach and we think it 
could obtain better results changing the objective of the 
heuristic search. We are currently working in the maximiza-
tion of the area under the ROC curve. We are also working 
in the combination of the presented approach with a feature 
subset selection. On a first phase it is possible to make a 
subset selection, and on a second phase to apply interval es-
timation to the previous results. We think that this enhance-
ment would improve the results of the presented approach. 
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