Concordance-Based Entity-Oriented Search

Mikhail Bautin
Department Of Computer Science
Stony Brook University
Stony Brook, NY 11794-4400

mbautin@cs.sunysb.edu

Abstract— We consider the problem of finding the relevant
named entities in response to a search query over a given
text corpus. Entity search can readily be used to augment
conventional web search engines for a variety of applications.

To assess the significance of entity search, we analyzed the
AOL dataset of 36 million web search queries with respect to
two different sets of entities: namely (a) 2.3 million distinct
entities extracted from a news text corpus and (b) 2.9 million
Wikipedia article titles. The results clearly indicate that search
engines should be aware of entities, for under various criteria
of matching between 18-39% of all web search queries can be
recognized as specifically searching for entities, while 73-87% of
all queries contain entities.

Our entity search engine creates a concordance document for
each entity, consisting of all the sentences in the corpus containing
that entity. We then index and search these documents using
open-source search software. This gives a ranked list of entities
as the result of search. Visit http://www.textmap.com for
a demonstration of our entity search engine over a large news
corpus.

We evaluate our system by comparing the results of each query
to the list of entities that have highest statistical juxtaposition
scores with the queried entity. Juxtaposition score is a measure
of how strongly two entities are related in terms of a probabilistic
upper bound. The results show excellent performance, particu-
larly over well-characterized classes of entities such as people.

I. INTRODUCTION

We consider the challenge of building a search engine
that retrieves appropriate entities (e.g. people, places, things)
in response to user queries over a web-scale text corpus
containing these entities. Current search engines return only
documents or webpages in response to user queries instead of
entities. We believe it would be quite valuable for users to get
lists of the “most relevant” entities to their query in addition
to the most relevant documents.

Concrete applications of entity search are detailed below,
but we begin with some motivational examples of our search
engine in action. Table I shows the top five results returned
by our system for six queries. Three of these queries are
entities themselves (“NEW YORK YANKEES”, “GOOGLE”
and “TENNIS”) and the top result returned for them is the
query itself. The other results returned for entity queries are
connected with the queried entity in various ways: famous
tournaments and players for tennis; its CEO name, headquar-
ters location and rival search engine companies for Google;
and the names of the manager, players and a rival team for
the New York Yankees. The other three queries (“POLITICAL

Steven Skiena
Department Of Computer Science
Stony Brook University
Stony Brook, NY 11794-4400

skiena@cs.sunysb.edu

TENNIS NEW YORK YANKEES GOOGLE

1 | Tennis New York Yankees Google

2 | Roger Federer Joe Torre Yahoo

3 | Andre Agassi Alex Rodriguez Eric Schmidt

4 | U.S. Open Derek Jeter Mountain View

5 | Andy Roddick Boston Red Sox Microsoft
POLITICAL POLARIZING FIGURE BRITISH PRIME
CORRUPTION MINISTER

1 | Jack Abramoff Hillary Rodham Clinton | Tony Blair

2 | George Ryan Katherine Harris Winston Churchill

3 | Tom DeLay David Geffen Margaret Thatcher

4 | Pete Domenici Donald H. Rumsfeld British

5 | King Gyanendra | Dick Cheney Gordon Brown

TABLE I

RESULTS FOR CERTAIN QUERIES

CORRUPTION”, “POLARIZING FIGURE”, and "BRITISH PRIME
MINISTER”) are not entities but concepts indirectly referring
to entities. The results for the “POLITICAL CORRUPTION”
query are three politicians investigated for corruption, one
involved in a violation of ethic rules, and the controversial
King of Nepal. The “POLARIZING FIGURE” returns the names
of four politicians inspiring strong but differing opinions.
The “BRITISH PRIME MINISTER” query returns three former
and the current Prime Minister of the United Kingdom. We
encourage the reader to experiment with our search engine at
http://www.textmap.com.

Compelling applications of entity-targeted search over un-

structured text include:

e Navigational Search. Augmenting document results of a

conventional Web search engine with entity results are
particularly relevant for navigational queries [1]. The re-
lated entity results may help satisfy the user’s information
need, as per question answering systems. Otherwise they
can provide meaningful navigational alternatives to user’s
document-oriented query.
Indeed, we present experimental results demonstrating
that our methods can predict roughly 5-10% of user’s
subsequent entity queries. This is a large enough fraction
of user queries to justify displaying navigational shortcuts
to speed search.

o Encyclopedia Search. When the text corpus is (or is
comparable) to a collection of encyclopedia entries, the
performance of article retrieval can be improved by taking

into account all mentions of an entity across articles,
rather than just in the entry corresponding to that entity.
We are confident that our techniques could be used to
improve the performance of the Wikipedia search engine.
For example, a search on Wikipedia for “Microsoft chair-
man” returns as the top result a stub article for Helmut
Panke, who is a member of the Board of Directors of
Microsoft and a former chairman of BMW AG. It lists
Bill Gates as the 26th most relevant article for this query.
Our system, in contrast, correctly returns Bill Gates at the
top position.

Product Search. Aggregating all mentions of specific
products in reviews, blogs and webpages results in a
higher recall than existing product search engines, many
of which currently just search product names, or limited
collections of product descriptions. In the terminology
of [1], this can improve handling of transactional web
queries.

The contributions of our work are as follows:

o Analysis of entity occurrences in Web query logs. The

best way to understand how search queries should be pre-
processed and answered is to analyze past query data [2].
By analyzing the 36 million queries of the AOL dataset
[3], we found that 20-40% of web search queries consist
solely of single entities, while 70-87.5% queries contain
entities as part of them. These findings demonstrate that
a very high percentage of all web queries recognizably
target entities or have entities associated with them.

o A first-in-literature implementation of an entity search

engine. We approach the entity retrieval problem by
utilizing all occurrences of each specific entity throughout
a text corpus. For every entity, we automatically compose
a concordance—a document capturing the context of
all the occurrences of the entity in the corpus. Then
we index and search these documents using an open
source information retrieval package (Lucene) with a
scoring scheme customized to reflect the specificity of
automatically generated documents.

Although our prototype search engine has been developed
over a modest-sized 18 GB corpus of news, we see
no fundamental difficulties in scaling this to web-scale
search.

Empirical evaluation of our search engine. Identifying a
gold standard to evaluate the performance of our “first-
in-literature” entity search engine is a non-trivial task.
We do so by comparing the top entities returned when
the query is itself a single entity to the entities having
the top statistical juxtaposition score [4] with the queried
entity. Juxtaposition score is a measure of how much
more frequently two entities co-occur than they would
by chance. Our search engine provides a much greater
flexibility in entity retrieval by allowing free-text queries
than is possible using juxtaposition scores.
Time-dependent entity/document search. The most rele-
vant entities associated with a query evolve during time.

Jennifer Aniston is now less relevant to Brad Pitt than
Angelina Jolie, even though her total number of co-
locations may exceed those of her rival. To account for
new articles added every day to the corpus, and to weigh
recent hits higher, we support generation of multiple
separate concordances for the same entity over disjoint
time periods (e.g. months) and aggregate the hits for all
such periods into a single result.

Through analysis of the AOL query dataset, we determine
the optimal discounting of entity references over time to
identify the most relevant entities at time of search.

The rest of this document is organized as follows. Section
II reviews previous work on entity-aware search. Section III
provides motivation for the use of entities in search engines by
analyzing occurrences of news and Wikipedia based entities
in a web query log. Section IV describes the design of our
news entity search system. Section V provides an empirical
evaluation of the retrieval performance of our system. Section
VI concludes the report and outlines the directions of our
future work.

II. RELATED WORK

Our entity-search engine is built on top of our Lydia news
analysis system [5], [6], [4], [7], [8]. The Lydia system
automatically builds an entity database from online U.S. news-
papers downloaded on a daily basis. The techniques used for
entity identification include part-of-speech tagging, templates
and gazetteers, as well as clustering for coreference resolution.
We use the resulting text with marked-up entities and the entity
database to provide search targeting the extracted entities.

The current research relevant to entity-aware search can
be subdivided into the following directions: augmenting tra-
ditional document retrieval systems with the knowledge of
entities [9], [10]; the Semantic Web research aiming to create
a Web of interrelated entities and thus greatly simplify entity
search and improve document search [11], [12]; extraction of
relations between entities from unstructured text and searching
these relations [13], [14].

We detail two papers most relevant to our work. Chu-
Carroll, et al. [9] describe how XML fragment query language
can be applied to semantic search. They use input text with
named entities and relations marked up. Queries are allowed
to specify a general semantic category in place of a term,
restrict term meaning to a certain category, or specify a relation
between queried entities. The paper targets applications
where loss in recall is less important than high precision, such
as intelligence investigations.

Carpenter [10] describes an attempt to use named entity
recognition to improve search results. They compare the
baseline Lucene tf.idf-based approach and the one that uses
LingPipe named entity recognition to match phrases in the

query.
III. ENTITIES IN WEB QUERIES

To gain insight into the performance of search engines, it
is essential to analyze past query logs [2]. Seeking motivation

for entity-oriented search we asked the question: how often do
web search queries recognizably target entities?

Search queries contain highly proprietary information, and
therefore search engine companies do not often make it
available to researchers. Fortunately a comprehensive web
query dataset became available to us in August 2006 when
AOL unintentionally released 36 million search queries by
500,000 users collected over three months. Although this
release represented a serious violation of user privacy [3], the
dataset is very useful for collecting cumulative statistics on
web queries. When analyzing it, we did not use the user ID
field or manually examine individual low-frequency queries,
thus maintaining and respecting user privacy.

A. Approach to Analyzing Web Queries

We chose the method of identifying entities by matching
search queries to existing lists of known entities. Another
possible approach might try to recognize named entities in
query text using a statistical named entity recognizer such as
LingPipe [15], but this would be much less accurate due to the
lack of capitalization and contextual information in web query
data. For comparative purposes, we also used approximately
three million entities identified from entry titles in Wikipedia.
The results were similar enough to the news entities that they
have been omitted due to space concerns.

We were interested in both perfect matches, where the entire
query is an entity from our database, and partial matches,
where an entity is contained in the query as a contiguous
range of tokens (a “sub-query”). Many of the partial matches
became perfect matches if relaxed criteria for matching entities
with queries were used, because of typos and word separation
alternatives. Therefore, we considered the following levels of
strictness of matching queries with entities:

o Exact comparison. The exact case-insensitive appearance
of entity in the query is required.

o Alias resolving comparison. For every entity in the
database and every query we construct a list of aliases.
By alias we mean the original string with different
tokenization, punctuation, prefixes and/or suffixes:

— URL normalization. The “http://”, “www.” prefixes
and “.com”, “.net” etc. suffixes are removed.

— “&” is replaced with “and”;

— “Inc.”’, “Co.”, “Corp.” suffixes are removed;

— plural nouns are reduced to singular, etc.

If at least one alias of an entity matches with at least one
alias of a query, the query is considered an entity query.
The same criteria is used for a “sub-query” (a contiguous
range of tokens in the query) to locate partial matches.

e Alias resolving with phonetic hashing. To further explore
possible entity appearances in search queries and to deal
with misspellings, we add a Double Metaphone [16] hash
of every entity, query and sub-query to its respective alias
list.

All Queries

Matches | No aliases Aliases = Metaphone
perfect 17.91% 26.50% 38.82%
partial 55.14% 53.59% 48.41%
total 73.05% 80.09% 87.23%
Unique Queries
perfect 2.07% 5.33% 18.57%
partial 68.85% 69.72% 65.23%
total 70.92% 75.05% 83.80%
TABLE II

MATCH FREQUENCIES FOR ALL 36,389,577 QUERIES AND 10,154,743
UNIQUE QUERIES (AFTER DUPLICATE REMOVAL) COMPARED AGAINST
LYDIA ENTITY LIST.

B. Frequencies of News Entities in Queries

Table II presents the percentage of perfect and partial
matches of AOL queries to Lydia entities under three levels
of matching strictness discussed above. As the “no aliases”
column in the “all queries” part of Table II indicates, almost
18% of queries exactly match one of the entities in our
database. Interestingly, these queries constitute only 2% of all
unique queries. Entities extracted from the news are inherently
popular and likely to be searched for.

Moving to the “aliases” column in the “all queries” part of
Table II, we see a 48% gain in the number of perfect matches,
indicating that there are many mistyped variations of how
entity names are formatted in search queries. The addition
of metaphone hashing of queries increases the number of
perfect entity matches by 46.5%. Clearly, spelling correction
is an important problem in both entity-oriented and document-
oriented search engine design.

To summarize, from Table II we see that 73%-87% queries
contain part that is recognizable as an entity, and 18%-39%
queries are completely recognizable as entity names.

Perfect Matches

No aliases Aliases Metaphone
unknown 3741787 | unknown 3538105 | unknown 4347665
person 842244 website 1851898 | title 4192761
website 641492 title 1672178 website 1949374
organization 268081 person 944648 person 1798689
name 237937 | company 301037 | company 274560
company 114401 | name 193818 | place 188644
disease 68631 organization 169132 name 169435
place 66809 place 102282 organization 151581
last name 59450 TV series 98717 TV series 116031
university 46352 disease 71247 movie 87783

TABLE III

MATCHES OF NEWS ENTITIES WITH QUERIES BY CATEGORY

1) Frequency of Entities in Queries by Category: The Ly-
dia system’s entity database has category information (place,
person, city, country etc.) available for each entity. We use
the taxonomy of categories described in [17]. This category
information has been obtained using a naive Bayes classifier
trained on a 2-to-3 word context of entity occurrences in news,

so it is not always accurate. However, counting frequencies of
search query categories provides some useful insight.

Table III shows category distribution corresponding to cells
of Table II. Only top ten categories are shown for each
experiment. Unknown represent the 30-60% of entities the
naive Bayes classifier was unable to assign categories to.
Moving from the “no aliases” to “aliases” column in Table
IIT much more websites and titles get recognized, proving the
usefulness of our URL matching method. When we go from
the “aliases” to “metaphone” column, we get much more title
matches, indicating that a substantial number of misspellings
in titles get recognized by using metaphone.

IV. CONCORDANCE-BASED ENTITY SEARCH

For the design of our entity search engine, we perform
retrieval of entities based on all occurrences of each particular
entity throughout a text corpus. For every entity we generate
a “concordance”—a text document containing all unique sen-
tences from the text corpus in which that entity occurs. Then
we search these documents with an open-source search engine
(Lucene). This approach allows us to leverage the existing
development in document-oriented information retrieval.

A. Indexing

During the indexing phase, an entity index is constructed,
which is later used by the search server to handle online
queries. The indexing procedure starts with processing news
articles with the Lydia pipeline. The next step separates input
documents into sentences so that concordances can be built.
Each operation is done in a scalable distributed way.

1) Processing News Articles with the Lydia Pipeline: We
process news articles through the Lydia pipeline performing
named entity recognition and coreference set identification,
and obtain output in XML format with entities marked up
with <pn> tags and a category assigned to each entity
occurrence. For bulk processing of large amount of news, we
run multiple instances of the Lydia pipeline using the Condor
job scheduling system [18].

2) Dealing with Near-Duplicate Articles: The web contains
a substantial fraction of duplicate and near-duplicate docu-
ments [19]. We deal with the duplicate and near-duplicate
article problem by eliminating duplicate sentences.

To obtain the set of unique sentences, as well as for other
tasks, we use the Hadoop open-source implementation [20] of
Google’s MapReduce distributed computation model [21]. The
map function takes an XML news article as input and produces
(MDS5 hash, sentence) tuples as output for every sentence in
the input article that contains at least one entity marked up
with a <pn> tag. The reduce function takes (MDS5 hash, list of
sentences) as input and outputs (MD5 hash, first sentence). The
output of this MapReduce job is a collection of files containing
all unique sentences of the input corpus.

3) Collecting Context of Every Entity: To produce a search-
able document for each entity, we collect all the sentences
containing that entity and concatenate them together. This is

again done by means of a MapReduce job that takes a collec-
tion of unique sentences as input. The map function produces
a set of (entity;, sentence) tuples for every sentence, where
entity; goes over all distinct entities occurring in the sentence.
The reduce function takes (entity, list of sentences) as input
and adds a document with two fields (entity, concatenation of
sentences) to a Lucene index as output.

To estimate the increase in the relative index size com-
pared to conventional document indexing, we calculated
Yosne(s)len(s)/ >, len(s), where s is a sentence and n. is
the number of entities in it. This statistic accounts for the fact
that sentence s gets included in n(s) concordance documents,
and equals to 2.6 on our corpus.

B. Searching

Suppose document d; is a concatenation of all unique
sentences from the input corpus that contain the entity e;. As
the result of steps described in Section IV-A, we get a Lucene
[22] index of documents with fields (e;, d;).

Lucene’s scoring scheme must be modified to meaningfully
search these automatically generated documents. The scoring
formula used in Lucene, assuming that we are searching a sin-
gle field, giving equal weights to all query terms, and omitting
factors irrelevant to document ranking, is the following:

score(q,d) = coord(q, d)lengthNorm(d) Z tf (t, d)idf (t)?
teq
In the default implementation of Lucene scoring [23]

lengthNorm(d) = \/%@l)’ where numTerms(d) is

the number of terms in the document d. We found out that with
this type of document length normalization, the top results
almost always turn out to be very short documents, where
the few matching terms gain an enormously high weight. To
compensate for this, we set lengthNorm(d) = 1 regardless of
the document d.

Entity Score | Month
Muhammad Yunus | 1.000 | 200610
Muhammad Yunus | 0.649 | 200612 Entity Score
Grameen Bank 0.548 | 200610 Muhammad Yunus | 1.000
Bangladesh 0.509 | 200610 Grameen Bank 0.548
Muhammad Yunus | 0.428 | 200611 Bangladesh 0.509
Nobel Peace Prize | 0.363 | 200612 Nobel Peace Prize | 0.363
Grameen Bank 0.336 | 200612 Nobel 0.324
Nobel Peace Prize | 0.336 | 200610 Dhaka 0.313
Nobel 0.324 | 200610 Bangladeshi 0.313
Dhaka 0.313 | 200610
Bangladeshi 0.313 | 200610
TABLE IV

ON THE LEFT—LUCENE RESULTS FOR A “MUHAMMAD YUNUS” QUERY
INDEXED IN A TIME-DEPENDENT MANNER. ON THE RIGHT—THE SAME
RESULTS AGGREGATED SO THAT

score(entity) = max; score(entity, month;).

C. Time-Dependent Indexing and Search

News search appears different from other document search
because the news is a continuous flow of text, and the reader’s

interest is often focused on the recently added documents.
This has implications on the design of news article and entity
retrieval systems [24]. In particular, the impact of recent text
on search results should be higher than that of older text.
Similar phenomena hold (to a lesser extent) in general web
document search.

To address the time dependency problem and the document
size restriction problem, we create multiple Lucene documents
for each entity, with each document containing the context of
all occurrences of the entity in a particular time period (in
our case, month). Every concordance document in this case
has three fields: (entity, concordance, month). We can view
the Lucene results for our time-dependent index as a list of
(entity, month) pairs with associated scores. An example of
such results is shown in Table IV. There are multiple ways
of assigning scores to an entity e based on multiple scores
assigned to (e, month;) pairs:

« Exponential decay: This expresses exponentially decreas-

ing user interest in past news.

k
score(e) = Z exp(—a(k — i))score(e, month;) (1)
i=0

where k£ is the index of the current month, assuming that
0 corresponds to the earliest month for which news are
included in the index.
e Maximum value:
score(e) = max score(e, month;) (2)

i=0,...,

The advantage of this method is speed of computation: if
n top-scoring entities are requested, the scan of an (entity,
month) hit list returned by Lucene can be stopped once
n unique entities have been seen. The disadvantage of
this method is that entities that were once very popular
score higher than entities that have had steady popularity
without high peaks.

D. Modeling User Interest in an Entity

To gain more insight into weighting timed hits, we hypoth-
esize that the number of web queries containing an entity
expresses user interest in that entity as a function of time. We
use the daily scale instead of monthly for these experiments
because only three months of web query data are available to
us. We try to predict daily entity frequency in queries using
its frequency in the news using the following models:

o Exponential decay with window w (including w = 00):

d

D

i=max(0,d—w+1)

hgw(e,i) = exp(—f(d —i))n(e,i) 3)

where e is an entity, d is the index of the current day
and n(e,i) is the frequency of the entity e in the news

on day i.
o Historical mean:

d
) 1 .
ha'uerage(eaz) = ﬁ E 7’L(87’L) (4)
i=0

e A convex combination of both:

h/\;ﬁ,w(e7 7’) = (1 - /\)hﬁ,w(ev Z) +)‘haverage (5)

Then, we optimize model parameters to maximize the
Pearson correlation between h(e,?) and the actual frequency
g(e,i) of entity e in web queries on day i. A correlation
of 0.275 is reached by (4). A higher correlation of 0.349 is
reached by (5) when 8 = 0.01 and A = 0, showing that (3) is
a better model than (4). We use a = Boptimar X 30.4 (average
days per month) in our scoring function (1).

The dependency of the correlation given by hg (e, %) on
the window size w is shown in Figure 1. The optimal w = 28
suggests the usual span of user interest an entity after it
is mentioned in the news. However, this model would not
be suitable for search result scoring, because it discards old
references to an entity which could undoubtedly be of interest
to the user. Therefore, we use w = oo in our system.

04—

03 b
0.2 1

0.1

Correlation
Correlation

-0.1
-0.2

P S S R S S N
10 20 30 40 50 60 70 80 90
Window size, days

0 0.05 01 015 02 025 03
Exponential decay factor

Fig. 1. The correlation between predicted and actual entity frequency in
queries (1) depending on the exponential decay factor 5 for model (r) when
predicted by summing entity frequency in the news on last w days.

V. EVALUATION

Evaluating an entity search engine is a non-trivial problem.
TREC (Text REtrieval Conference) provides a de facto stan-
dard to document retrieval and question answering systems
evaluation. However, the problem of returning entities relevant
to the user’s query that we address here is different from both
document retrieval and question answering problems.

Our Lydia text analysis system already contains a way to
measure how strongly two entities are related to each other
(juxtaposition score), expressed as an upper bound of the
probability of them occurring in the same sentence under
the assumption of independence [4]. Therefore, it would be
natural for our search engine, when given a query that is
a known entity itself, to return results close to the list of
entities having top juxtaposition scores with the queried entity.
The significant improvement of our search engine over the
juxtaposition technique, however, is its ability to answer free
text queries.

A. Comparison with Juxtaposition Lists

A method to identify entities that occur near a particular
entity in an overrepresented way (i.e. more frequently than
it would happen randomly) is described in [4]. Suppose, n,
and n; are numbers of sentences containing entities a and b
respectively, F' is the number of sentences containing them
both, and N is the total number of sentences in the corpus.
Then, according to [4], the probability of the observed number

of occurrences under the assumption that these two entities are
independent is not more than

nany

FN_ _q
enany

Pbound(”(u Ny, Fa N) = ~ _ _FN_ (6)
(FN) nagmng
NaNb

We call —log of (6) the juxtaposition score of the entities
a and b, meaning that the higher the juxtaposition score, the
more dependency exists between the two entities. If for a given
entity a we retrieve a list of k£ — 1 entities by, ..., bx_1 from
our corpus that have highest juxtaposition scores with entity
a, we will get a list of £k — 1 “most associated” with a entities
in the sense of juxtaposition scores. It is natural to add the
entity a itself onto the top of this list as being ultimately the
most associated with itself. The resulting (a, b1, ..., bg—1) list
is what we compare against the results of our search engine
given the query a.

For comparison of top k lists we use the K,,;, distance
measure described in [25]. According to [25], the K,.in
distance measure can be calculated as follows for two top k
lists 74 and 7o:

>

{i,j}C D7, UD,,

Kumin(11,72) = K (11, 73) = Ki(g)(ﬁﬁz)

where D,, and D,, are the sets of elements of 7; and 7
respectively, and K i(’oj) (71, 72) is defined as as 0 if the elements
1 and j appear in the same order both in 7y and 7 and 1 if
they appear in different order. An element that does not appear
in one of the lists is considered appearing at the bottom of that

list. If the elements ¢ and j appear in one top k list but do not

appear in the other top k list, K i(? (11, 72) = 0.
To make these scores calculated for different list sizes
k

comparable, we divide them by (;;) where k is the size of
top lists. This corresponds to the value of the K,,;, distance
measure between two top lists that contain the same & elements
in the reverse order. When two lists are completely disjoint,
this distance measure is equal to k2.

Query type "sloppy phrase", category "person”

800 T - T T T
Number of queries —
700 -
o 600 [A
2
g 500 | -
o
S 400 | -
g
€ 300 A
=}
Z 200 | .
100 - -
0 I (I
0 0.5 1 1.5 2
Top 10 list distance measure
Fig. 2. Distribution of top list distances for phrase queries for the person
category

Phrase | Bag of words | Combination
Distance mean 0.831 1.154 1.148
Distance std dev 0.544 0.564 0.564
TABLE V

DISTANCE MEASURE BETWEEN SEARCH RESULTS AND JUXTAPOSITIONS
FOR DIFFERENT QUERY TYPES FOR 9919 ENTITIES USED AS QUERIES.

1) Results by Entity Category: To determine how entity
category effects search results, we have experimented with
the top 10,000 entities in each category. The search results
turn out to be the closest to the juxtaposition-based results for
the “person” category, probably because Lydia provides more
precise identification and categorization of “person” entities.

2) Results by Query Type: There are many possible ways
to interpret an unstructured search query entered by the user:

e “Bag of words” query. In this case, the terms in the query
are allowed to occur anywhere in the target document
independently of each other, and a bonus score propor-
tional to the number of appearing terms is given to each
document.

o “Phrase” query with different slop values. The terms are
required to appear in the document next to each other,
but the order might differ from that specified by the user.
The maximum edit distance where units correspond to
movements of words should not exceed the slop value.

o Combination of both “bag of words” and phrase queries.
We give the phrase query a significantly higher weight, so
that when too few results are found for the phrase query,
the results of the bag of words query are mixed in.

Table V shows the result of comparison of top-10 lists
returned for about 10,000 most popular entities with top
juxtaposition lists for the same entities. Of the three query
types we used, the phrase query matches juxtapositions the
best. In phrase queries in the Table V, and in the experiments
in Section V-A.1, the slop value equal to the number of terms
in the query is used.

3) Statistical Significance: Observe that if two result lists
were independent, the probability of the top k£ lists drawn from
N documents being completely disjoint would be

(M) Nk Y
W N< =) ~eXp<—N)~0.9999 (7)

with & = 10 and N = 10°. Disjoint lists correspond to
the distance measure of ~ 2.222, but in any of our experi-
ments at most 9500 queries out of 10000 have this distance
measure. Therefore, the p-value of our observations is not
more than 3,70 (1°9°%)0.9999%0.000110000—F < 10—100,
This extremely low p-value can be explained by the fact that
in our case the two top-k lists are not really independent at
all, but are based on the same input data.

B. Query Prediction using Juxtapositions

Modern search engines suggest refined search queries to
users, by (1) identifying likely spelling errors, and (2) analyz-

009 T T T T T T T T T
person
0.08 all —------
place -------

< 007 city -
o last name ----
‘g 0.06 university -------
5 company -
I-IL: 0.05 - government ---------
o
= 0.04
2
B 0.03
a

0.02

0.01

0 5 1 1 1 1 1 1 1 1
5 10 15 20 25 30 35 40 45 50
Rank
Fig. 3. Predicting the user’s next query, i.e. the probability that an AOL

search query ranks among the top & entities associated with the previous
query (unique pair frequencies).

ing query frequencies in search logs by collaborative filtering.
To augment these techniques, we propose using our entity
search engine to suggest entities related to the previous search
query as navigational links. The critical question is how often
we can predict the user’s next query from their current search.

We conducted preliminary experiments to get a handle
on this. By analyzing the AOL query data set, we could
identify pairs of successive queries by distinct users. (The IDs
of all users remained anonymous through this process). We
considered the 360,191 cases where users transitioned from
one perfect entity query to a different perfect entity query. We
were interested in the extent to which our search engine would
report the latter entity in response to the first.

For efficiency of experimentation, we used the second
entity’s rank in the first entity’s juxtaposition list as a proxy
for the predictions of our search engine. Figure 3 presents our
results for distinct pairs of perfect entity search queries as a
function of rank position. It shows that our predictions are
most accurate for people queries, predicting the next query
over 8% of the time for rank=50. The decision procedure
to refine the ranked list has not been optimized, and we
anticipate substantially lower ranks will suffice for this level
of predictability in practice.

These results are quite encouraging. They demonstrate that
our methods can predict roughly 5-10% of subsequent user
entity queries; enough to justify displaying our navigational
shortcuts to aid their search.

VI. CONCLUSION AND FUTURE WORK

It is becoming recognized that the new generation of search
engines will need to be aware of entities in addition to
searching unstructured text. We analyzed web query logs and
found that up to 87% of web queries contain part that is
recognizable as a news or Wikipedia entity. We then designed
and implemented a prototype entity search engine that auto-
matically composes a concordance capturing the context of all
occurrences of each entity and leverages an off-shelf document
retrieval technology (Lucene) to search these documents. The
prototype is available at http://www.textmap.com.

Directions for future work include:

o Alternative evaluation techniques, possibly converting
TREC list questions to queries to our search engine and
finding the percentage of correct answers in the top list.

o Customizing our approach for product review search.

o Detection of target entity categories from the query and
filtering results accordingly.

REFERENCES

[1] A. Broder, “A taxonomy of web search,” SIGIR Forum, vol. 36, no. 2,
pp. 3-10, 2002.

[2] P. V. Dijck, “Better Search Engine Design: Beyond Algorithms,”
O’Reilly ONLamp.com, Aug. 2003.

[3] M. Arrington, “AOL Proudly Releases Massive Amounts of Private

Data,” http://www.techcrunch.com/2006/08/06, 2006.

L. Lloyd, D. Kechagias, and S. Skiena, “Lydia: A system for large-scale

news analysis.” in SPIRE, 2005, pp. 161-166.

[5] N. Godbole, M. Srinivasaiah, and S. Skiena, “Large-Scale Sentiment

Analysis for News and Blogs,” in Proceedings of International Confer-

ence on Weblogs and Social Media (to appear), Mar. 2007.

J. H. Kil, L. Lloyd, and S. Skiena, “Question Answering with Lydia,” in

The Fourteenth Text Retrieval Conference (TREC) Proceedings, 2005.

L. Lloyd, A. Mehler, and S. Skiena, “Identifying co-referential names

across large corpora.” in CPM, 2006, pp. 12-23.

[8] A. Mehler, Y. Bao, X. Li, Y. Wang, and S. Skiena, “Spatial Analysis
of News Sources,” in IEEE Trans. Vis. Comput. Graph., vol. 12, 2006,
journal, pp. 765-772.

[9] J. Chu-Carroll, J. Prager, K. Czuba, D. Ferrucci, and P. Duboue,
“Semantic search via xml fragments: a high-precision approach to ir,”
in SIGIR ’06: Proceedings of the 29th annual international ACM SIGIR
conference on Research and development in information retrieval. New
York, NY, USA: ACM Press, 2006, pp. 445-452.

[10] B. Carpenter, “Phrasal queries with lingpipe and lucene,” in Proceedings
of the 13th Meeting of the Text Retrieval Conference (TREC), Gaithers-
burg, Maryland, 2004.

[11] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,”
Scientific American, vol. 284, no. 5, pp. 34-43, 2001.

[12] N. Shadbolt, B. T. Lee, and W. Hall, “The semantic web revisited,”
Intelligent Systems, IEEE [see also IEEE Intelligent Systems and Their
Applications], vol. 21, no. 3, pp. 96-101, 2006. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1637364

[13] M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, and O. Etzioni,
“Open information extraction from the web,” in IJCAI, 2007.

[14] M. Pasca, D. Lin, J. Bigham, A. Lifchits, and A. Jain, “Names and
similarities on the web: fact extraction in the fast lane,” in ACL ’06.

[15] “Alias-i Inc. LingPipe,” http://www.alias-i.com/lingpipe.

[16] L. Phillips, “The Double Metaphone Search Algorithm,” C/C++ Users
Journal, June 2000.

[17] S. Sekine, K. Sudo, and C. Nobata, “Extended named entity hierarchy,”
in Proceedings of the LREC-2002., 2002. [Online]. Available:
citeseer.ist.psu.edu/sekine02extended.html

[18] T. Tannenbaum, D. Wright, K. Miller, and M. Livny, “Condor — a
distributed job scheduler,” in Beowulf Cluster Computing with Linux,
T. Sterling, Ed. MIT Press, October 2001.

[19] M. Henzinger, B.-W. Chang, B. Milch, and S. Brin, “Query-free news
search,” in WWW °03: Proceedings of the 12th international conference
on World Wide Web. New York, NY, USA: ACM Press, May 2003.

[20] Apache Software Foundation, “The Hadoop Project,” http://lucene.
apache.org/hadoop/.

[21] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” pp. 137-150. [Online]. Available: http://www.usenix.
org/events/osdi04/tech/dean.html

[22] Apache Software Foundation, “Lucene,” http://lucene.apache.org/.

[23] ——, “Apache Lucene—Scoring,” http://lucene.apache.org/java/docs/
scoring.html.

[24] G. M. D. Corso, A. Gulli, and F. Romani, “Ranking a stream of news,”
in WWW ’05: Proceedings of the 14th international conference on World
Wide Web. New York, NY, USA: ACM Press, 2005, pp. 97-106.

[25] R. Fagin, R. Kumar, and D. Sivakumar, “Comparing top k lists,” in
Proceedings of the ACM-SIAM Symposium on Discrete Algorithms,
2003. [Online]. Available: citeseer.ist.psu.edu/fagin03comparing.html

[4

=

[6

=

[7

—

