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Abstract 
 
One of the principal problems of online help is the 
mismatch between the specialized knowledge and 
technical vocabulary of experts who are providing the 
help, and the relative naïveté of novices, who usually are 
often not in a position to understand solutions expressed 
by the expert in their own terms.  
 
Most of the interfaces are plagued by recurrent key 
problems: 1) elicitation – how to ask questions that 
enable the helper to make decisions, and at the same time, 
are understandable to the novice, and 2) explanation -- 
how to explain rationale behind expert decisions in terms 
that the user can understand. One of the best ways to do 
this is for the expert to provide analogies in terms of 
Commonsense knowledge, which provide metaphors that 
help novices learn problem-solving skills.  
 
SuggestDesk is a system that acts as an advisor to an 
online technical support person. It uses a large 
Commonsense knowledge base to search for analogies 
between known technical problem-solution pairs, and 
situations and events in everyday life that can be used to 
explain them.  
 
Introduction 
 
The success of Web interactions is becoming increasingly 
dependent on online help and online technical support.  If 
Web interactions are to increasingly replace brick-and-
mortar physical interactions, users must have confidence 
that any problems that might arise can be effectively dealt 
with. Static documentation on stored HTML pages no 
longer suffices in many cases. In simple cases, automated 
advice programs hold potential for being able to 
automatically sense the user’s context and perform some 
solution steps automatically. But for more difficult 
situations, many problems must still be referred to human 
online assistants, in real-time text chat, or in telephone 
conversations where both parties are interacting with 
Web-based systems.  
 
Many current support personnel are aided by problem-
solution databases. These store associations between 
anticipated or experienced problems, and known 

solutions. A common behavior of a support person is to 
lookup the user's problem in the database. When a good 
match is found, the support person can simply report the 
solution to the user. More sophisticated systems use Case-
Based Reasoning [3], which adds the ability to do 
approximate matching, and appropriate modification of 
the solution to particular circumstances.  
 
That all works well, providing the expert and the user 
share enough vocabulary and technical expertise to 
express the problem and understand the solution in the 
way it is described. But novices often do not have the 
technical vocabulary nor specific expertise needed to 
understand the expert's questions about the problem and 
the expert's exposition of what to do. What then? 
 
Traditional Expert Systems and Case-Based Reasoning 
systems are good at encoding expert knowledge. But they 
are not so good at modeling the knowledge of the novice. 
At best, those systems that do have some model of the 
novice's knowledge are limited to saying what subset of 
the expert knowledge is expected to be shared with the 
novice. This is always limited to the narrow technical 
domain in which the expert's knowledge resides. For 
example, a model might say that the average user can be 
expected to know how to double-click, but might not 
know what encryption is.  
 
We believe that the best elicitation and explanation 
strategies involve the expert trying to make an analogy 
between technical aspects of the problem and solution, 
and the user's experience of everyday life, even if the 
analogies may be to domains outside of a technical realm.  
To have the machine assist in doing this, we need a model 
of everyday life.  
 
We have a unique resource in Open Mind Common Sense 
[OMCS], a knowledge base containing 750,000 English 
sentences obtained from volunteer contributors [8], and its 
derivative knowledge bases ConceptNet [9] and LifeNet. 
We also have a limited ability to perform analogies 
between Commonsense concepts in the ConceptNet 
semantic network.  
 
 



 
We have implemented a computer assistant for a human 
acting as a technical support person for a novice user, and 
communicating with that user via typed chat, called 
SuggestDesk. We assume SuggestDesk is also being used 
in conjunction with a conventional problem-solution 
database. The purpose of SuggestDesk is to watch the 
interaction between the novice and the helper, and to 
suggest to the helper analogies that will help him or her 
elicit problem information from the user and explain 
technical solutions.  
 
We do not attempt to have the computer agent interact 
directly with the end-user, because our capability for 
understanding natural language and producing analogies 
is limited. The hope is that SuggestDesk will occasionally 
suggest interesting analogies to the helper that will aid 
them in their conversations with the end user. 
 

Knowledge Engineering With Technical 
Support People 
 
To better understand how technical support people 
achieve success in helping users with problems, we 
interviewed members of the online technical support team 
at America Online. We asked for examples where experts 
were able to make complex technical solutions 

understandable to novices. We received many good 
examples of such interactions, involving making 
analogies between technical problems and common 
situations in everday life. An example follows.  
 
In response to a user reporting an inability to access 
secure Web sites, the online technical support helper 
looked up the problem in a conventional problem-solution 
database and retrieved the following solution procedure.  
 
Solution Procedure: “Check if cipher strength is '0' 
Upgrade Browser to 128 bit Encryption." 
 
Obviously, many AOL users, who are often inexperienced 
in technical aspects of computer use, would have 
difficulty understanding what this solution means, why it 
would work, and even what problem it was trying to 
solve. (The first author, who holds a doctoral degree and 
has more than 30 years of computer experience, admits 
that he doesn’t understand it, either).  
 
There are two ways in which the helper provided useful 
explanation. The first is in terms of the technical aspects 
of the problem.  
 
Explanation Cipher strength or encryption refers to the 
built -in security features of your browser. 

 



 
Generally, Websites require 128-bit encryption in order 
to process information securely. If the cipher strength of 
your browser is inadequate, you will not get into secure 
Websites. Upgrading your browser's encryption may help 
it better handle secure Websites. 
 
NOTE: You only need to do this when unable to get to 
secure Websites. 
 
This explanation, though correct, might be unintelligible 
to a user with only limited computer experience.  
 
But the helper didn’t stop there. The second part provides 
an analogy that helps give the user not only the reason for 
the solution, but provides an analogy to an everyday 
situation the user is likely to be familiar with.  
 
Analogy: If you don't have the proper security clearance, 
you may be able to get into the building, but not into 
certain areas. You must upgrade your security clearance 
status to go further. So without the proper encryption, 
your browser may be able to access a website, but not log 
in.” 
 
Analogies help the user learn the relation between 
important concepts and aspects of the technical solution 
(“Oh, I guess that means ‘128-bit encryption’ must be like 
some sort of security clearance.”). Even if this analogy is 
not perfect, it gives the user some skills that can be 
applied to other similar problems, and possible 
inaccuracies can later be refined.  
 
 

The SuggestDesk Application 
 
The SuggestDesk application illustrated above 
implements an interactive chat-based client, which both 
the user and the Help Assistant use. The interface enables 
natural language dialogue between the user and the 
assistant by means of text dialogue boxes at the bottom of 
the interface.  
 
The leftmost pane is used as the primary message 
window, where both user’s and assistant’s messages can 
be seen. This primary pane maintains the complete 
sequence of user-assistant interaction, until the user closes 
the client window.  
 
On the right hand side are two panes that are only visible 
to the Help Assistant. This is because analogically 
mapped knowledge is produced in these windows and if 
this is exposed to the user (s)he might be overwhelmed by 
the domain-specific knowledge and might lead to more 
confusion. On the other hand, the assistant being the 

domain expert knows precisely how to use this 
information in order to provide relevant elicitation 
questions and explanations.  
The top right pane is used to provide a list of similar 
objects as the frame structure derived from the user’s 
input based on object attributes and modifier matches. 
The middle right pane is used to provide analogy-based 
diagnosis of the problem formulated by the user in 
context of the objects provided in the top right pane.  
 
Thus, the assistant can see similar objects and 
analogically related diagnosis for the problem at hand and 
provide the user with better informed answer. Also, the 
assistant uses the analogies to explain the solution 
correlating it with some everyday situation faced by the 
user. Thus, the interface provides an intuitive and easy 
way to facilitate natural and seamless dialogue between 
the user and the assistant. 
 

The Open Mind Common Sense knowledge 
base 
 
Since the fall of 2000 the MIT Media Lab has been 
collecting commonsense facts from the general public 
through a Web site called Open Mind Common Sense 
[OMCS], which you can find at 
openmind.media.mit.edu.  At the time of this writing, 
the Open Mind Common Sense Project has collected over 
750,000 facts from over 16,000 participants.  These facts 
are submitted by users as natural language statements of 
the form “tennis is a sport” and “playing tennis requires a 
tennis racket.”  While Open Mind does not contain a 
complete set of all the common sense knowledge found in 
the world, its knowledge base is sufficiently large enough 
to be useful in real world applications. 
 
Using natural language processing, the Open Mind 
knowledge base was mined to create ConceptNet [9], a 
large-scale semantic network currently containing over 
300,000 Commonsense concepts.  ConceptNet consists of 
logical predicates of the form: [IsA “tennis” “sport”] and 
[EventForGoalEvent “play tennis” “have racket”].  
ConceptNet is similar to WordNet [4] in that it is a large 
semantic network of concepts, however ConceptNet 
contains everyday knowledge about the world, while 
WordNet follows a more formal and taxonomic structure.  
For instance, WordNet would identify a dog as a type of 
canine, which is a type of carnivore, which is a kind of 
placental mammal.  ConceptNet identifies a dog as a type 
of pet, its most salient feature for Commonsense 
reasoning. 
 
ConceptNet has some limited ability to do analogical 
reasoning. Its idea of analogy is to generalize concepts 
according to their participation in playing a role in some 



piece of Commonsense knowledge. For example, 
ConceptNet can propose love as an analogy to money, if it 
has "People will do anything for love", and "People would 
do anything for money".  
 
OMCS constitutes, in some sense, a generic novice 
model. It represents what the average user can be 
"expected to know", unless you know otherwise. 
Therefore we can reduce the problem of finding an 
analogy to a technical situation that a novice can 
understand, to the problem of finding an analogy between 
the technical concepts and concepts that appear in 
ConceptNet.  
 

An example: Why does my browser run 
slowly?  
 
In the example screen in the first illustration, the user 
complained that their browser is running slowly. We ask 
ConceptNet, "What can run slow?" and we get "Traffic 
can run slow" and "Customer service can be slow".   
 
These provide fodder for analogies. Traffic runs slow 
because there are too many cars on the road. What is 
analogous to a car in the case of a browser running slow? 
Details are filled in using a method similar to Gentner's 
Structure Mapping Engine [5].  Too many users using the 
AOL service at the same time is analogous to too many 
cars on a road at rush hour. What is the solution? In the 
case of traffic, try to travel at a time other than rush hour. 
In the case of congestion on an on-line service, try to log 
in at a later time.  
 
Another possibility is that the browser is infected by a 
virus. In order to determine whether this is the case, the 
helper must elicit details of the user's situation. Since 
computer viruses are often contracted by downloading 
applications, the helper asks the user if they have been 
recently downloading new applications. If this is the case, 
the helper can explain the effects of a computer virus by 
making an analogy to a biological virus. "You know how 
when you have the flu, you can't do things as fast as you 
normally do?". 
 
 

Implementation of SuggestDesk 
 
The system performs Natural Language analysis with 
Hugo Liu's MontyLingua Part-of-Speech (POS) Tagger. 
The tagged text is chunked using a text chunker, which 
groups tagged words within an utterance to disjoint 
classes based on some pre-defined rules. Further, a 
semantic analyzer produces the semantic parse of the 
sentence in the form of an n-ary argument structure.  
 

Below, the semantic parse of “browser is running slow”. 
 
 

 
 
The semantic parser also produces additional extracted 
phrase structures as follows: 
 
Result= [{prep_phrases_tagged=[], 
verb_phrases_tagged=[is/VBZ running/VBG], 
verb_arg_structures_concise=[("run" "browser" 
"slow")], 
noun_phrases=[browser], 
noun_phrases_tagged=[browser/NN], 
adj_phrases_tagged=[slow/JJ], 
verb_arg_structures=[[is/VBZ 
running/VBG, browser/NN, [slow/JJ]]], 
modifiers_tagged=[slow/JJ], 
prep_phrases=[], verb_phrases=[is running], 
parameterized_predicates=[[[run, [past_tense, 
passive_voice]], 
[browser, []], [slow, []]]], modifiers=[slow], 
adj_phrases=[slow]}] 
 
The semantic parse obtained in this manner provides 
useful semantic chunks in form of the above structures. 
One of the key derivations is the frame structure that is 
built upon this semantic parse. Based on the verbs 
occurring in the semantic parse and respective synonyms, 
the NLU unit constructs a frame-based semantic structure, 
which is then correlated with the lexical predicates in 
ConceptNet. 
 
 <<<Frame Name: run >>> 
Type : event 
Subject : browser 
Modifier: slow 
Objects: <> 
 
 
After the natural language analysis, the major components 
are  

 



• The Commonsense Processor (CP), 
• The Expert Analyzer (EA), 
• The Analogy Mapping Engine (AME), and  
• The Elicitation and Explanation Processor (EEP).   
 
The Commonsense Processor and Expert Analyzer work 
similarly, processing natural language utterances and 
producing semantic networks. The EA uses the AOL Help 
knowledge base to mine help topics related to key 
concepts in the help domain, such as the following: 
 
Browsers can be vulnerable to viruses. Some free 
applications can have viruses. Viruses use browser’s 
resources. This may cause the browser to run slowly. 
 
EA structures are organized into a semantic graph called 
ExpertNet, where nodes represent domain-specific 
concepts and edges represent the relations. For instance, 
ExpertNet has the following structures related to Internet 
and browsers: 
 
(EffectOf 'surf internet' 'download files') 
(EffectOf 'surf internet' 'download applications') 
(EffectOf 'download files' 'browser cache is large') 
(EffectOf 'download applications' 'browser infected by 
virus') 
(EffectOf 'PC infected by virus' 'browser run slow') 
 
The Analogy Mapping Engine (AME) uses ConceptNet 
and ExpertNet as constructed above to perform novice-
expert knowledge mapping. Since both ConceptNet and 
ExpertNet are similar in graph structure, the AME is able 
to perform a fast and efficient graph matching algorithm. 
AME implements a variation of the Structure Mapping 
Algorithm to align the two graphs and matches concepts 
in both the networks depending upon node attributes and 
respective relations. Subsequently, AME looks at the 
precise frame description of the user problem to perform 
matching in a hierarchical manner. For instance, in the 
example of, [[browser], [run slow]], AME first aligns 
both graphs using the verb, [run] and further, computes 
the similarity based on modifier relations, like in the 
following sample result: 
 
Analogies:[[computer, [[UsedFor, surf internet, 
1.1887218755408673], 
[CapableOfReceivingAction, run slow, 
1.1887218755408673], 
[CapableOfReceivingAction, crash, 
1.1887218755408673], 
[CapableOfReceivingAction, start, 
1.1887218755408673]], 
6.1887218755408675], [car, 
[[CapableOfReceivingAction, damage, 
1.1887218755408673], [CapableOfReceivingAction, 
crash, 

1.1887218755408673], [CapableOfReceivingAction, 
start, 
1.1887218755408673]], 5.930167946706389], [software, 
[[CapableOfReceivingAction, run slow, 
1.1887218755408673], 
[CapableOfReceivingAction, crash, 
1.1887218755408673], 
[CapableOfReceivingAction, install, 
1.1887218755408673], 
[CapableOfReceivingAction, install, 
1.1887218755408673]], 
5.855516191543203]] 
 
AME provides a ranking mechanism for the analogous 
structures as specified by get_analogies(concept). The 
strength of an analogy is determined by the number and 
weights of each feature. A weighting scheme is used to 
disproportionately weight different relation types and also 
weights a structural feature by the equation: 
 
log(f+0.5*i+4),  
where f=outgoing edges and i = incoming edges 
 
The Elicitation and Explanation Processor (EEP) retrieves 
analogies from AME and processes the ranked list of 
analogies that match the given user's problem. It analyzes 
each analogy and looks at the structure relations in order 
to construct diagnostic elicitations. For instance, for the 
“browser is running slow” example, EEP retrieves the list 
of possibly analogous objects matching browser for the 
“running slow” property. After retrieving the likely 
analogous causes, it outputs the analogies and associated 
diagnoses in the “Diagnosis for Elicitation” window. 
Thus, EEP enables delivery of analogies and associated 
diagnostic information to the SuggestDesk UI. 
 

Evaluation 
 
We performed a small experiment comparing 
SuggestDesk with the existing AOL HelpDesk system, 
with 1 AOL collaborator and 5 MIT students as subjects. 
We measured task execution time, success rates, and 
subjective satisfaction on two problems, one related to 
browser performance issue, and the other one related to a 
computer crashing problem.  
 
To start with the users filled out a preliminary 
questionnaire. Subsequently, the users were provided with 
an introduction and a training routine for both 
SuggestDesk and AOL HelpDesk system. The details of 
the training routine varied from interface to interface, but 
each session consisted of a demonstration of all features 
of the interface as well as dummy task scenarios. The 
subjects could ask any questions at any time during the 
training routines. After the training, users were asked to 



perform 2 practice tasks, similar in nature to the 
experimental tasks. For the subjective satisfaction 
variable, users filled out a user satisfaction questionnaire 
upon completion of the experiment. 
 

 
 

 
 
As the results indicate in the above two tables, on average 
SuggestDesk fared better than AOL’s HelpDesk in terms 
of average task completion time, success rate, and average 
satisfaction score. Moreover, 4 out of 5 users liked the 
analogies provided by the system. 
 

Related Work 
 
Our research touches various aspects of contemporary 
research in Artificial Intelligence. We don't have time and 
space to cover all related subjects, but we will touch upon 
three major areas: Knowledge Acquisition, Intelligent 
Tutoring Systems, and Analogy. 
 
The most direct is Knowledge Acquisition, though that 
addresses primarily elicitation and not explanation. We 
would like to particularly acknowledge the work at 
USC/ISI on the EXPECT and TRELLIS systems [1, 6, 
11]. EXPECT uses ontologies and knowledge acquisition 
scripts to generate and advance dialogues with users to 
acquire and maintain knowledge bases of a diverse nature. 
Our approach is similar to EXPECT in the aspect that we 
use the acquired novice knowledge from the user to map 
it to expert domain and produce suitable elicitations, 
which reflects the system's understanding of the user's 
context. TRELLIS is an application for argumentation and 
decision-making. The system supports the user in creating 
knowledge snippets from online resources. The key is to 
capture how the user progressively generates new 
knowledge that results in added value to the original raw 
information sources.   EXPECT and TRELLIS assume 
that the user and the system are roughly equally expert 
and share vocabulary and knowledge. 
 
Conversely, Intelligent Tutoring Systems focus on 
explanation rather than elicitation. Many have student 
models as well as models of the expert knowledge to be 
taught, but again, limited to the particular domain rather 
than general Commonsense knowledge. [2] is a good 
general overview of the field.  

Finally, there has been much study of analogy. Gentner's 
Structure-Mapping Engine [5] is the classic reference, and 
the basis for our expert/novice knowledge alignment. 
Liu's ConceptNet paper describes in detail ConceptNet's 
analogy features. We should also point out that in addition 
to the symbolic model of Gentner, connectionist models 
such as Mitchell and Hofstadter's CopyCat [10] are also 
important. Our model falls somewhere in between, as 
ConceptNet's spreading activation is somewhat 
connectionist in nature whereas Gentner's Structure 
Mapping is used to fill in roles.  
 
We have also previously worked in the area of online 
help, on the problem of how to choose which helper or 
peer might best have knowledge about a particular user's 
specific problem [12]. We have also created systems for 
tracking Web procedures performed by a user and 
visualizing explanations of them and providing debugging 
tools for self-help [13].   
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