Loading [a11y]/accessibility-menu.js
Clustering for Web information hierarchy mining | IEEE Conference Publication | IEEE Xplore

Clustering for Web information hierarchy mining


Abstract:

Benefiting from the growth of techniques of dynamic page generation, the amount and the complexity of Web pages increase explosively. The structures of Web pages which ar...Show More

Abstract:

Benefiting from the growth of techniques of dynamic page generation, the amount and the complexity of Web pages increase explosively. The structures of Web pages which are dynamically generated by the same templates are thus similar to one another and are usually assembled by a set of fundamental information clusters These neighboring information clusters usually represent the similar semantics and form a larger cluster with the more generalized information. The hierarchical structure generated by information clusters in a bottom-up manner is called the information hierarchy of a page. We study the problem of mining the information hierarchies of pages in Web sites to recognize the information distribution of pages within the multilevel, multigranularity configurations. Explicitly, we propose an information clustering system that applies a top-down information centroid searching algorithm and a multigranularity centroid converging process on the document object model (DOM) trees of pages to build the information hierarchies of pages. Experiments on several real news Web sites show the high precision and recall rates of the proposed method on determining information clusters of pages and also validate its practical applicability to real Web sites.
Date of Conference: 13-17 October 2003
Date Added to IEEE Xplore: 27 October 2003
Print ISBN:0-7695-1932-6
Conference Location: Halifax, NS, Canada

Contact IEEE to Subscribe

References

References is not available for this document.