
Providing Expert Advice by Analogy for On-Line Help

Henry Lieberman and Ashwani Kumar
Media Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA

{lieber, ashwani}@media.mit.edu

Abstract

One of the principal problems of online help is the
mismatch between the specialized knowledge and
technical vocabulary of experts who are providing the
help, and the relative naïveté of novices, who usually are
often not in a position to understand solutions expressed
by the expert in their own terms.

Most of the interfaces are plagued by recurrent key
problems: 1) elicitation – how to ask questions that
enable the helper to make decisions, and at the same time,
are understandable to the novice, and 2) explanation --
how to explain rationale behind expert decisions in terms
that the user can understand. One of the best ways to do
this is for the expert to provide analogies in terms of
Commonsense knowledge, which provide metaphors that
help novices learn problem-solving skills.

SuggestDesk is a system that acts as an advisor to an
online technical support person. It uses a large
Commonsense knowledge base to search for analogies
between known technical problem-solution pairs, and
situations and events in everyday life that can be used to
explain them.

Introduction

The success of Web interactions is becoming increasingly
dependent on online help and online technical support. If
Web interactions are to increasingly replace brick-and-
mortar physical interactions, users must have confidence
that any problems that might arise can be effectively dealt
with. Static documentation on stored HTML pages no
longer suffices in many cases. In simple cases, automated
advice programs hold potential for being able to
automatically sense the user’s context and perform some
solution steps automatically. But for more difficult
situations, many problems must still be referred to human
online assistants, in real-time text chat, or in telephone
conversations where both parties are interacting with
Web-based systems.

Many current support personnel are aided by problem-
solution databases. These store associations between
anticipated or experienced problems, and known

solutions. A common behavior of a support person is to
lookup the user's problem in the database. When a good
match is found, the support person can simply report the
solution to the user. More sophisticated systems use Case-
Based Reasoning [3], which adds the ability to do
approximate matching, and appropriate modification of
the solution to particular circumstances.

That all works well, providing the expert and the user
share enough vocabulary and technical expertise to
express the problem and understand the solution in the
way it is described. But novices often do not have the
technical vocabulary nor specific expertise needed to
understand the expert's questions about the problem and
the expert's exposition of what to do. What then?

Traditional Expert Systems and Case-Based Reasoning
systems are good at encoding expert knowledge. But they
are not so good at modeling the knowledge of the novice.
At best, those systems that do have some model of the
novice's knowledge are limited to saying what subset of
the expert knowledge is expected to be shared with the
novice. This is always limited to the narrow technical
domain in which the expert's knowledge resides. For
example, a model might say that the average user can be
expected to know how to double-click, but might not
know what encryption is.

We believe that the best elicitation and explanation
strategies involve the expert trying to make an analogy
between technical aspects of the problem and solution,
and the user's experience of everyday life, even if the
analogies may be to domains outside of a technical realm.
To have the machine assist in doing this, we need a model
of everyday life.

We have a unique resource in Open Mind Common Sense
[OMCS], a knowledge base containing 750,000 English
sentences obtained from volunteer contributors [8], and its
derivative knowledge bases ConceptNet [9] and LifeNet.
We also have a limited ability to perform analogies
between Commonsense concepts in the ConceptNet
semantic network.

We have implemented a computer assistant for a human
acting as a technical support person for a novice user, and
communicating with that user via typed chat, called
SuggestDesk. We assume SuggestDesk is also being used
in conjunction with a conventional problem-solution
database. The purpose of SuggestDesk is to watch the
interaction between the novice and the helper, and to
suggest to the helper analogies that will help him or her
elicit problem information from the user and explain
technical solutions.

We do not attempt to have the computer agent interact
directly with the end-user, because our capability for
understanding natural language and producing analogies
is limited. The hope is that SuggestDesk will occasionally
suggest interesting analogies to the helper that will aid
them in their conversations with the end user.

Knowledge Engineering With Technical
Support People

To better understand how technical support people
achieve success in helping users with problems, we
interviewed members of the online technical support team
at America Online. We asked for examples where experts
were able to make complex technical solutions

understandable to novices. We received many good
examples of such interactions, involving making
analogies between technical problems and common
situations in everday life. An example follows.

In response to a user reporting an inability to access
secure Web sites, the online technical support helper
looked up the problem in a conventional problem-solution
database and retrieved the following solution procedure.

Solution Procedure: “Check if cipher strength is '0'
Upgrade Browser to 128 bit Encryption."

Obviously, many AOL users, who are often inexperienced
in technical aspects of computer use, would have
difficulty understanding what this solution means, why it
would work, and even what problem it was trying to
solve. (The first author, who holds a doctoral degree and
has more than 30 years of computer experience, admits
that he doesn’t understand it, either).

There are two ways in which the helper provided useful
explanation. The first is in terms of the technical aspects
of the problem.

Explanation Cipher strength or encryption refers to the
built -in security features of your browser.

Generally, Websites require 128-bit encryption in order
to process information securely. If the cipher strength of
your browser is inadequate, you will not get into secure
Websites. Upgrading your browser's encryption may help
it better handle secure Websites.

NOTE: You only need to do this when unable to get to
secure Websites.

This explanation, though correct, might be unintelligible
to a user with only limited computer experience.

But the helper didn’t stop there. The second part provides
an analogy that helps give the user not only the reason for
the solution, but provides an analogy to an everyday
situation the user is likely to be familiar with.

Analogy: If you don't have the proper security clearance,
you may be able to get into the building, but not into
certain areas. You must upgrade your security clearance
status to go further. So without the proper encryption,
your browser may be able to access a website, but not log
in.”

Analogies help the user learn the relation between
important concepts and aspects of the technical solution
(“Oh, I guess that means ‘128-bit encryption’ must be like
some sort of security clearance.”). Even if this analogy is
not perfect, it gives the user some skills that can be
applied to other similar problems, and possible
inaccuracies can later be refined.

The SuggestDesk Application

The SuggestDesk application illustrated above
implements an interactive chat-based client, which both
the user and the Help Assistant use. The interface enables
natural language dialogue between the user and the
assistant by means of text dialogue boxes at the bottom of
the interface.

The leftmost pane is used as the primary message
window, where both user’s and assistant’s messages can
be seen. This primary pane maintains the complete
sequence of user-assistant interaction, until the user closes
the client window.

On the right hand side are two panes that are only visible
to the Help Assistant. This is because analogically
mapped knowledge is produced in these windows and if
this is exposed to the user (s)he might be overwhelmed by
the domain-specific knowledge and might lead to more
confusion. On the other hand, the assistant being the

domain expert knows precisely how to use this
information in order to provide relevant elicitation
questions and explanations.
The top right pane is used to provide a list of similar
objects as the frame structure derived from the user’s
input based on object attributes and modifier matches.
The middle right pane is used to provide analogy-based
diagnosis of the problem formulated by the user in
context of the objects provided in the top right pane.

Thus, the assistant can see similar objects and
analogically related diagnosis for the problem at hand and
provide the user with better informed answer. Also, the
assistant uses the analogies to explain the solution
correlating it with some everyday situation faced by the
user. Thus, the interface provides an intuitive and easy
way to facilitate natural and seamless dialogue between
the user and the assistant.

The Open Mind Common Sense knowledge
base

Since the fall of 2000 the MIT Media Lab has been
collecting commonsense facts from the general public
through a Web site called Open Mind Common Sense
[OMCS], which you can find at
openmind.media.mit.edu. At the time of this writing,
the Open Mind Common Sense Project has collected over
750,000 facts from over 16,000 participants. These facts
are submitted by users as natural language statements of
the form “tennis is a sport” and “playing tennis requires a
tennis racket.” While Open Mind does not contain a
complete set of all the common sense knowledge found in
the world, its knowledge base is sufficiently large enough
to be useful in real world applications.

Using natural language processing, the Open Mind
knowledge base was mined to create ConceptNet [9], a
large-scale semantic network currently containing over
300,000 Commonsense concepts. ConceptNet consists of
logical predicates of the form: [IsA “tennis” “sport”] and
[EventForGoalEvent “play tennis” “have racket”].
ConceptNet is similar to WordNet [4] in that it is a large
semantic network of concepts, however ConceptNet
contains everyday knowledge about the world, while
WordNet follows a more formal and taxonomic structure.
For instance, WordNet would identify a dog as a type of
canine, which is a type of carnivore, which is a kind of
placental mammal. ConceptNet identifies a dog as a type
of pet, its most salient feature for Commonsense
reasoning.

ConceptNet has some limited ability to do analogical
reasoning. Its idea of analogy is to generalize concepts
according to their participation in playing a role in some

piece of Commonsense knowledge. For example,
ConceptNet can propose love as an analogy to money, if it
has "People will do anything for love", and "People would
do anything for money".

OMCS constitutes, in some sense, a generic novice
model. It represents what the average user can be
"expected to know", unless you know otherwise.
Therefore we can reduce the problem of finding an
analogy to a technical situation that a novice can
understand, to the problem of finding an analogy between
the technical concepts and concepts that appear in
ConceptNet.

An example: Why does my browser run
slowly?

In the example screen in the first illustration, the user
complained that their browser is running slowly. We ask
ConceptNet, "What can run slow?" and we get "Traffic
can run slow" and "Customer service can be slow".

These provide fodder for analogies. Traffic runs slow
because there are too many cars on the road. What is
analogous to a car in the case of a browser running slow?
Details are filled in using a method similar to Gentner's
Structure Mapping Engine [5]. Too many users using the
AOL service at the same time is analogous to too many
cars on a road at rush hour. What is the solution? In the
case of traffic, try to travel at a time other than rush hour.
In the case of congestion on an on-line service, try to log
in at a later time.

Another possibility is that the browser is infected by a
virus. In order to determine whether this is the case, the
helper must elicit details of the user's situation. Since
computer viruses are often contracted by downloading
applications, the helper asks the user if they have been
recently downloading new applications. If this is the case,
the helper can explain the effects of a computer virus by
making an analogy to a biological virus. "You know how
when you have the flu, you can't do things as fast as you
normally do?".

Implementation of SuggestDesk

The system performs Natural Language analysis with
Hugo Liu's MontyLingua Part-of-Speech (POS) Tagger.
The tagged text is chunked using a text chunker, which
groups tagged words within an utterance to disjoint
classes based on some pre-defined rules. Further, a
semantic analyzer produces the semantic parse of the
sentence in the form of an n-ary argument structure.

Below, the semantic parse of “browser is running slow”.

The semantic parser also produces additional extracted
phrase structures as follows:

Result= [{prep_phrases_tagged=[],
verb_phrases_tagged=[is/VBZ running/VBG],
verb_arg_structures_concise=[("run" "browser"
"slow")],
noun_phrases=[browser],
noun_phrases_tagged=[browser/NN],
adj_phrases_tagged=[slow/JJ],
verb_arg_structures=[[is/VBZ
running/VBG, browser/NN, [slow/JJ]]],
modifiers_tagged=[slow/JJ],
prep_phrases=[], verb_phrases=[is running],
parameterized_predicates=[[[run, [past_tense,
passive_voice]],
[browser, []], [slow, []]]], modifiers=[slow],
adj_phrases=[slow]}]

The semantic parse obtained in this manner provides
useful semantic chunks in form of the above structures.
One of the key derivations is the frame structure that is
built upon this semantic parse. Based on the verbs
occurring in the semantic parse and respective synonyms,
the NLU unit constructs a frame-based semantic structure,
which is then correlated with the lexical predicates in
ConceptNet.

 <<<Frame Name: run >>>
Type : event
Subject : browser
Modifier: slow
Objects: <>

After the natural language analysis, the major components
are

• The Commonsense Processor (CP),
• The Expert Analyzer (EA),
• The Analogy Mapping Engine (AME), and
• The Elicitation and Explanation Processor (EEP).

The Commonsense Processor and Expert Analyzer work
similarly, processing natural language utterances and
producing semantic networks. The EA uses the AOL Help
knowledge base to mine help topics related to key
concepts in the help domain, such as the following:

Browsers can be vulnerable to viruses. Some free
applications can have viruses. Viruses use browser’s
resources. This may cause the browser to run slowly.

EA structures are organized into a semantic graph called
ExpertNet, where nodes represent domain-specific
concepts and edges represent the relations. For instance,
ExpertNet has the following structures related to Internet
and browsers:

(EffectOf 'surf internet' 'download files')
(EffectOf 'surf internet' 'download applications')
(EffectOf 'download files' 'browser cache is large')
(EffectOf 'download applications' 'browser infected by
virus')
(EffectOf 'PC infected by virus' 'browser run slow')

The Analogy Mapping Engine (AME) uses ConceptNet
and ExpertNet as constructed above to perform novice-
expert knowledge mapping. Since both ConceptNet and
ExpertNet are similar in graph structure, the AME is able
to perform a fast and efficient graph matching algorithm.
AME implements a variation of the Structure Mapping
Algorithm to align the two graphs and matches concepts
in both the networks depending upon node attributes and
respective relations. Subsequently, AME looks at the
precise frame description of the user problem to perform
matching in a hierarchical manner. For instance, in the
example of, [[browser], [run slow]], AME first aligns
both graphs using the verb, [run] and further, computes
the similarity based on modifier relations, like in the
following sample result:

Analogies:[[computer, [[UsedFor, surf internet,
1.1887218755408673],
[CapableOfReceivingAction, run slow,
1.1887218755408673],
[CapableOfReceivingAction, crash,
1.1887218755408673],
[CapableOfReceivingAction, start,
1.1887218755408673]],
6.1887218755408675], [car,
[[CapableOfReceivingAction, damage,
1.1887218755408673], [CapableOfReceivingAction,
crash,

1.1887218755408673], [CapableOfReceivingAction,
start,
1.1887218755408673]], 5.930167946706389], [software,
[[CapableOfReceivingAction, run slow,
1.1887218755408673],
[CapableOfReceivingAction, crash,
1.1887218755408673],
[CapableOfReceivingAction, install,
1.1887218755408673],
[CapableOfReceivingAction, install,
1.1887218755408673]],
5.855516191543203]]

AME provides a ranking mechanism for the analogous
structures as specified by get_analogies(concept). The
strength of an analogy is determined by the number and
weights of each feature. A weighting scheme is used to
disproportionately weight different relation types and also
weights a structural feature by the equation:

log(f+0.5*i+4),
where f=outgoing edges and i = incoming edges

The Elicitation and Explanation Processor (EEP) retrieves
analogies from AME and processes the ranked list of
analogies that match the given user's problem. It analyzes
each analogy and looks at the structure relations in order
to construct diagnostic elicitations. For instance, for the
“browser is running slow” example, EEP retrieves the list
of possibly analogous objects matching browser for the
“running slow” property. After retrieving the likely
analogous causes, it outputs the analogies and associated
diagnoses in the “Diagnosis for Elicitation” window.
Thus, EEP enables delivery of analogies and associated
diagnostic information to the SuggestDesk UI.

Evaluation

We performed a small experiment comparing
SuggestDesk with the existing AOL HelpDesk system,
with 1 AOL collaborator and 5 MIT students as subjects.
We measured task execution time, success rates, and
subjective satisfaction on two problems, one related to
browser performance issue, and the other one related to a
computer crashing problem.

To start with the users filled out a preliminary
questionnaire. Subsequently, the users were provided with
an introduction and a training routine for both
SuggestDesk and AOL HelpDesk system. The details of
the training routine varied from interface to interface, but
each session consisted of a demonstration of all features
of the interface as well as dummy task scenarios. The
subjects could ask any questions at any time during the
training routines. After the training, users were asked to

perform 2 practice tasks, similar in nature to the
experimental tasks. For the subjective satisfaction
variable, users filled out a user satisfaction questionnaire
upon completion of the experiment.

As the results indicate in the above two tables, on average
SuggestDesk fared better than AOL’s HelpDesk in terms
of average task completion time, success rate, and average
satisfaction score. Moreover, 4 out of 5 users liked the
analogies provided by the system.

Related Work

Our research touches various aspects of contemporary
research in Artificial Intelligence. We don't have time and
space to cover all related subjects, but we will touch upon
three major areas: Knowledge Acquisition, Intelligent
Tutoring Systems, and Analogy.

The most direct is Knowledge Acquisition, though that
addresses primarily elicitation and not explanation. We
would like to particularly acknowledge the work at
USC/ISI on the EXPECT and TRELLIS systems [1, 6,
11]. EXPECT uses ontologies and knowledge acquisition
scripts to generate and advance dialogues with users to
acquire and maintain knowledge bases of a diverse nature.
Our approach is similar to EXPECT in the aspect that we
use the acquired novice knowledge from the user to map
it to expert domain and produce suitable elicitations,
which reflects the system's understanding of the user's
context. TRELLIS is an application for argumentation and
decision-making. The system supports the user in creating
knowledge snippets from online resources. The key is to
capture how the user progressively generates new
knowledge that results in added value to the original raw
information sources. EXPECT and TRELLIS assume
that the user and the system are roughly equally expert
and share vocabulary and knowledge.

Conversely, Intelligent Tutoring Systems focus on
explanation rather than elicitation. Many have student
models as well as models of the expert knowledge to be
taught, but again, limited to the particular domain rather
than general Commonsense knowledge. [2] is a good
general overview of the field.

Finally, there has been much study of analogy. Gentner's
Structure-Mapping Engine [5] is the classic reference, and
the basis for our expert/novice knowledge alignment.
Liu's ConceptNet paper describes in detail ConceptNet's
analogy features. We should also point out that in addition
to the symbolic model of Gentner, connectionist models
such as Mitchell and Hofstadter's CopyCat [10] are also
important. Our model falls somewhere in between, as
ConceptNet's spreading activation is somewhat
connectionist in nature whereas Gentner's Structure
Mapping is used to fill in roles.

We have also previously worked in the area of online
help, on the problem of how to choose which helper or
peer might best have knowledge about a particular user's
specific problem [12]. We have also created systems for
tracking Web procedures performed by a user and
visualizing explanations of them and providing debugging
tools for self-help [13].

Acknowledgements
We would like to thank Amy Hale and Tom Jarmolowski
of America Online, as well as several members of the
AOL Help team, for providing financial support,
knowledge engineering help and general support and
advice.

References

1. Jim Blythe, Jihie Kim, Surya Ramchandran, and

Yolanda Gil, An Integrated Environment for
Knowledge Acquistion, Proceeding of the 2001
International conference on Intelligent User Interfaces
(IUI-2001), Santa Fe, New Mexico, January 2001.

2. H. L. Burns, and C. G. Capps. (1988) "Foundations of
Intelligent Tutoring Systems: An Introduction,"
Foundations of Intelligent Tutoring Systems,
Lawrence Erlbaum Associates, Hillsdale, NJ.

3. Kai Chang, P. Raman, W. Carlisle, and J. Cross, "A
Self-improving Helpdesk Service System, Using Case-
Based Reasoning Techniques," Computers in Industry,
Vol. 30, 1996, pp. 113-115.

4. C. Fellbaum, WordNet: An electronic lexical database.
MIT Press, Cambridge, MA, USA, (1998).

5. D. Gentner, (1983). Structure-Mapping: A Theoretical
Framework for Analogy, CognitiveScience, 7(2), 155-
170

6. Yolanda Gil, Knowledge Mobility: Semantics for the
Web as a White Knight for Knowledge-Based
Systems", In "Spinning the Semantic Web", D.Fensel,
J. Hendler, H. Lieberman, W. Wahlster (Eds), MIT
Press, 2003.

7. Ashwani Kumar, Sharad C. Sundararajan, Henry
Lieberman, Common Sense Investing: Bridging the
gap between Expert and Novice, ACM Conference on
Computer-Human Interface (CHI,2004), Vienna,
Austria, April 2004.

8. H. Lieberman, H. Liu, P. Singh, B. Barry, Beating
Common Sense into Interactive Applications, AI
Magazine, Winter 2005.

9. H. Liu, & P. Singh, ConceptNet: A Practical
Commonsense Reasoning Toolkit. British Telecom
Technology Journal, Volume 22, No. 4, Kluwer
Academic Publishers. (October 2004).

10. M. Mitchell, (1993) Analogy-making as Perception: A
computer model. Cambridge, MA: MIT Press.

11. William R. Swartout and Yolanda Gil. "EXPECT: A
User-Centered Environment for the Development and
Adaptation of Knowledge-Based Planning Aids". In
Advanced Planning Technology: Technological
Achievements of the ARPA/

12. A. Vivacqua and H. Lieberman, Agents to Assist in
Finding Help. ACM Conference on Computers and
Human Interface. CHI-2000.

13. E. Wagner and H. Lieberman, Supporting User
Hypotheses in Problem Diagnosis on the Web and
Elsewhere, ACM Conference on Intelligent User
Interfaces, Funchal, Madeira, Portugal, January 2004.

