
©2006 IEEE. Personal use of this material is permitted. However, permission

to reprint/republish this material for advertising or promotional purposes or for

creating new collective works for resale or redistribution to servers or lists, or

to reuse any copyrighted component of this work in other works must be

obtained from the IEEE.

Enhancing Software Engineering Project Information through Software
Engineering Ontology Instantiations

P. Wongthongtham1, E. Chang1, T.S. Dillon2

1School of Information Systems, Curtin University of Technology, Australia
{pornpit.wongthongtham, elizabeth.chang}@cbs.curtin.edu.au

2Faculty of Information Technology, University of Technology Sydney, Australia
tharam@it.uts.edu.au

Abstract

Software engineering project information is frequently
evolving and queried to reflect project development
changes in the software requirements or in the design
process, to incorporate additional functionality to systems
or to allow incremental improvement and the like.
Therefore, the project information needs enhancement to
ease up-to-date ontological information and to ease
communication. Ontologies are widely used for
capturing and organising knowledge of a particular
domain of interest. We propose the use of software
engineering ontology instantiations and enrichment to
capture the software engineering project information.

1. Introduction

There is no doubt that currently the internet is the
richest repository of information. However, semantics of
the information on the internet are oriented to humans
rather than to machines. We propose to enhance
information with semantics. Moreover, we propose to
enhance software engineering project information by
associating the project information with specific entities
within the domain of interest. We aim to facilitate a
semantic-based interpretation of content by restricting
their models of interpretation through software
engineering ontology. Software engineering ontology
captures software engineering knowledge
conceptualisation. The software engineering ontology
organises and centralises software engineering knowledge
in a formal, machine and human understandable way.
Machine in form of a software application or a software
agent can use the knowledge regarding project
information as instances in the ontology to carry out
knowledge maintenance.

In the next section, we provide information concerning
the software engineering ontology. Then in section 3, we
describe software engineering project information
enhancement. We present software engineering
instantiations and enrichment in section 4. In section 5,
we illustrate instantiations transformation and, finally, we
conclude this paper in section 6.

2. Software engineering ontology

We have merged Gruber’s [1], Borst’s [2] and
Studer’s [3] definitions of ontology as a basis to define
software engineering ontology. Hence, the software
engineering ontology is a formal, explicit specification of
a shared conceptualisation in the domain of software
engineering. ‘Formal’ implies that the software
engineering ontology should be machine-understandable.
Software engineering ontology enables a better
communication over software engineering domain
knowledge between humans and machines. ‘Explicit’
implies that the type of software engineering concepts
used and their constraints are explicitly defined. Software
engineering ontology standardises and formalises the
meaning of terms in software engineering through its
concepts. ‘Shared’ shows that the ontology specifies
consensual knowledge of software engineering which
means it is public and accepted by a group of software
engineers. ‘Conceptualisation’ implies an abstract model
of having identified the involved software engineering
concepts.

It is not necessary that ontology has instances but
software engineering ontology has the instances
representing project information which includes project
data, project understanding and project agreement. Figure
1 shows a schematic view of the software engineering
ontology.

Proceedings of the 2006 IEEE/WIC/ACM International Conference
on Web Intelligence (WI 2006 Main Conference Proceedings)(WI'06)
0-7695-2747-7/06 $20.00 © 2006

Class 1

Class 1 Class 1

Domain
Knowledge

Instance
KnowledgeConcepts Project Specific

Data

InternetSerialised
knowledge

Software Engineering Ontology

Specific Concepts

Sub Domain
Knowledge

Figure 1. Schematic overview of software engineering ontology

<<Concept>>
Activity

Activity_Name Single String

<<Concept>>
ActivityTransition

<<Concept>>
BranchTransition

Guard_Expression_1 Single String
Guard_Expression_2 Single String
Guard_Expression_3 Single String
Related_Branch_Activity_1 Single {Activity, Branch
Transition, Concurrent Transition, Special Transition}
Related_Branch_Activity_2 Single {Activity, Branch
Transition, Concurrent Transition, Special Transition}
Related_Branch_Activity_3 Single {Activity, Branch
Transition, Concurrent Transition, Special Transition}
Relating_Branch_Activity Single {Activity, Branch
Transition, Concurrent Transition, Special Transition}

<<Concept>>
NormalTransition

Related_Activity Single Activity
Relating_Activity Single Activity

<<Concept>>
SpecialTransition

Related_Special_Activity Multiple Activity
Relating_Special_Activity Multiple Activity

<<Concept>>
Start

Related_Special_
Activity >= 1
Relating_Special_
Activity = 0

<<Concept>>
Stop

Related_Special_
Activity = 0
Relating_Special
_Activity >= 1

<<Concept>>
Object

Get_Object
_Flow

Set_Object
_Flow

0..* 0..*

<<Concept>>
ConcurrentTransition

Related_Concurrent_Activity Multiple {Activity,
Branch Transition, Concurrent Transition}
Relating_Concurrent_Activity Multiple {Activity,
Branch Transition, Concurrent Transition}

<<Concept>>
Fork Transition

Related_Concurrent_Activity >= 2
Relating_Concurrent_Activity = 1

<<Concept>>
Join Transition

Related_Concurrent_Activity = 1
Relating_Concurrent_Activity >= 2

Set_Object_Flow

Get_Object_Flow0..*

<<Concept>>
Swimlane

Swimlane_Name Single String

In_Swimlane
0..1

0..*

Figure 2. Schematic overview of software engineering ontology

The whole set of software engineering concepts are

captured into generic software engineering ontology as
domain knowledge. A particular project or a particular
software development probably uses only part of the
whole set of software engineering concepts. For
example, if a project uses purely object oriented
methodology then the concept of a data flow diagram
may not be necessarily be included but instead it includes
concepts like class diagrams, activity diagrams and so on.
The specific software engineering concepts used for the
particular software development project are captured in
the specific software engineering ontology as sub domain
knowledge. The generic software engineering ontology
represents all software engineering concepts while

specific software engineering ontology represents some
concepts of software engineering that the particular
project needs. Then in each project there exists project
information or actual data including project
understanding and project agreement. The project
information specially meets a particular project need and
is required for the software engineering ontology to
define instance knowledge. Note that domain knowledge
is separated from instance knowledge. The instance
knowledge varies depending on its use for a particular
project. Domain knowledge is quite certain while the
instance knowledge is vague as per the project. Once all
the domain knowledge, sub domain knowledge and
instance knowledge are created, it is available to be

Proceedings of the 2006 IEEE/WIC/ACM International Conference
on Web Intelligence (WI 2006 Main Conference Proceedings)(WI'06)
0-7695-2747-7/06 $20.00 © 2006

shared among software engineers through the internet.
All team members, regardless of where they are, can use
the semantic linked project information. .

The software engineering ontology that was used in
case study for this paper, concerns only in the domain of
software process design. The full version of software
engineering ontology can be found in Wongthongtham’s
thesis [4]. The software engineering ontology was
constructed using the Protégé OWL [5, 6]. Ontology
models that appeared in this paper use notations
developed in Wongthongtham’s thesis [4].

In order to capture knowledge, we need to firstly
define the main concepts of interest. Secondly, relations
for each concept which links it to other concepts, known
as object property, or to an XML schema data type value
(boolean, float, integer, or string), known as datatype
property are defined. Thirdly, constraints on the range
and then instances of the concepts are defined.

Figure 2 shows an ontology model of activity
diagrams. For example, in domain of activity diagrams in
software process design, the main concepts are activity,
its transition, swimlane and object. Every activity can be
in a swimlane, however, transition may occur between
lanes. This refers to a maximum cardinality restriction in
relation in_Swimlane. Objects may be involved in the
flow of control associated with an activity diagram. This
refers relations set_Object_Flow and its inverse,
get_Object_Flow.

Transitions of activities are classified into four main
areas. Firstly, normal transition shows the path from one
activity to the next activity. This refers ontology class
NormalTransition that has cardinality restriction
restricted the only one activity in the relations
Related_Activity and Relating_Activity. Secondly, special
transition is further divided into an initial and a stop
transition. The initial transition is where the activity
diagrams start. This refers ontology class Start that has
cardinality restriction restricted at least one activity in
relation Related_Special_Activity but no activity in
relation Relating_Special_Activity. The stop transition is
where the activity diagram stops. This refers ontology
class Stop that has cardinality restriction restricted at least
one activity in relation Relating_Special_Activity but no
activity in relation Related_Special_Activity. Thirdly,
branch transition which specifies alternate paths taken
based on some guard expression refers to ontology class
BranchTransition. Lastly, concurrent transition is further
divided into a fork and a join transition. The fork
transition represents the splitting of a single flow of
control into two or more flows of control. This refers to
ontology class ForkTransition that has cardinality
restriction restricted at least two activities in relation
Related_Concurrent_Activity and only one activity in
relation Relating_Concurrent_Activity. The join
transition represents the joining of two or more incoming

transitions and one outgoing transition. This refers to
ontology class JoinTransition that has cardinality
restriction restricted at least two activities in relation
Relating_Concurrent_Activity and only one activity in
relation Related_Concurrent_Activity.

Once project members are committed to the domain
knowledge of, for example, activity diagrams and
recognise constitutes of activities, transitions, constraint
of activities and transitions and so forth then the
commitment enables project members to talk or discuss in
the same language. Consequently project members can
better coordinate their activities.

3. Software engineering project information
enhancement

In this paper, we focus on the semantic increase of
software engineering project information concerning the
instances that exist in a domain of interest. We hope it
eliminates misunderstandings, miscommunications and
misinterpretations and provides semantic consistency.
Software engineering ontology presents explicit
assumptions concerning the objects referring to domain
knowledge of software development. A set of objects and
interrelations and their constraints renders their agreed
meanings and properties. For example, the confusing
terms of ‘classes’, ‘objects’ and ‘components’ in object
oriented software development can be simplified to terms
which the software engineers agree to recognise their
constitutes, their interrelations and their constraints.
Conclusively determining what concept of project
information is captured or where that project information
resides it is assumed that it is determined by members
who specify of what the project information really means
in that given context.

4. Software engineering ontology
instantiations

As stated previously, software engineering ontology
contains abstraction of software engineering domain
concepts and instantiations. There are two types of the
abstraction which are generic software engineering and
specific software engineering. The abstract of a generic
one represents the whole software engineering concepts
while the abstract of a specific one represents the
software engineering concepts used for some particular
projects. The instantiations, also known as population,
represent the project information. The abstraction of the
specific software engineering ontology is having its
instantiations being used to capture data instances of the
projects. Each abstraction can have multiple
instantiations in different circumstances of projects. The
corresponding concrete data instances are stored as

Proceedings of the 2006 IEEE/WIC/ACM International Conference
on Web Intelligence (WI 2006 Main Conference Proceedings)(WI'06)
0-7695-2747-7/06 $20.00 © 2006

instantiations. In this study, the software engineering
ontology integrates abstractions and instantiations
together, rather than separating them by storing instances
in the traditional, relational, database style inside the
knowledge base. The latter SQL queries can help in the
large volume concept and data management and
maintenance. Nevertheless, in the software engineering
ontology the data volume is not very large and coherent
integration between abstraction and instantiations are
important in the software engineering projects.
Combining them rather than having them separate would
be more suitable for this study. For example, each project
contains a different narrow domain (specific software
engineering ontology) and limited numbers of data
instances. The domain specific ontologies are locally
defined, that is, they are derived from the generic
software engineering ontology so they are not created
with respect to some global declarations. As you can see,
this example scenario strongly favours the combined
abstractions and instantiations for storing because it asks
for a unified global declaration of abstractions.

5. Instantiations transformation

In this section, we present how to populate the
software engineering ontology with instances. Populating
refers to the process of creating instances of
corresponding concepts in software engineering ontology.

Particularly, software engineering project information
is transformed or mapped into corresponding concepts
formed in the software engineering ontology as
instantiations. Once transformed, instantiations are
available to be shared among project members.
Manipulation of semantic linked instantiations can be
carried by project members.

Figure 3. An example of activity diagram

We use the example of activity diagrams in domain of

software process design. Figure 3 shows an example of

UML activity diagram that will be transformed into
activity diagram ontology (its model shows in Figure 2)
as instantiations. Note that the activity diagram used as
an example here is derived from the book of Enterprise
Java with UML [7].

As from Figure 3, a list of updating actions is as
follows:
• Adding new instances ‘display employees’, ‘ask

for new employee data’, ‘store new data’, ‘update
view’, ‘display error’, ‘record error’ and ‘display
conflict’ for concept Activity.

• Adding new instance for concept StartTransition
relating relation Related_Special_Activity with
concept Activity instance ‘display employees’.

• Adding new instance for concept StopTransition
relating relation Relating_ Special_Activity with
concept Activity instance ‘record error’.

• Adding new instance for concept
NormalTransition relating relations
Relating_Activity with concept Activity instance
‘display employees’ and Related_Activity with
concept Activity instance ‘ask for new employee
data’.

• Adding new instance for concept
NormalTransition relating relations
Relating_Activity with concept Activity instance
‘ask for new employee data’ and Related_Activity
with concept Activity instance ‘store new data’.

• Adding new instance for concept
NormalTransition relating relations
Relating_Activity with concept Activity instance
‘display error’ and Related_Activity with concept
Activity instance ‘record error’.

• Adding new instance for concept
NormalTransition relating relations
Relating_Activity with concept Activity instance
‘display conflict’ and Related_Activity with
concept Activity instance ‘update view’.

• Adding new instance for concept
NormalTransition relating relations
Relating_Activity with concept Activity instance
‘update view’ and Related_Activity with concept
Activity instance ‘ask for new employee data’.

• Adding new instance for concept
BranchTransition relating relations
Relating_Branch_Activity with concept Activity
instance ‘store new data’,
Related_Branch_Activity_1 with concept Activity
instance ‘update view’,
Related_Branch_Activity_2 with concept Activity

Proceedings of the 2006 IEEE/WIC/ACM International Conference
on Web Intelligence (WI 2006 Main Conference Proceedings)(WI'06)
0-7695-2747-7/06 $20.00 © 2006

instance ‘display conflict’,
Related_Branch_Activity_3 with concept Activity
instance ‘display error’, Guard_Expression_1 with
string of ‘update ok’,
Guard_Expression_Activity_2 with string of
‘duplicate employee found’ and
Guard_Expression_Activity_3 with string of
‘system error’.

Project information, which is instantiations of the
software engineering ontology, promotes the use of
semantic project information for software development.
Having attached domain knowledge, it makes project
information more understandable, more linear,
predictable and controllable as members identify some
missing pieces that make sense of your attentive
interaction among team members.

6. Conclusion

We have presented semantically software engineering
project information enhancement. We have illustrated
association of the project information with specific
entities within the domain of interest. This aims to
facilitate a semantic-based interpretation of content by
restricting their models of interpretation through software
engineering ontology. We have given ideas for the use of
software engineering ontology instantiations and
enrichment to capture the software engineering project
information. An example of software engineering
ontology capturing software engineering knowledge
conceptualisation has been illustrated. The software
engineering ontology organises and centralises software
engineering knowledge in a formal way that is
understandable for both machines and humans. A
machine, in form of a software application or a software
agent, can use the knowledge regarding project
information as instances in the ontology to carry out
knowledge maintenance.

However, the populating process is a time-consuming,
error-prone and labour intensive task when performed
manually. For future work, we will investigate systems to
facilitate the ontology instantiations and enrichment
process in order to obtain knowledge from data
automatically.

7. References

[1] Gruber, T.R. Toward principles for the design of

ontologies used for knowledge sharing. in
International Workshop on Formal Ontology in
Conceptual Analysis and Knowledge Representation.
1993. Padova, Italy: Kluwer Academic Publishers,
Deventer, The Netherlands.

[2] Borst, W., Construction of Engineering Ontologies.
1997, Centre of Telematica and Information
Technology, University of Tweenty: Enschede, The
Netherlands.

[3] Studer, R., V. Benjamins, and D. Fensel. Knowledge
Engineering: Principles and Methods. in IEEE
Transactions on Data and Knowledge Engineering.
1998.

[4] Wongthongtham, P., A methodology for multi-site
distributed software development, in School of
Information Systems. 2006, Curtin University of
Technology: Perth.

[5] Horridge, M., A Practical Guide To Building OWL
Ontologies With The Protege-OWL Plugin, 1.0,
Editor. 2004, University of Manchester.

[6] Gennari, J., et al., The Evolution of Protege: An
Environment for Knowledge-Based Systems
Development. 2002, Stanford University,
http://protege.stanford.edu.

[7] Arrington, C., Enterprise Java with UML. 2001, New
York, USA: John Wiley & Sons, Inc.

Proceedings of the 2006 IEEE/WIC/ACM International Conference
on Web Intelligence (WI 2006 Main Conference Proceedings)(WI'06)
0-7695-2747-7/06 $20.00 © 2006

