University of Wollongong
Research Online

Faculty of Engineering and Information

Faculty of Informatics - Papers (Archive) Sciences

October 2003

Web agents for requirements consistency management

Z. Chen
University of Wollongong

Aditya K. Ghose
University of Wollongong, aditya@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/infopapers

Cf Part of the Physical Sciences and Mathematics Commons

Recommended Citation
Chen, Z. and Ghose, Aditya K.: Web agents for requirements consistency management 2003.
https://ro.uow.edu.au/infopapers/58

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/infopapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/infopapers?utm_source=ro.uow.edu.au%2Finfopapers%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=ro.uow.edu.au%2Finfopapers%2F58&utm_medium=PDF&utm_campaign=PDFCoverPages

Web agents for requirements consistency management

Abstract

Inconsistency handling is an aspect of requirements engineering that has attracted considerable research
attention. We explore novel ways to applying semantic Web technologies to this problem, in the context of
a Web-based agent-mediated environment for distributed requirements engineering.

Disciplines
Physical Sciences and Mathematics

Publication Details

This article was originally published as: Chen, Z, Ghose, A, Web agents for requirements consistency
management, Proceedings of IEEE/WIC International Conference on Web Intelligence (Wl 2003), 13-17
October 2003, 710-713. Copyright IEEE 2003.

This conference paper is available at Research Online: https://ro.uow.edu.au/infopapers/58

https://ro.uow.edu.au/infopapers/58

Web Agents for Requirements Consistency Management

Zerong Chen and Aditya Ghose
Decision Systems Lab, School of IT and Computer Science, University of Wollongong, NSW 2522
Australia
{zrc01,aditya} @uow.edu.au

Abstract
Inconsistency handling is an aspect of requirements
engineering that has attracted considerable research
attention. This paper explores novel ways to applying
semantic web technologies to this problem, in the context
of a web-based agent-mediated environment for
distributed requirements engineering.

1. Introduction

Inconsistency handling is widely acknowledged as a
difficult problem in requirements engineering [7, 11].
Our motivations are two-fold. First, we wish to provide
automated support for inconsistency detection and
resolution in the context of industry-standard
requirements specification notations. Second, we wish to
support distributed ~ requirements consistency
management, given that most present-day development
projects involve distributed sets of stakeholders, often
with strict privacy constraints (such as private definitions
of requirements consistency, encoded in private sets of
business rules). This paper focuses primarily on a
solution to the first problem, but does so in the context of,
and in a manner synergistic with, a solution to the second.
The crux of our proposal is a novel application of
semantic web technologies: we propose to use semantic
markup of semi-formal and informal requirements
specifications to abstract out formal representations that
can be used for inconsistency detection and resolution.
We describe a preliminary methodology for doing this, in
the context of an informal notation (plain text English)
and a semi-formal notation (UML sequence diagrams).
We suggest how these methodological guidelines can
form the basis for end-user semantic markup tools (often
referred to as annotators), which, when used in
conjunction with notation-specific editors, can form the
basis for a practical approach to semantic markup of
specifications. This proposal relies on the existence of
end-user markup tools that ease the process of semantic
markup of specifications and there are reasons to be
confident that this is a feasible proposition. Several
annotation support tools exist, including AeroDAML
[10], COHSE [2], MnM [12], OntoAnnotate [14],
OntoMat-Annotizer [14] and the SHOE Knowledge
Annotator [9]. We can thus visualize a UML editor such

as ArgoUML [1] being augmented with an annotator
plug-in which generates a graphical depiction of class and
property hierarchies on a side-bar and which permits
users to drag-and-drop classes and properties on elements
of the UML diagram being edited to automatically
generate an underlying markup file. A similar interface
can also be visualized for free-form English specifications
being edited by any standard text/document editor. We
describe a tool called SC-CHECK (Semantic Consistency
CHECK) that implements our approach to inconsistency
detection. This tool approach has been developed in the
context of an agent-mediated architecture for web-based
distributed requirements engineering. This constitutes a
key element of the REAGENT project [8] that seeks to
develop an agent-mediated infrastructure to support
requirements inconsistency management, negotiation and
model-based monitoring throughout the software life-
cycle. The architecture involves two kinds of agents.
Stakeholder agents pro-actively elicit, manage, negotiate
and monitor goals for a single stakeholder. A
requirements repository agent provides a globally visible
store of the requirements that all stakeholders agree to,
and executes other functions critical to inconsistency
detection and negotiation. The SC-CHECK system
functionality may be included in both these kinds of
agents, depending on the mode in which REAGENT
agents are being used. We omit further details of the
REAGENT architecture here for brevity, but point
readers to the full version of the paper for details.

2. Semantic markup of specifications

UML class diagrams represent a special case where the
structural similarity with ontologies permits easy
translation to DAML+OIL. This has led to the
development of tools such as DUET [6] that acts as a
plug-in to the ArgoUML editor and permits the
translation of class diagrams to DAMLAOIL. In the
following, we shall discuss the markup of English text
and UML sequence diagrams. Consider the following
fragment of a specification for a banking system: “A
customer can have many accounts. However, an account
can belong to exactly one customer. There are two types
of accounts: debit account and credit account. All types
of accounts should have a balance attribute, and credit
accounts should also have a limit attribute to define the

IE n—'

COMPUTER
SOCIETY

Proceedings of the IEEE/WIC International Conference on Web Intelligence (WI'03)
0-7695-1932-6/03 $17.00 © 2003 IEEE

credit limit. (Rule 2.1.4) If the balance of a customer's
credit account is over the limit, an over limit warning
operation must be executed automatically. There are two
types of staff: tellers and financial officers. (Rule 2.1.3)
Only financial officers have the authority to open credit
accounts.” Concepts are marked up by referring to pre-
defined class definitions in an ontology. Sub-classes can
be marked up by referring to their super-classes (this
would be relevant in the case of “credit” and “debit”
accounts in this example). Attribute names are marked up
by using pre-defined data type properties in ontologies
(for instance, the “balance” attribute of an account).
Operation names are marked up by using pre-defined
object properties. Thus, the “over limit warning”
operation referred to in the text above is marked up using
an object property with the same name that has the
“Account” class as its domain and a class called
“Operation” as its range. This establishes a link between
the “over limit warning” operation and the “Account”
class (in the sense that this operation is only invoked by
conditions relating to the “Account” class). Using the
class “Operation” as the range of this object property
identifies this property as an operation. An alternative is
to consider operations as concepts/classes in their own
right, but this makes it difficult to establish connections
between classes that are involved in invoking the
operation, or that supply inputs to the operation (this
would involve defining a whole new set of object
properties). Associations between classes are marked up
using pre-defined object properties. The classes
participating in the binary association appear in the
domain and range respectively. We define a class called
“EntityRelation” for this purpose with “hasMaximum”,
“hasMinimum” and “hasExactly” as integer datatype
properties to denote the maximum, minimum and exact
cardinalities of the association (the “hasMaximum”
property has multiple ranges consisting of both integers
and strings to permit us to specify “many” without
specifying an integer as the upper limit). Notice that this
only defines one “half” of an association, the other “half”
also needs to be separately and explicitly defined.
Words/phrases which do not fit the above categories are
marked up using the ‘Words’ tag. We expect that finer-
grained categorization of such words can be developed in
the future. The following is a portion of the markup file
for the text presented above. This approach is based on
similar ideas contained in the OntoBroker system[13].
<bank:Words>A </bank:Words>
<bank:Customer>customer</bank:Customer>
<bank:Words>can have</bank:Words>
<bank:Customer rdf:about="#customer">
<hasEntityRelation rdfs:resource="#cust_acc”>
</bank:Customer>
<bank:EntityRelation rdf:ID="cust_acc”>
<bank:isRelatedTo rdf:resource="#account"/>
<bank:hasMaximum>many</bank: hasMaximum>

</bank:EntityRelation>
<bank:Account>account</bank:Account>
<bank:Words>, however, an</bank:Words>
<bank:Account>account</bank:Account>
<bank:Words> can belong to exactly </bank:Words>
<bank:Account rdf:about="#account” >
<hasEntityRelation rdfs:resource="#acc_cust”>
</bank:Account>
<bank:EntityRelation rdf:ID="acc_cust">
<bank:isRelatedTo rdf:resource="#customer"/>
<bank:hasExactly>1</bank:hasExactly>
</bank:EntityRelation>
We shall use a sequence diagram (specifying the cash
withdrawal process from an ATM) to show how a
diagrammatic, semi-formal specification can be marked

up.

2 ATM

c: Customes

T
|
|
|
|
|
|
|

Cash amount prompt

Cash amount :

)

|
Receipt prompt |
|
|

<

Dispense cash |
Objects are marked up by creating instances of pre-
defined classes in the ontology. Messages are marked up
using the ‘Message’ class that we define in the ontology.
The ‘Message’ class has several properties: The
“fromObject” and “toObject” object properties are used
for marking up the message directions by linking objects
with the “Message” class. The ‘hasData’ property (a
datatype property) is used for marking up the message
itself. The ‘sequence’ property is used for marking up the
message sequence (denoted by integers).
The code fragment below shows the markup of
‘c:Customer’, ‘a:ATM’, and the first two messages.

<bank:Customer rdf:ID="c"/>

<bank:ATM rdf:ID="a"/>

<bank:Message rdf:ID="m1">

<hasData>Cash amount prompt</hasData>

<fromObject rdfs:resource="#a"/>

<toObject rdfs:resource="#c"/>

<sequence>1</sequence>

</bank:Message>

<bank:Message rdf:ID="m2">

<hasData>Cash amount</hasData>

<fromObject rdfs:resource="#c"/>

<toObject rdfs:resource="#a"/>

<sequence>2</sequence>

</bank:Message>

Proceedings of the IEEE/WIC International Conference on Web Intelligence (WI'03) 'm@

i ars COMPUTER
0-7695-1932-6/03 $17.00 © 2003 IEEE SOCIETY

An end-user markup tool for sequence diagrams would
prompt the user to select the appropriate class every time
an object and message is created. The relevant markup
can then be generated automatically. Generating pointers
between elements in the diagram and markup in the
markup file can also be useful. This enables us to modify
a diagram without going through the process of re-
generating a new markup file but modifying only those
portions that are affected (these bits can be identified by
tracing back using the pointers).

3. The SC-CHECK architecture

The SC-CHECK system architecture can be viewed as
consisting of three major components: First, it includes
set of editors/annotators for ontologies, rules and
specifications respectively. Second, it includes a
repository for maintaining the currently operative
ontology, the currently applicable set of rules (both
business rules and notation-specific consistency rules)
and the current, consistent specification. The specification
itself can be multi-modal, i.e., written in a combination of
informal, semi-formal and formal notations. The
specification is represented both in the original notation it
was written in, and in a formal representation that is
obtained via semantic markup and translation (note that
this formal representation is likely to be an abstraction of
the original specification). Third, it includes an
inconsistency monitor that serves to detect inconsistencies
in a specification. In our prototype implementation, we
use OilEd [3] as the SC-CHECK ontology editor and
DAML+OIL as the ontology representation language.
Consistency rules are written in RuleML [4] and Oryx 2
[5] is used as the rule editor. Two kinds of pre-defined
consistency rules are possible: First, structural rules for
enforcing notation-specific consistency (e.g., two classes
cannot have the same name in a class-diagram). Second,
application-specific business rules (an example is one
which states that attribute “balance” in class “Account”
must be a real number data type). All these rules use
classes in the ontology as their predicates and properties
as their arguments. For example, the predicate
‘hasAttribute’ in a RuleML rule can be used to represent
a ‘daml:DatatypeProperty’. Thus, the datatype of the
“balance” attribute of an “Account” is represented as the
following predicate (note that the last argument represents
the ID of the stakeholder responsible for the
specification): hasAttribute("Account’,'balance’, 'real’,2).
Since specifications can be multi-modal, we would
require notation-specific annotators. The annotator would
load the relevant ontologies and display concepts and
properties on a side bar. The annotator would interact
with the users to prompt for links to appropriate concepts
and properties every time a new element of the notation
(such as a UML sequence diagram message or a UML
state diagram state) is introduced in the editor. When the

user finishes editing the specification, the annotator
would generate semantic markup code automatically. The
inconsistency monitor requires machinery to determine
whether a given specification violates a given set of
consistency rules. We use Prolog for this purpose (it was
also adequately expressive for the kinds of consistency
rules we wanted to represent).

Translators: As pointed out above, ontologies,
consistency rules and multi-modal specifications are
represented in a variety of languages. The translator
module thus consists of a variety of individual translation
engines which all map to the same underlying formal
representation language. In our prototype implementation,
consistency rules are written in RuleML. We use XSLT
style sheets to translate these rules (available in XML
form via the Oryx2 rule editor) to Prolog. The Prolog
code below is the translated version of Rule 2.1.2
discussed above:

'rule212'(SH) -

'hasAttribute'('Account','balance’, Type,SH),
"\=='(Type,'double).

We provide below an example of translation from a
specification notation (UML class diagrams) to Prolog.
The translation happens in two stages. First, we use the
DUET tool (recall that this is an ArgoUML plug-in that
generates DAML+OIL markup for class diagrams) [6] to
obtain a representation of the class diagram in
DAML+OIL. We then use XSLT style sheets to translate
these to Prolog. The DAML markup fragment below
represents an “Account” an account class in a class
diagram. Note that DUET uses two abstract classes
“DUET0” and “DUET3” to define an association between
two classes because an association has more than one
property (i.e. the name of the class that it relates a given
class to, its cardinality and the association name). These
therefore cannot be represented using
‘daml:ObjectProperty’ which can only define one
property. The first abstract class “DUETO0” specifies the
related class (i.e. “Customer”) and the relation name (i.e.
“has_cust”). The second abstract class “DUET3” defines
the cardinality by using the DAML built-in property
“minCardinality”.

<a:Class rdf:about="bank:#Account">

<a:subClassOf rdf:resource="#DUET0"/>

<a:subClassOf rdf:resource="#DUET3"/>

</a:Class>

<a:Restriction rdf:about="#DUET0">

<a:toClass rdf:resource="bank:#Customer"/>
<a:onProperty rdf:resource="bank:#has_cust"/>
</a:Restriction>

<a:Restriction rdf:about="#DUET3"
a:minCardinality="1">

<a:onProperty rdf:resource="#has_cust"/>
</a:Restriction>

The XSLT style sheet takes the class names as a predicate
and instance name as argument. For example,

COMPUTER
SOCIETY

Proceedings of the IEEE/WIC International Conference on Web Intelligence (WI'03)
0-7695-1932-6/03 $17.00 © 2003 IEEE

<a:Class rdf:about="bank:#Account">
is translated to

'class' ('Account',2).
The translation adds the stakeholder ID as the last
argument of every predicate. “a:toClass” is translated to
“hasObject” and “onProperty” is translated to
“hasObjectProperty”. Finally, “cardinality” is translated
to “hasObjectNo”. Note that different DAML
cardinalities are translated to distinct arguments. For
instance, this example uses “minCardinality” so the
translation is minimum “1” and maximum “many” (the
second and third arguments of predicate “hasObjectNo”
denotes minimum and maximum cardinality). The
following Prolog code is the translation of the above
markup. Note that the first predicate simply denotes the
existence of a stakeholder with the ID “2”.
'stakeholder'(2).
'class'(‘Account',2).
'subClassOf'(‘CreditAccount','Account',2).
'AbsClass'(DUETO0',2).
'hasObjectProperty'(DUETO','has_cust',2).
'hasObject'(‘has_cust','Customer',2).
'hasObjectNo'(‘has_cust',1,many,1)
Reasoner: 1deally, the reasoner must be a formal engine
that is able to test the consistency of the conjunction of a
multi-modal specification, an ontology (or ontologies)
and a set of consistency rules.
We have seen in earlier subsections how consistency
rules written in RuleML are translated to Prolog. We have
also seen examples of how specifications might be
translated to Prolog (in the specific instance of UML class
diagrams). A simple Prolog program is used to check
inconsistency in SC-CHECK. The program involves
multiple definitions of a predicate called “inconsistency”,
each definition corresponding to a specific consistency
rule. If the predicate is satisfied by a given definition, this
entails that the corresponding consistency rule has been
violated. The violated consistency rule is identified to the
user, and, where possible, a message is generated
providing additional details on the source of the
inconsistency that would provide guidance to the user in
appropriately modifying the specification to resolve the
inconsistency. The following are some examples of this.
Failure to prove the goal “inconsistency” implies that no
consistency rule has been violated.
inconsistency :- check111(C,A,S),!,
write('Consistency rule 111 fired: '),
write('class: '),write(C),
write(' of stakeholder No.'), write(S),
write (' has duplicated attributes'’), write(A),
write('. Please modify.").
Feedback Generator: Our focus till now has been on
inconsistency defection. The key function of the feedback
generator module is inconsistency resolution. Some
indication of how inconsistency resolution might be
supported is available in the examples of the definition of

the “inconsistency” predicate provided above. These
Prolog clauses identify which consistency rule has been
violated and also identify, where possible, details of
which elements of a specification might need repair, thus
providing useful guidance to analysts attempting to
resolve such inconsistencies.

4. Conclusions

We have presented a novel approach to automated
requirements consistency management using semantic
web technology. The deployment of this approach in the
context of a web agent-mediated system for distributed
requirements engineering appears to be particularly
useful. We have tested some of these ideas in a medium-
scale case study involving a case-tracking system for a
law enforcement agency. The preliminary results of this
study appear promising.

5. References

[1] ArgoUML, http://argouml.tigris.org/

[2] S. Bechhofer and C. Goble. Towards Annotation Using
DAML+OIL. Proc. of KCAP’01 Workshop on Semantic
Markup and Annotation. Victoria, Canada.

[3] S.Bechhofer and G. Ng. OILED 3.4
http://oiled.man.ac.uk/

[4] Harold Boley, et. al.. RuleML. http://www.dfki.uni-
kl.de/ruleml/

[5] J. B. Dietrich. Oryx 2. http://www jbdietrich.de/

[6] DUET, CODIP, http://www.ontoprise.de

[71 A.K. Ghose. Formal tools for managing inconsistency
and change in RE. Proceedings of the 10th International
Workshop on Software Specification and Design (IWSSD
2000), San Diego, IEEE Computer Society Press.

[8] A.K. Ghose. Agent-based support for user goals: An
outline of the REAGENT framework. Position paper.
Proc. of 2000 Workshop on Agent-Oriented Information
Systems (AOIS-2000). http://www.aois.org.

[9] J. Heflin and J. Hendler. A Portrait of the Semantic Web
in Action. JEEE Intelligent Systems, 16(2), 2001.

[10] P. Kogut and W. Holmes. AeroDAML: Applying
Information Extraction to Generate DAML Annotations
from Web Pages. Proc. of I Int’l Conf. on Knowledge
Capture (K-CAP 2001).

[11] A.van Lamsweerde, R. Darimont, and E. Letier,
Managing conflicts in goal-driven requirements
engineering. IEEE Trans. on Software Engineering 24, 11
(1998).

[12] E.Motta, M. Vargas-Vera, J. Domingue, M. Lanzoni and
F. Ciravegna. MnM: Ontology Driven Semi-Automatic
and Automatic Support for Semantic Mark-up. Proc. Of
ECAI-2002 Workshop on Semantic Authoring, Annotation
& Knowledge Markup.

[13] OntoAnnotate, Ontoprise, http://www.ontoprise.de

[14] S. Staab, A. Maedche and S. Handschuh. An Annotation
Framework for the Semantic Web. In The First
International Workshop on MultiMedia Annotation,
Tokyo, Japan, January 2001.

IHF

COMPUTER
SOCIETY

Proceedings of the IEEE/WIC International Conference on Web Intelligence (WI'03)
0-7695-1932-6/03 $17.00 © 2003 IEEE

	Web agents for requirements consistency management
	Recommended Citation

	Web agents for requirements consistency management
	Abstract
	Disciplines
	Publication Details

	Web agents for requirements consistency management - Web Intelligence, 2003. WI 2003. Proceedings. IEEE/WIC International Conference on

