
Improving Performance of Web Services Query Matchmaking with
Automated Knowledge Acquisition

Chaitali Gupta, Rajdeep Bhowmik, Michael R. Head, Madhusudhan Govindaraju, Weiyi Meng
Department of Computer Science, State University of New York (SUNY) at Binghamton, NY

{cgupta1, rbhowmi1}@binghamton.edu {mike, mgovinda, meng}@cs.binghamton.edu

Abstract

There is a critical need to design and develop tools
that abstract away the fundamental complexity of
XML-based Web services specifications and toolkits,
and provide an elegant, intuitive, simple, and powerful
query-based invocation system to end users. Web
services based tools and standards have been designed
to facilitate seamless integration and development for
application developers. As a result, current
implementations require the end user to have intimate
knowledge of Web services and related toolkits, and
users often play an informed role in the overall Web
services execution process. We employ a self-learning
mechanism and a set of algorithms and optimizations
to match user queries with corresponding operations
in Web services. Our system uses Semantic Web
concepts and Ontologies in the process of automating
Web services matchmaking. We present performance
analysis of our system and quantify the exact gains in
precision and recall due to the knowledge acquisition
algorithms.1

Key Words: Web services, Matchmaking, Semantic
Web, Ontology, Information Extraction

1. Introduction

The Web services model has emerged as a
standard for representation, discovery, and invocation
of services in a distributed environment. A Web
service can be defined as an interface to application
functionality that is accessible using well-known
Internet standards and is independent of any operating
system or programming language. The widespread
adoption of Web services is enabled by a set of flexible
and extensible XML-based standards including the
Web Service Description Language (WSDL) [1],

1 Supported in part by NSF grants IIS-0414981 and CNS-0454298

which is the widely used specification to describe Web
services. Web services are widely expected to simplify
the design of distributed applications that are amenable
to automated discovery, composition, and invocation.
The use of XML [2] facilitates in moving towards
loosely-coupled applications that provide greater
interoperability in distributed heterogeneous
environments. However, the current XML-based
specifications provide only syntactical descriptions of
the functionality provided by Web services. Even
though a wide variety of tools are available, the lack of
semantics associated with Web service descriptions
requires user intervention in the decision making
process. Though an important motivation of Web
services is to promote ease-of-use for application
developers, the requirement that end users also be
familiar with the design and some implementation
details makes its usage difficult for end users. Our
work addresses this problem by simplifying the user
interaction with Web services. We have developed
several algorithms and optimization techniques that
match user queries to relevant operations in domain
specific Web services. Our system presents a simple
interface to accept user queries, similar to HTML
based search engines, and maps the queries to
appropriate Web services operations. We employ
several query matching techniques including Semantic
Web [3] and ontology technologies such as OWL [4],
as well as tools such as WordNet [5], to retrieve
contextual information from queries and determine the
set of Web services operations relevant to the user
query. The details of Web services specification and
implementation are hidden from the user. For
example, suppose a user wants to check the weather for
a trip from Boston to Chicago. In our system, the user
needs to enter the query "weather for travel from
Boston to Chicago."

Our system employs various matchmaking
algorithms to understand the query and obtain a set of
relevant operations of the Web service. Unlike other
Web service implementations, the user does not have

2007 IEEE/WIC/ACM International Conference on Web Intelligence

0-7695-3026-5/07 $25.00 © 2007 IEEE
DOI 10.1109/WI.2007.101

559

2007 IEEE/WIC/ACM International Conference on Web Intelligence

0-7695-3026-5/07 $25.00 © 2007 IEEE
DOI 10.1109/WI.2007.101

559

2007 IEEE/WIC/ACM International Conference on Web Intelligence

0-7695-3026-5/07 $25.00 © 2007 IEEE
DOI 10.1109/WI.2007.101

559

2007 IEEE/WIC/ACM International Conference on Web Intelligence

0-7695-3026-5/07 $25.00 © 2007 IEEE
DOI 10.1109/WI.2007.101

559

2007 IEEE/WIC/ACM International Conference on Web Intelligence

0-7695-3026-5/07 $25.00 © 2007 IEEE
DOI 10.1109/WI.2007.101

559

to fill detailed forms for each service. Our system takes
into consideration previous Web service matchmaking
results and utilizes them to improve performance for
subsequent user queries in the same domain. Our
system supports memoized optimization, which uses
the knowledge of certain or entire parts of previously
made queries, for the benefit of future queries. In this
paper we present performance analysis for each
module and quantify the exact gains in precision and
recall due to the self-learning capability of the system.
We also measure how precision changes with the
increase in the number of elements and relations in the
OWL ontologies.

2. Implementation Details

Figure 1 shows the components and control flow of
our system. A brief overview of the modules in the
system is provided in our previous work [6].

Figure 1. Overall architecture of the system

3. Automated Knowledge Acquisition

Within the Ontology Matcher module in our
system, the Lexicon block is used and its features are
employed to obtain better contextual information
relevant to the client query. The Lexicon Block is built
using the WordNet 2.0 Dictionary [5]. Our system uses
JWNL 1.3 API [11] to access the WordNet Dictionary.
Initially, the query words are matched using direct
keyword matching with the Subject, Object and
Predicate of each ontology statement. Irrespective of
the matches found, we use the Lexicon block to
employ synonym matching techniques. By taking into

consideration different senses of a particular word, we
can ensure that the selected ontology domain has the
closest relevance to the client query string.

For synonym matching, four different search
outcomes are possible.

• Neither the query word nor the synonym
words are present in any of the ontology models.

• Some of the synonyms are present, but not the
query word.

• The query word is present, but not its
synonyms.

• Both the query word and its synonyms are
present in the ontology model.

We collect these outcomes, shown in Figure 2, and
use them to extend the ontology models, thus enriching
the model. We have designed a learning module that
stores the knowledge and information of a previously
made query (the semantics of which are not in our
ontology) to later queries for predicting more accurate
results. If both the query word and its synonyms are
not found, the ontology model does not get extended.
The same condition applies when the query word and
its synonyms are both found within the ontology
model. However, the ontology file is extended when a
synonym of a particular word yields a match. If a
synonym of the query word is present in the ontology
file, we infer that the query word very likely has
contextual relevance to the ontology model.

Suppose we have a query "temperature at
Binghamton" and we do not have the keyword
"temperature" in our present ontology model. Further
assume that from the Lexicon we can infer that
"weather" is a synonym of temperature and "weather"
is already present in the ontology model. It can then be
inferred that "temperature" has a meaning that is
semantically similar to "weather" and should be
included in the ontology model. So we regenerate the
weather ontology model and incorporate the keyword
"temperature" in the ontology file. Each time any of
the ontology models is updated, we create and read the
new ontology model again so that the changes are
incorporated. However, if a keyword from the user
query string is present in the ontology model, every
synonym of it does not qualify to be incorporated into
the ontology model. For example, for the query string
"weather at Binghamton", instead of "temperature at
Binghamton", we get "endure" as a synonym for
weather from Lexicon. Since "endure" is not present in
the ontology file, we cannot extend the model because
the word "endure" carries a different sense that is not
relevant to the present context of "weather".

The self-learning mechanism, provided by our
system, utilizes the knowledge of previously made

560560560560560

queries and enhances the efficiency of the system by a
range of 20%-82% [6].

Query
Word Synonym Result

0 0 Continue

0 1 Extend OWL file with
query word

1 0 Continue, Synonyms may
have different senses

1 1 Continue

Figure 2. Ontology Extension Table

4. Experimental Results

We conducted experiments on a Dell D620 with an
Intel T2300 processor @ 1.66 GHz and 1 GB of RAM
running Microsoft Windows XP.

Figure 3 denotes the amount of time taken by each
module within our system. The results are averaged
across 50 queries of varying sizes, randomly selected
from 4 domains: Travel, Currency, Weather and
Location. We generated the profiling data using TPTP
4.2.1 Eclipse plug-in and Eclipse SDK 3.2.2.

From Figure 3 it can be seen that the Query
Processor, Relevance Checker, and Ontology Matcher
modules consume the least amount of processing time.
It is to be noted that the execution time of the Ontology
Matcher does not take into account the time needed by
the Jena toolkit [12] to load a new extended RDF
model of the self-learning mechanism of the system.
WSDL processing is a one-time operation; so the
execution time of the WSDL processor does not have a
major impact on the performance of the system. The
major bottleneck in the overall process is the Lexicon
block. It is used to find the synonyms, hyponyms, and
hypernyms of client query words and the synsets2 for
extending the ontology models. Our analysis shows
that a major portion of the time is spent in loading the
JWNL API implementation for generating the synsets
for each client query word.

We use the precision and recall measurements to
study the accuracy of our system. We take into
consideration a sample of 50 queries and evaluate the
outputs. For measuring the overall accuracy of our
system, we define precision as ratio of the number of
relevant WSDL operations retrieved corresponding to a
user query and the total number of WSDL operations
returned by our system. We define recall as the ratio of
the number of relevant WSDL operations retrieved and

2 A synset (synonym set) represents a concept and contains a set of
words; each of which is synonymous with the other words in the
synset.

the total number of relevant WSDL operations for a
user query present in the WSDL repository.

0

200

400

600

800

1000

1200

1400

Que
ry

Pro
ce

sso
r

W
SDL P

ro
ce

ss
or

Spe
ll C

hec
ke

r

Lex
ico

n

Rele
va

nc
e C

he
ker

Dict
ion

ary
Mat

ch
er

Onto
logy

 M
atc

he
r

System Blocks

Ex
ec

ut
io

n
Ti

m
e

in
 m

se
cs

Figure 3. Execution time taken by each
component of the system

Let D be the total number of WSDL operations

present in the WSDL repository, iQ be the query to be

tested and
iQR be the set of WSDL operations in the

WSDL repository that are relevant to the query iQ .

Since DR
iQ ⊂ , therefore

iQRD − is the set of
WSDL operations that are irrelevant to the query under
consideration. In other words, iQ partitions D into

two subsets,
iQR and

iQRD − . We define the contents
of these sets and the query before running the
precision/recall test. In our experiment, we refer

iQT
to the WSDL operations returned by our system and

iQG to all relevant WSDL operations retrieved for

query iQ . Therefore, the sets hold to the relations

iii QQQ RTG ∩= and)(
iiii QQQQ RDTGT −∩=− .

ii QQ GT − refers to the irrelevant WSDL operations

retrieved for query iQ . Thus, in our experiment, the
precision is calculated as

ii QQ TGP = and recall

as
ii QQ RGR = .

Table 1, Table 2, and Table 3 refer to the precision
and recall values across the different domains. In Table
1, precision-recall results of the domain-independent
methods (Dictionary Matcher) are not impressive as
semantics are not associated with keywords. The
results in Table 1 quantify the upper limit of

561561561561561

performance that we can get if just the algorithms for
Dictionary Matcher and Lexicon are employed. In
Table 2, we can see that both precision-recall values
are significantly higher. The domain-dependent
ontologies (Ontology Matcher) are more effective
because of its use of semantic and domain-specific
knowledge base. In Table 3, precision-recall results are
slightly better than in Table 2 when we combine both
domain-independent and domain-dependent
methodologies. As the coverage of our ontological
knowledge base is currently not exhaustive, the
keywords that are not found in the OWL files by the
Ontology Matcher are serviced by the Dictionary
Matcher. This effectively improves the overall
accuracy of the system.

Table 1. Performance of Domain Independent

Methods.
Domain Precision Recall
Travel 73.3% 71.8%

Currency 67.9% 62.7%
Weather 83.4% 79.5%
Location 77.6% 74.7%
Average 75.6% 72.2%

Table 2. Performance of Domain Dependent

Ontologies.
Domain Precision Recall
Travel 96.7% 93.8%

Currency 99.3% 91.6%
Weather 99.5% 98.2%
Location 98.8% 92.1%
Average 98.6% 93.9%

Table 3. Performance of Combined

Methodologies.
Domain Precision Recall
Travel 97.2% 95.2%

Currency 99.5% 92.1%
Weather 100% 98.7%
Location 99.2% 94.9%
Average 99% 95.2%

We compare the performance between the

domain-independent, domain-dependent, and
combined methodologies in Figure 4. When the
domain-dependent ontologies are not used, both
precision and recall decrease, which indicates that the
Ontology Matcher is vital to the accuracy of the
system. If we remove the Ontology Matcher, both
precision and recall drop by approximately 23%. The

domain-independent method is a less significant
measure pertaining to the accuracy of the system.
Without the Dictionary Matcher, both precision and
recall drop by approximately 1%.

75.6%

99.0%98.6% 95.2%93.9%

72.2%

0%
10%

20%
30%

40%
50%
60%
70%
80%
90%

100%

Domain
Independent

Cue

Domain
Dependent

Cue

Combined
Cue

Precision

Recall

Figure 4. Evaluation of the different
methodologies.

We conducted an experiment to determine how

accurately our system behaves for a user query with an
increase in the size of the ontological knowledge base.
Based on the results of this experiment, we can draw
the following conclusions:

a) With the addition of elements and relations in
the OWL ontologies related to the user query, the
Ontology Matcher always retrieves the relevant
statements. So both precision and recall increase.

b) With the addition of elements and relations in
the OWL ontologies unrelated to the user query, the
Ontology Matcher never retrieves the irrelevant
statements. So both precision and recall remain
unchanged.

0.9

1

0.92 0.94 0.96 0.98 1

Avg Recall

A
vg

 P
re

ci
si

on

Figure 5. Precision-Recall averaged across
four domains with the increase in the number
of elements and relations in OWL ontologies.

562562562562562

Figure 5 pertains to category ‘a’ mentioned above,

the only difference being that the OWL ontologies are
automatically extended instead of manual addition of
elements and relations. Figure 5 shows that with the
increase in recall, precision also increases. This
performance improvement is due to the self-learning
mechanism incorporated in our system, which adds
relevant semantic concepts to the ontology models. As
a result, the number of relevant matches also increases
with the number of statements retrieved from the
ontological knowledge base.

5. Related Work

Patil et al. have developed MWSAF, a Web
service annotation framework [7] that performs both
element and structural level matching for Web
services. The element level matching is bound on a
combination of Porter Stemmer algorithm for root
word selection, WordNet dictionary for synonyms,
abbreviation directory to handle acronyms, and NGram
algorithm for linguistic similarity of the names of two
concepts. Sycara et al. have developed one of the
earliest ontology-based semantic matchmaking
engines, MatchMaker [8], which uses capability-based
semantic match and various IR-based filters. Another
related effort is Racer [9], which focuses solely on
service capability-based semantic matches for
application in e-commerce systems. Syeda-Mahmood
et al. [10] explore the use of domain-independent and
domain-specific ontologies for finding matching
service descriptions. Domain-independent relationships
are derived using an English thesaurus after
tokenization and part-of-speech tagging, while domain-
specific ontological similarities are derived by
inferring semantic annotations associated with Web
service descriptions. A combination of the matches due
to the two cues is done to determine an overall
semantic similarity score. Our work extends the work
by Syeda-Mahmood et al. [10], but dynamically
learning from previous matchmaking results, extending
the ontological vocabulary, and applying the
knowledge to subsequent queries.

6. Conclusions

This paper presents a system that matches user
queries with Web services operations. The system uses
lexical analysis, domain-independent matching
techniques, domain-specific ontologies and a set of
specialized algorithms and optimizations to match
simple free-form queries to WSDL operations. Our
system provides the ease-of-use of popular Web search

engines, enhanced with the ability to combine and
retrieve information related to user queries. We also
provide a detailed accuracy and profiling study of our
system. Experimental results demonstrate the viability
of our approach in terms of simplicity, effectiveness,
and performance, facilitating in query-based search and
matchmaking of Web services.

7. References

[1] Web Services Description Language (WSDL), Version
2.0 Part I, W3C Working Draft, May 2005,
http://www.w3.org/TR/wsdl20/.

[2] Tim Bray and Jean Paoli and C. M. Sperberg-McQueen
and Eve Maler, "XML 1.0: Extensible Markup Language
(XML) 1.0", Second Edition, http://www.w3.org/TR/REC-
xml, October 2000.

[3] “Semantic Web” Web Page. Available:
http://www.w3.org/2001/sw.

[4] "OWL Web Ontology Language Overview" Web Page.
Available: http://www.w3.org/TR/owl-features/.

[5] G. A. Miller, "WordNet: A Lexical Database for the
English Language" in Comm. ACM 1983.

[6] Chaitali Gupta, Rajdeep Bhowmik, Michael Head,
Madhusudhan Govindaraju, Weiyi Meng, "A Query-based
System for Automatic Invocation of Web Services", in the
Application Services and Industry Track, IEEE International
Conference on Web Services (ICWS), Salt Lake City, Utah,
July 2007.

[7] A. Patil et al., “METEOR-S Web Service Annotation
Framework” in Proc. WWW Conference, pp. 553-562, 2004.

[8] K. Sycara et al., “Dynamic service match making among
agents in open information environments” in Journal of the
ACM SIGMOD Record, 1999.

[9] L. Li, I. Harrocks, “A Software Framework for
Matchmaking Based on Semantic Web Technology” in Proc.
WWW Conference, 2003.

[10] Syeda-Mahmood et al., "Searching Service Repositories
by Combining Semantic and Ontological Matching" in Proc.
of the IEEE International Conference on Web Services, 2005.

[11] "JWNL 1.3" Web Page. Available:
http://jwordnet.sourceforge.net/.

[12] "Jena - A Semantic Web Framework for Java" Web
Page. Available: http://jena.sourceforge.net.

563563563563563

