
Functionality Adaptation: A Context-Aware Service Code Adaptation for
Pervasive Computing Environments

Vivien Wai-Man Kwan, Francis Chi-Moon Lau, Cho-Li Wang
Department of Computer Science and Information Systems

The University of Hong Kong�
vjwmkwan,fcmlau,clwang � @csis.hku.hk

Abstract

Pervasive computing has attracted a lot of attention in
recent years. Proxy servers that are suitable for perva-
sive computing have also been designed. They use differ-
ent kinds of content adaptation techniques (such as distilla-
tion and transcoding) to adapt web contents in the content-
rich servers to the resource-constrained devices. Although
the adaptation of web contents have been widely discussed,
less attention is put on the adaptation of services (or ser-
vice codes), which is also important to enable computing
anytime, anywhere, and on any device. In this paper, we
present a proxy-based context-aware adaptation of service
codes, known as functionality adaptation. The main diffi-
culty of such an adaptation is to estimate the resource us-
age required for the execution, which varies with the input
size and is available only at run-time. We propose a conser-
vative solution for the adaptation. A simple prototype has
been implemented to evaluate the quality of the adaptation.

1. Introduction

In the last few years, we have witnessed the prolifera-
tion in use of mobile devices and how mobile and pervasive
computing [7] revolutionizes the way of computing. Today,
computing is no longer limited to a particular location us-
ing non-mobile computing devices and can now be done on
a heterogeneity of mobile devices, such as laptop computers
and information appliances like Personal Digital Assistants
(PDAs), smart phones, etc. Services can be accessed us-
ing these mobile devices wherever and whenever they want
them: at home, in a meeting, or even when traveling. This
change in the computing paradigm has made human lives
easier and more convenient.

Due to the unique inherent characteristics of pervasive
computing: computing device heterogeneity, limited de-

vice capability, and user’s high mobility, information or
services delivered in pervasive computing environments
should provide adaptability support. A key to this is
context-awareness [1]. Systems that are designed to pro-
vide services or information to the clients in pervasive com-
puting environments should be context-aware, so that the
services or information delivered can be adapted according
to the target device’s execution context, including the avail-
able resource of the device, location, time, and the behavior
of the device user. Content adaptation, a common technique
that has been used to adapt information to the client device
according to the device capabilities, is an active research
area that takes into consideration the contexts differences in
mobile environment.

Although context-awareness issues is well explored with
regards to information and web contents adaptation, the is-
sues on the general application and service development
process in pervasive computing environments are rarely dis-
cussed. In the past, traditional software applications, which
target to be run in an environment with less context change,
were written for only a limited number of platforms with
few considerations on context-awareness issues. However,
with the diversity of client platforms and contexts in the mo-
bile and pervasive computing environments, it will be dif-
ficult for software developers to build applications that are
able to handle different context scenarios for each of their
targeted devices. On the other hand, although the introduc-
tion of Web Services, in which services are run on some
dedicated servers, avoids the problem of running codes on
heterogeneous platform, it is generally believed that run-
ning context-aware services (e.g. transcoding services) on
the servers would put some extra burdens to the server,
thereby making performance and scalability bottleneck to
the services provided. Clearly, a proxy system is a suit-
able entity to offload the burden of the servers and provide
context-aware services to the clients.

In this paper, we introduce a proxy-based approach for
context-aware adaptation of service codes to the clients.
Services are dynamically made up of mobile code compo-

nents, which are returned to the clients on demand. The
adaptation makes use of run-time information provided by
the clients to adapt service codes that can provide the de-
sired functionality in the target device. This run-time infor-
mation includes, among all, the resources available in the
client device for executing the desired service or function-
ality. In order to determine service codes that are suitable
for the clients, the proxy system needs to estimate the re-
source usage required for providing the service. This re-
source usage is not simply a static resource usage that can
be known easily, but also includes the dynamic resource us-
age that depends on the execution and is only available at
run-time. Despite the dynamics, this resource usage esti-
mation needs to be available even before knowing the actual
service codes that will be used by the clients at run-time for
providing the service. Therefore, unlike traditional proxy
servers, our proxy system does not simply act as a caching
device, but also act as a broker and has the intelligence to
select suitable service codes on behalf of the clients.

This paper is organized as follows. We first give an
overview of the Sparkle Project, in which our proxy system
is based on, in the next section; followed by the adaptation
challenges and its adaptation principles in Section 3 and 4.
Section 5 presents a simple prototype of the proxy system
and its evaluation. Some of the related works are then given
in Section 6, which is then followed by a conclusion in Sec-
tion 7.

2. Overview of the Sparkle Project

Similar to other projects like Microsoft .NET [9], Sun
Microsystems Open Net Environment [11], and the Univer-
sity of Washington’s One.World [13], the Sparkle Project
aims to build an infrastructure that is suitable for perva-
sive computing environments. However, instead of mak-
ing use of Web Services, it supports downloading of mo-
bile codes to client devices in an on-demand fashion. The
infrastructure is based on the existing Internet infrastruc-
ture, with adaptability, mobility support and peer-to-peer
co-operation as its main features. These three supports are
important for infrastructures in pervasive computing envi-
ronments. Figure 1 shows the architectural overview of the
Sparkle system.

Mobile code components in our architecture are on-
demand downloaded to the client devices, executed and
then discarded. For example, it is possible to run an im-
age processing application in a resource-constrained device
to open, blur, find edges, or flip images, etc. An image pro-
cessing application, SparkleView [10], was built to demon-
strate the feasibility of our execution model. Requests are
sent to the proxies at run-time for the necessary codes to be
downloaded to the client device for execution.

Figure 1. An architectural overview of the
Sparkle system

2.1. Facets

Mobile code components that constitute services in our
infrastructure are called facets. Each facet, when executed,
provides a specific functionality for the clients. Function-
ality that a facet performs is regarded as a contract with
clearly specified descriptions, inputs and outputs, together
with pre-conditions and post-conditions. Users based on
these contracts to decide upon the functionality they need.
This functionality that a user requires, from the user point
of view, is called a service.

In order to help adapting the code components, facets
need to provide some information to describe themselves.
A facet is, in fact, made up of two parts:

� Code Segment. This is the execution code that imple-
ments the functionality. It follows the contract and has
one publicly callable method to be called upon by oth-
ers. The client devices simply need to load this code
segment in order to execute the specified functionality.

� Shadow. This is the metadata for describing a facet.
It specifies the properties of a facet, such as the ven-
dor, version, functionality, facet dependencies, and re-
source requirements, etc.

2.2. Facet Dependencies

A facet does not need to perform the whole functionality
by its own. It might need other facets to help achieving its
functionality. The services that a facet requires to help pro-
viding its functionality are called its dependencies. These

dependencies a facet requires can be represented by a facet
dependency tree. For example, figure 2(a) shows a facet de-
pending on the functionalities ����� and � . At run-time, these
facet dependencies are used as requests for actual facets,
which in turn have their own dependencies to help achiev-
ing their functionalities. For example, a facet for viewing
an image requires a facet that can provide a functionality to
decode an image. The proxy system chooses from among
all those facets that can provide a functionality of decoding
an image a facet to return to the client. This facet, in turn,
might require another facet for providing some algorithmic
functions to help decoding the image. These facets that are
used at run-time to provide the image-viewing functionality
to the client can be represented by a facet execution tree. An
example of a facet execution tree is shown in Figure 2(b).

Figure 2. (a) A facet dependency tree and, (b)
a facet execution tree.

3. Adaptation Challenges

The proxy system plays a very important role in sup-
porting the downloading of facets to the client devices in an
on-demand fashion. It has the intelligence to select suitable
facets for the clients that can provide the desired function-
alities. In order to make a suitable decision for the clients,
the proxy system needs some information from the clients.
User registration is also needed for adapting to device users.

The context-aware adaptation of service codes is not triv-
ial. In particular, we have identified the following adapta-
tion challenges:

� Adaptation of Codes. Transcoding is a usual prac-
tice in content adaptation. Some syntatic information
is intentionally removed so as to reduce the resources
it consumes but maintain its semantic meaning. How-
ever, codes are not for display, but for execution in the
client devices. Any loss of the code structure during
transcoding might result in an incomplete code that is
unable to be executed. Even in a lossless transforma-
tion, it is difficult to ensure the transformed code can
achieve the same functionality as the original code. In
order to determine whether the two are equivalent dur-
ing execution, semantic analysis of the codes, which
implies human intervention, is required. This makes

the adaptation difficult to be performed automatically
on-the-fly. The situation is even worse if the codes are
in executable format, where source codes are not avail-
able for semantic analysis.

� Dynamic Configuration. Static binding of compo-
nents in service provision is not flexible for updat-
ing with new components. Instead of having a fixed
binding between code components, dynamic binding is
used in our model. Facets that constitute a service are
dynamically bound when the corresponding function-
alities are requested at run-time. This dynamic binding
creates the flexibility for dynamic updating of services,
but at the same time, also causes the facet execution
tree unable to be known at compile-time. The proxy
system is not even able to get an idea about the call-
ing depth or the complexity of the tree. All these un-
certainties increase the difficulty of making a selection
decision for the clients.

� Dynamic Resource Usage. Unlike web contents
whose resource usage can be determined statically,
codes have dynamic behavior. Given a piece of code,
different executions of the code may yield different re-
sults in the dynamic resource usages. For example, an
image decoder uses 1MB of memory resources to de-
code a ���	��
���	� image of 8-bit color depth; and 2MB
when the image to be decoded is of size ���	����
������
with a color depth of 16. This dynamic behavior of
a code’s execution makes it difficult to determine the
amount of resources that would be used when it is to
be executed in a heterogeneity of client devices.

4. Conceptual Design of Proxy System

In order to overcome these challenges, our proxy system
makes use of a two-phase adaptation for selecting suitable
service codes for the clients. The first phase, called the fil-
tering phase, is to filter out facets that does not satisfy the
requirements of the client. These requirements include, at
least, the functionality needed by the client and the amount
of resources available in the client device for executing the
specified functionality. Facets that passes through the fil-
tering phase are considered to have satisfied the client’s re-
quirements and are eligible for further processing. The sec-
ond phase, called the selection phase, is to select a facet that
best-suits the device user. This decision is based on the user
preferences and other execution contexts of the client. The
facet resulting from the two-phase adaptation is considered
functionality-adapted and returned to the client. Figure 3
shows the processes involved in a two-phase adaptation.

Figure 3. A two-phase adaptation.

4.1. Functionality Filtering

The first, and the most important, criterion for consider-
ing the suitability of a facet is the functionality it can pro-
vide. Facets that, when executed, cannot achieve the func-
tionality required by the client are useless and should not be
returned. With a functionality filter, facets that can provide
the specified functionality can be selected and the number
of facets to be processed in the later stages can be cut down
significantly.

During the functionality filtering process, not only facets
that are capable of providing exactly the same functionality
is filtered. It is possible to have facets that can provide the
functionality with a greater capability. For example, a facet
that can decode images of size no more than ���	���
 � ���
is considered to be of a greater capability than one that can
only process images of size no more than ���	�
 ����� , since
it can achieve what can be done by the latter and at the same
time handle images of larger sizes. We say that these facets
are of compatible functionality and should be able to pass
through the functionality filter.

In order to determine facets of compatible function-
ality, special information is needed in the facet shadows
for the proxy system to analyze. As mentioned before,
facet shadow contains metadata information for describing
a facet. Functionality is one of the information that needs to
be provided. Different functionalities can be distinguished
based on the description, input, output, pre-conditions and
post-conditions. Table 1 gives the functionalities of two
facets with compatible functionality.

Facets of compatible functionality have the same de-
scriptions, inputs and outputs. However, the pre-conditions
and post-conditions might be different. The capability of a
facet, therefore, is specified by its pre-conditions and post-
conditions. The pre-conditions specifies the input capability
of a facet and the post-conditions specifies the output capa-
bility. Therefore, in functionality filtering, the proxy system
tries to look for facets that have the same descriptions, in-
puts and outputs as the client’s request, but pre-conditions
and post-conditions that specify a greater capability.

The capability is represented by a range of values, called
the capability range. In order to formulate a method for
identifying a greater capability range, mathematical in-
equalities are used. Consider the two simple ranges:

Facet
���������	���	

Description: Image decoding
Input: A file containing the image to be decoded
Output: An array containing the decoded image
Pre-conditions: The size of the image to be decoded ��������������
Post-conditions: The image is decoded and put in the array
Facet

� �������	�����
Description: Image decoding
Input: A file containing the image to be decoded
Output: An array containing the decoded image
Pre-conditions: The size of the image to be decoded ����������� �����
Post-conditions: The image is decoded and put in the array

Table 1. Functionalities of two different facets.

!#" � " � �
� " � " � !

It is not difficult to realize that every values in the first range
is included in the second one, and the second range is said
to be a greater range. So, if the first range in the above ex-
ample is the range specified in the request while the second
one is the capability range of a facet, we can conclude that
the facet is of a greater capability than the one being re-
quested. Therefore, in order for the proxy system to deter-
mine whether a facet is of a greater capability, it can make
use of the OR operator in inequalities: if after applying the
OR operation to the capability ranges of the facet and the
request, and the resulting range is the capability range of
the facet, then the facet is of a greater capability.

4.2. Resource Filtering

Apart from satisfying the functionality required by the
clients, facets to be returned should also be able to execute
completely in the client device. In this filtering process,
facets that can satisfy the resource requirement of the client
device are selected. This resource requirement is provided
by the client and is the amount of available resources for
executing the specified functionality in the client device.

In order to determine whether a facet can provide its
specified functionality in the client device, the proxy system
needs to be able to know the resource usage of the function-
ality that is provided by the facet. However, determining
this resource usage is not an easy task. Recall that a func-
tionality is not necessarily provided by a single facet, but
can be provided by executing a number of facets.

Moreover, the resource usage of a facet can be divided
into two parts: static and dynamic. Static resource usage
of a facet depends on the code size, and can be known at
compile-time, while dynamic resource usage depends on
the execution as well as the inputs, which cannot be known
until run-time. Being unable to have an accurate value of

the resource usage of a facet, a better approach might be
to predict its maximum resource usage. This maximum re-
source usage can be treated as an upper bound, so that the
facet can be safely executed and completed if the maximum
resource usage can satisfy the resource requirement of the
client device.

In predicting this maximum resource usage, the dynam-
ics of the execution needs to be taken into account. There-
fore, a fixed absolute or local maximum value is not pre-
ferred. A maximum value that varies according to different
executions is needed. This value should vary according to
the size of the input values that would be used for execu-
tion, and needs to be provided by the clients. If the same
facet is used, the amount of resources used in an execution
with a small input size should be expected to be less than
that with a larger input size. Therefore, the proxy system
needs a brief idea about the input size that would be used
for execution by the clients.

On the other hand, each facet needs to provide a rela-
tion between the input size and the resource usage of the
facet. This relationship is described by a resource formula
in the facet shadow. A resource formula is a function of in-
put size, i.e. ���������
	
� �� ����� , so that the maximum resource
usage for different input size can be estimated by the for-
mula. For example, the dynamic resource usage of the ma-
trix multiplication facet may be described by the formula
������� ����������� ������������ �!�"���$#%���&���'�(# �)�����*���'�(# � � ,
where ��������� ���+������� are the dimensions of the two matri-
ces. In order to allow individual facets to be easily devel-
oped without worrying about the resource usages of other
facets that are required for execution at run-time, the for-
mula only represents the resource usage of a single facet,
i.e. a local resource usage.

In order for the proxy system to be able to estimate the
resource usage of the functionality provided by a facet, the
following assumptions are needed:

� The dynamic resource usage of a facet is represented
by a resource formula.

� The dynamic resource usage of a facet increases with
the input size.

� Each client request is accompanied by an approximate
input size.

Such an estimation of the resource usage also implies a
facet execution tree to be predicted for calculating the re-
source usage. The proxy system does not aim at predicting
an accurate facet execution tree to be used by the clients at
run-time, but the use of such a tree is only to help estimat-
ing the resource usage of the functionality. The prediction
of a facet execution tree is based on the dependencies of
each facet written in the facet shadow and are analyzed by
the proxy system during the prediction. Instead of focusing

on a single facet execution tree for predicting the resource
usage, the resource usage predicted is based on all possible
facet execution trees that can provide the desired function-
ality.

Among all these possible facet execution trees, the one
selected by the proxy system is the one that uses the most
resources for execution. The resource usage calculated is
thus considered as the resource usage predicted for execut-
ing the functionality. In calculating the resource usage, the
worst-case input size, which is the largest input size that
would be used by the client for execution, is considered.
With the worst-case input size, the resource usage of a facet
execution tree is calculated as follows:

, ���-� ./�0� , ����� 12��#3��4 ��� , ������.5�� � , ������.6�7� �98898:�

where 1 is the facet being the root of the tree, and
. � ��. � �8988 are its subtrees. Instead of summing all the re-
source usages of the facets involved, the maximum resource
usage among all its subtrees is considered. This is due to the
reason that the facets that have been used can be discarded
by the client. Therefore, no two facets in different subtrees
can be used at the same time.

Moreover, it is possible to have more than one facets that
can provide the required functionality, of a different esti-
mated resource usage. In that case, the resource usage for
the functionality is determined by getting the minimum of
them; i.e.

, �����;�<	<��="�>�>?7��4A@���� �CB��0�D�+���0� , ���-� .6ECF
 � � , ������.6ECF � � �98898:�
where 1 B � �G1 B � �8988 are facets that can provide the desired
functionality. Facets that can pass through the filter should
be able to provide the desired functionality in the client de-
vice, and are candidates to be returned to the client.

4.3. Context Selection

In the selection phase, a candidate facet that is consid-
ered to best-suit the client’s execution context is selected
and returned to the client. This selection cannot result in a
facet unable to perform the functionality in the client, but
only how suitable it is for the client. In determining the
suitability, the satisfiability of the device user is the main
concern. The proxy system, therefore, needs some informa-
tion about the device user in order to make a good decision
that reflects the user’s desire. This information that reflects
the user’s desire is the user preferences. It is a list of prop-
erties that the returned facets are preferred to have, and is
usually stored in the user profile.

With this information available, selection is mainly base
on the user preferences, such as vendor, version, etc. Users
can also specify a resource usage level (high, medium, low)
for the facets in their preferences. This resource usage level

indicates the relative resource usage among all the candi-
date facets for selection. For example, a high resource us-
age level indicates that facet that uses the most resources
among all the facets that can provide the desired function-
ality is chosen. A low resource usage level is just the other
way round. By allowing users to specify the resource us-
age level, they can control the relative resource usages of
the facets that constitute a service. For example, a user,
requesting for an e-mail service, would like to use more re-
sources for security functions needed by sending the e-mail,
and less for other kinds of functions.

Apart from the user preferences, the proxy system can
also make use of other information, such as the status of the
personal proxy cache and the user’s past usage pattern, for
better selection. They are information that can be stored in
the proxy system and used as a kind of proxy preferences
for selection. If a facet has been cached in the proxy, the
time for returning it to the client can be less. This leads to
a better performance that is likely to mean a higher prefer-
ence for selection. In another case, if the usage pattern of
a user indicates that a facet has been used before. It is also
likely that the facet has a higher preference than the other
candidates because they have ever satisfied the client (in an-
other context). Actually, whether these facets are suitable to
be given a higher preference depend on the proxy system.
But these information might be able to act as some proxy
preferences and help the proxy system in deciding the facet
that is better for the client.

Each of the user and proxy preferences is given a score.
Facets satisfying a user or proxy preference have the corre-
sponding score added, and the one that scores the highest is
returned to the client.

5. Prototype Implementation and Evaluation

As a proof-of-concept, a simple prototype of the proxy
system was implemented. Context-aware adaptation of ser-
vice codes is supported by making use of the run-time in-
formation provided by the clients, as well as information
stored in the proxy system for better adaptation. Figure 4
shows the overall architecture of a proxy server.

In our prototype, facets are implemented as Java
ARchives (JAR files), each contains the shadow and the
code segment of a facet. The shadow of a facet is writ-
ten as an XML file, while the code segment is a package
of class files with one of the classes being the main class
of the facet. Communication with the clients is done using
Simple Object Access Protocol (SOAP) [12] while commu-
nication between the proxy servers is done by the socket
interface. Requests received by the proxy servers are de-
scriptions of functionalities and context information, writ-
ten in XML format. In selecting a suitable facet for the
client, the proxy system tries to match the XML request

Figure 4. The proxy system architecture.

with the shadows that are also in XML format. Matching of
the XML documents is based on XSet [6], an XML database
and query engine from the University of California. The
facet being selected is returned to the client, with the JAR
file as an attachment to the SOAP message that briefly de-
scribes the facet.

5.1. Evaluation Metric

In order to evaluate the quality, we need a way to deter-
mine whether the adaptation achieved by our proxy system
is good or not. Different from content adaptation in which
some existing ways (e.g. analyzing the perceptual color
depth, the percentage loss in transcoding, or the bandwidth
consumption) are available to evaluate the quality of adap-
tation, there seems to have no existing evaluation mecha-
nisms for evaluating the quality of functionality adaptation.
Therefore, we need to define our own metric for the evalua-
tion. This metric should reflect how well the service codes
are adapted to the clients. A metric called Adaptation Qual-
ity Index (AQI) is, therefore, defined for our purpose:
����� � , ���'?7	 , =&� ���������
����'�
	��)�&� , ���'?7	 , =9�7��#

=94�<4�*�>@���� � ������� �
����'�
	����&� =94�<4�*�>@���� �)�
#
� , �7� � , �'��=&��� ���������
��/��
	��)�&� � , ��� � , �'��=&���7�

where the three factors are assumed to have equal weights
in our experiments and the three indices are calculated as
described below. The resource index is a fraction of the re-
source usage in executing a functionality and the available
resources in the client device. The capability index is a frac-
tion of a facet’s capability and the largest possible capability
for the functionality. The preferences index is a fraction of
a facet’s score and the total scores of the preferences in the
user profile.

5.2. Experiments

The prototype is tested on an Intel P4 2.26GHz PC (with
Linux 2.4.18-3 installed) to examine the quality of function-

ality adaptation and its performance in processing a request
from a client. The testing is based on a chess game called
Othello. This game application is designed to use facets
of 19 different functionalities. Instead of only providing
19 facets for the application, 5 facets of different capabili-
ties are designed for each functionality to allow flexibility
for the proxy server in selecting a facet fo the functionality.
This makes a total of 95 facets available for the application.

In the experiment, requests with different requesting
ranges and user preferences are used. Results show that
different facets are returned by the proxy system, implying
that the proxy system is able to adapt the service codes ac-
cording to the client’s execution context. Besides analyzing
the facets returned, the AQIs of the facets returned are also
calculated. The average AQI in adapting a facet is around
�)8 � !�� ��8 � (ideal: 1), i.e. around 65% of the ideal function-
ality. If variations in user preferences is ignored, the AQI
can be as high as ��8 � ! . Furthermore, the processing and de-
cision times for selecting a facet to be returned to the client
is also tested, and it turns out to be 300ms and 260ms on
average respectively (figure 5).

Figure 5. A graph showing the performance
w.r.t size of shadow base.

We further compared our results with a random facet se-
lection scheme. A request is sent to the proxy server for
matching facets that can provide the required functionality.
It then randomly chooses from among the candidates a facet
for returning to the client, without trying to make better de-
cisions. The average AQI in this case is about 0.59, and the
average processing and decision times is about 198ms and
150ms respectively. Thereby, making the adaptation qual-
ity of our proxy system 160% better if we are willing to
sacrifice half of the performance.

6. Related Work

The ability to adapt information and services to a diver-
sity of computing devices is the key to pervasive comput-
ing. Adaptation can be performed in the server, client, or

intermediary proxies. For flexibility, proxies are normally
used in adapting the resulting contents before returning to
the clients. However, these proxy systems usually only fo-
cus on adapting web contents for pervasive computing.

University of California Berkeley’s TranSend [3] is an
attempt to adapt web contents to heterogeneous client de-
vices. Distillation is used to transcode the contents so that
they can be handled by the resource-constrained devices.
Distillation is a highly lossy, real-time, and data-type spe-
cific compression. Contents are distilled intelligently ac-
cording to their data types, e.g. removing color information
and formatting information that the devices are not able to
understand. Quality is, thus, sacrificed to preserve most of
the semantic contents.

Digestor [2] is software system that uses automatic re-
authoring for adapting online documents. Re-authoring
is the re-structuring of the documents such that they can
be presented on the resource-constrained devices. Tech-
niques for re-authoring includes outlining, first sentence
elision, and image reduction and elision. Digestor makes
use of an automatic re-authoring system to select the
best combination of the re-authoring techniques for the
document/display-size pair. The automatic system has a
heuristic planner to help making re-authoring decisions,
which is based on the heuristics captured in manual re-
authorings.

IBM Transcoding Proxy [8] is also an http proxy that
can transcode web contents for adapting to pervasive de-
vices. It uses an InfoPyramid [4] as a data model to manage
different modalities (e.g. text, audio, video) and fidelities
(e.g. compressed image, summarized text) of the multime-
dia contents. and the transcoding methods for generating
the different versions of the contents. Translation (change
in modality) and summarization (change in fidelity) are the
two major transcoding methods being used.

Transcoding is mainly used in these proxy servers for
adapting web contents to resource-constrained devices.
However, this technique is not possible to be used in adapt-
ing service codes. Proxy systems for adapting service codes
have to use other approaches (e.g. selection) for adaptation.

Besides adaptation, the burden of locating services
should be taken up by some intermediaries, such as agents
or proxies. Users should only be responsible for describing
the services that are required. The act of locating services
are usually achieved by lookup services. In Jini [5], clients
first use a discovery protocol to discover a lookup service,
and then send their requirements to the lookup service. The
requirements are specified in a service template, which is a
structure-like data model indicating the search criteria. Ser-
vices that match the criteria specified in the service template
are returned. This is similar to the matching in the shadow
base of our proxy system. However, Jini only aim at finding
services for the clients and leaves the decision back to the

users. On the other hand, our proxy system also takes into
account the user preferences and other information about
the execution context, so as to intelligently select a suitable
service for a client.

7. Conclusion

Pervasive computing is characterized by accessing in-
formation and services anytime and anywhere, through the
use of small mobile devices. Moving around in this en-
vironment brings out the needs of customizing informa-
tion and services according to different execution contexts.
Proxy systems that are previously designed for adaptation
to resource-constrained devices have only focused on adapt-
ing web contents. With the adaptation of service codes pro-
vided by our proxy system, clients are able to download
service codes for execution, without worrying that the exe-
cution cannot be completed in the resource-constrained de-
vices. This acts as a complement to the Web Services, and
helps to enable truly pervasive computing by selecting ser-
vice codes that are suitable for the clients to execute.

Conservative prediction has contributed to the core of
functionality adaptation so that service codes selected by
the proxy servers can complete the functionality in the client
device. However, the prediction also has its own limitation
in that requesters of the functionalities are required to pro-
vide a brief idea about the range of the input size to be used
at run-time. Without this information, conservative predic-
tion cannot be done and the proxy server is unable to deter-
mine whether the service codes can provide the functional-
ity in the client device. Therefore, we hope that the follow-
ings can be done in the future:

� Best-effort Prediction. Although the requesters
should be able to provide an approximation of the in-
put size to be used, it is more flexible if the prediction
also works when the size of the input data cannot be
approximated. Despite that, the proxy server should
still be able to predict the dynamic resource usage
for executing a functionality and return service codes
that can complete the functionalities in the resource-
constrained devices. Without this information, the
proxy servers might only be able to provide a “best-
effort” prediction of the resource usage.

� Proxy Server Modules. At the current moment, the
proxy server is assumed to run on resource-rich servers
and have fixed connection to the Internet so that they
can serve a larger number of clients at the same time.
As peer-to-peer computing becomes more common, it
seems to be a good idea if the proxy server can be
made small enough to fit into resource-constrained de-
vices. In that case, proxy servers can be run on small
devices and be able to select suitable facets (although

with some limitation) for nearby peers when the client
is not connected to the Internet.

� Improving the Evaluation Metric. The current met-
ric for evaluating the adaptation quality should have
taken into account the important factors for the adap-
tation. However, there might still be some other fac-
tors affecting the adaptation quality. For example, the
time for returning a facet to the client might be taken
into account by the metric as well. A smaller down-
loading time (which implies a smaller static size and
hence, resource usage) seems to favour. Apart from
that, there might be other factors that can be added to
the metric for enhancing the evaluation quality. Trade-
offs between different factors in a metric and should be
carefully considered before adding them to the metric.

References

[1] G. D. Abowd, A. K. Dey, R. Orr, and J. A. Brotherton.
Context-Awareness in Wearable and Ubiquitous Computing.
In Proceedings of the 1st International Symposium on Wear-
able Computers, 1997.

[2] T. W. Bickmore and B. N. Schilit. Digestor: Device-
Independent Access to the World Wide Web. In Proceedings
for the 6th International World Wide Web Conference, 1997.

[3] A. Fox, S. D. Gribble, Y. Chawathe, and E. A. Brewer.
Adapting to Network and Client Variation Using Active
Proxies: Lessons and Perspectives. IEEE Personal Com-
munications, 5(4):10–19, 1998.

[4] C.-S. Li, R. Mohan, and J. R. Smith. Multimedia Content
Description in the InfoPyramid. In Proceedings of IEEE
International Conference on Acoustics, Speech, and Signal
Processing, 1998.

[5] J. Waldo. The Jini Architecture for Network-Centric Com-
puting. Communications of the ACM, 42(7):76–82, 1999.

[6] B. Y. Zhao and A. Joseph. XSet: A Lightweight
Database for Internet Applications. http:
//www.cs.berkeley.edu/˜ravenben/
publications/saint.pdf, 2000. Submitted for
publication.

[7] IBM Think Research — Pervasive Comput-
ing. http://www.research.ibm.com/
thinkresearch/pervasive.shtml.

[8] IBM Transcoding In Depth. http://www.research.
ibm.com/networked_data_systems/
transcoding/In_Depth%/in_depth.html.

[9] Microsoft .NET Homepage. http://www.microsoft.
com/net/default.asp.

[10] Sparkle View. http://www.csis.hku.hk/
˜clwang/projects/ipag-image.html.

[11] Sun Microsystems Open Net Environment (ONE)
Homepage. http://wwws.sun.com/software/
sunone/.

[12] Simple Object Access Protocol (SOAP) 1.1. http://
www.w3.org/TR/SOAP/.

[13] one.world Homepage. http://one.cs.
washington.edu.

