
A Network Architectural Style for Real-time Systems: NaSr

R. Bashroush, I. Spence, P. Kilpatrick, T.J. Brown
Queens University Belfast

School of Computer Science
18 Malone Road, Belfast BT7 1NN, UK

{r.bashroush, i.spence, p.kilpatrick, tj.brown}@qub.ac.uk

Abstract

Inter-component communication has always been of

great importance in the design of software
architectures and connectors have been considered as
first-class entities in many approaches [1][2][3]. We
present a novel architectural style that is derived from
the well-established domain of computer networks. The
style adopts the inter-component communication
protocol in a novel way that allows large scale
software reuse. It mainly targets real-time, distributed,
concurrent, and heterogeneous systems.

1. Introduction

Our experience with ADLARS1 [4] in designing
the software architecture of small to medium case
studies [5] showed that component (or Task as it is
called in ADLARS) communication can get very
complicated, especially in the case of concurrently
executing components with both synchronous and
asynchronous communication interfaces within a
heterogeneous environment. These case studies
highlighted some issues in the context of component
communications. In addition, a major part of the
architecture evaluation stage was found to involve
analysis of inter-component dependences and
consistencies.

During the course of our work we noticed a
similarity between our domain of concern and the
computer networking domain. Networks run different
nodes (computers) executing concurrently using
synchronous and asynchronous communication within
a heterogeneous environment (nodes running under
different OSs for instance). Inspired by peer-to-peer

1 Architecture Description Language for Real-time Systems: an ADL
that was developed within our research group first in 1999 as part of
the Jigsaw project funded by Nortel Networks ®.

architectural styles, the idea led us to the development
of an architectural style called NaSr that adopts the
internetworking discipline with some modifications
that emphasize few software architecture concepts that
do not exist in the networking domain [6].

The next section presents the overall framework of
the NaSr architectural style. Related work is treated in
section 3. Section 4 summarizes the current foreseen
limitations and challenges within the style. Conclusion
and future work are finally shown in section 5.

2. Network Architectural Style for Real-
time systems, NaSr

In this section we present an overview of the NaSr
style and its framework.

The NaSr Framework consists of:
- Components
- Connection handlers
- Communication Protocols

NaSr architectures consist of concurrently

executing OTS or user defined components wrapped
inside NaSr Components (Section 2.1) that utilize a
packet driven method of communication using defined
communication protocols (Section 2.3). The
communication management is looked after by
Connection handlers (Section 2.2).

In the following, we use the term Component to
refer to NaSr Components (OTS or user defined
Component(s) plus a Domain Adapter, Figure 1).

Within NaSr, every component is identified by a
unique ID and provides/requires a specific set of
service(s). This is a key feature of the NaSr style that
allows the separation of the services provided/required
in the system from the components providing them.
The separation allows any component in the system to
be replaced (due to failure) or backed up (due to
overload) by another component(s) that provides the

same set of services without the need to reconfigure or
restart the system. The newly added component(s) can
make itself known to the Service Translation Center
STC (Section 2.2.1) by sending an appropriate
registration message identifying the services it
requires/provides. Then new calls for that given
service will be routed by the Connection handlers to
the newly added component. The reader can see here
the solutions and scenarios adopted from the real
networking domain. This architecture strongly
supports system’s reconfigurability and increases
system uptime. Also notice the separation of
connection management from computational
components.

Components are described in 2.1, connection
handlers in 2.2, and communication protocols in 2.3.

2.1. Components

A component in NaSr is a separate thread of
execution. Each component wraps a user defined or
OTS component (Figure 1) that can be developed
using any language and employ any interface types
(event based, message based, etc.). The
communication can be utilized by employing a NaSr
Domain Adapter that translates the wrapped
component’s interface to NaSr packet based
communication following a desired protocol.

2.2. Connection handlers

Connection handlers are the objects of the NaSr
style that handle the packet driven communication
among components. Currently, we have identified
three communication handling objects:

- Service Translation Center
- Communication Manager
- Broadcaster

These objects form the backbone for component
communication using user-defined protocols. More
objects and protocols can be developed in the future to
allow more complicated communication services. The
three objects are discussed next.

2.2.1. Service Translation Center (STC). This is a
key object for building architectures using the NaSr
style. It provides a translation table between services
and the components providing them.

In general, the role of the STC in NaSr architectures
is similar to the role of a DNS (Domain Name System)
on an IP network. DNS provides translations between
domain names and IP addresses whereas an STC
translates between service names and components
providing them.

The STC proved to be very useful in consistency
and dependency architecture analysis for architecture
verification.

2.2.2. Connection Manager (CM). The Connection
Manager plays a similar role to a regular network
router which forwards packets back and forth among
the different machines on a given network.

In NaSr, the CM achieves this with the help of the
STC. In a typical scenario, a component asks the CM
for a desired service, the CM queries the STC and gets
an ID for a component that provides this service. This
ID is then passed to the requesting component and a
direct communication among the two components
takes place.

2.2.3. Broadcaster. A Broadcaster is similar to an
Ethernet HUB. It can work without the need for an
STC (compared to a Connection Manager) by
broadcasting incoming packets to all components on
the network. This could be useful on smaller
architectures that do not require the overhead of an
STC and packet routing. When a broadcaster is
deployed to connect a group of components, the
component communication will be similar to the
Event-based Integration style [7].

2.3. Communication Protocols

Different communication protocols can be designed
to serve different domain functional and nonfunctional
attributes. For example, in concurrent time-critical
systems, a time-stamp field would be included within
the packet header to enable communication
synchronization. Our aim is to have a library of
protocols designed for different application domains
that an architect can choose from.

NaSr Component

NaSr Domain

Adapter

OTS 1

I
N
T
E
R
F
A
C
E

Figure 1. A NaSr Component wrapping an
OTS Component (OTS 1) communicating with
the system via the NaSr Domain Adapter

In one system, we can have more than one protocol
in use at the same time. To better understand that,
consider two different sub-nets running different
protocols to best suit their applications, but still they
can communicate via a backbone structure.

At the moment, we have designed one
communication protocol (the P256 Protocol) that is
inherited from the well-developed TCP/IP protocol
stack but tailored to suit the Software Architecture
domain.

Our packet consists of a header and a payload. The
payload carries the message sent from one component
to another, and the header contains the information
necessary for routing the message to its desired
destination. The different fields of the header and their
descriptions are shown in Table 1.

Field Name Description

Protocol Identifier
(3 bits)

could be used for compatibility issues
when a new protocol is developed, or
more than one protocol is deployed in
the system

Message type
(3 bits)

specifies whether the message
contained is a:

1. Registration
2. Unknown Service Provider
3. Service Providers Request
4. Direct Communication
5. Refresh
6. Overload
7. Error

Target Service Name
(152 bits)

the service name required by the
source component

Source ID
(24 bits)

the Component_ID of the source
component

Destination ID
(24 bits)

the Component_ID of the receiving
component (usually filled at the CM)

Time Stamp
(48 bits)

In time-critical systems, this field is
used to monitor routing delays.

Importance
 (2 bits)

could be a number between 1-4 for
showing the importance of this packet
as a possible future option for
implementing Quality of Service in
interactions (QoS)

Table 1. The NaSr P256 Protocol Packet header fields

3. Related work

The NaSr style draws its main idea, the packet-
based inter-component communication, from the
computer networking domain. That is due to the
similarity between NaSr’s domain of interest (real-
time, heterogeneous and concurrent) and the domain of
computer networking.

Also, it shares a lot of concepts with Brokered
Distributed Object systems [8] similar to CORBA
within the OMG [9] and Open Distributed Processing

(ODP) within ISO/IEC [10] which utilize name
resolver components (similar to the concept of
Connection Handlers in NaSr).

Being a peer-to-peer style, the work on NaSr
gained from the experience (both good and bad) of
many other researchers working with similar styles.
Two of these peer-to-peer styles are discussed next.

3.1. Event-Based Integration EBI (or implicit
invocation)

Within the EBI style [7], components do not invoke

other components directly; instead, component
communication is attained by event broadcasting.
Other components with interest of this type of events
can register their interest and then be executed by the
system itself when the specific event type is fired. This
method of communication reduces component
coupling leading to better support for extensibility,
reuse and evolution [7].

However, this style of communication raises many
other issues like scalability, event storms, single point
of failure, and lack of event response anticipation [7].

3.2. C2

The C2 architectural style [11][12], designed

originally targeting GUI applications, combines the
EBI style with the layered-client-server style [7][13] to
support large-grain reuse and flexible composition of
system components by enforcing substrate
independence. Components communicate using
asynchronous message passing up (requests) and down
(notifications) the layered system to enforce loose
coupling of components at higher levels, and
uncoupling at lower layers.

With this layered structure, no component can
broadcast a message to all the other components within
the system (no requests can be sent down the
hierarchy). This can be a critical drawback in some
application domains (even though it might not be the
case with GUI applications).

4. Current limitations and challenges

Some case studies have been designed and
constructed using the NaSr style; however, it is still
under continuous development with open issues and
more research questions to be asked. This is the case
with any newly developed architectural style where a
considerable amount of time is required for adequate
analysis of all the style aspects and identification of the
required improvements.

- The case studies we developed were mostly small-

scale systems. The style is intended to perform
best with large-scale systems where the overhead
introduced by the communication management
and protocols is acceptable. This overhead could
be questionable with small-scale systems.

- Deciding upon whether Connection Handlers are
architectural elements and should be shown at the
architecture level of the system or not remains an
open question.

- Fine tuning the level of abstraction. Shall the STC
carry information about a component such as its
placement (in multi-processor environments) and
memory location, or is that considered irrelevant
at our level of abstraction?

5. Conclusion

With the increasing level of complexity of newly
emerging real-time, concurrent, and heterogeneous
systems, and with the flourishing OTS marketplace,
the need for a well constrained communication
framework that facilitates OTS integration becomes
highly desirable.

Also, with today’s system-on-chip implementations,
component communication can get very complicated to
implement, and a packet-driven inter-component
communication proves to be a potential solution.

 Until now, small to medium scale case studies were
implemented to asses and fine tune the different
aspects of the style. The outcomes of these exercises
were very encouraging.

The NaSr style is under continuous development,
and in addition to experimenting with style and
enhancing its specification, along with the design of
more case studies, the construction of a NaSr
development environment is on our future task list.

6. Acknowledgments

This research is based on projects funded by British
Telecom and Nortel Networks.

We would like to thank the WICSA reviewers for
their valuable and useful comments.

7. References

[1] R. Allen and D. Garlan. Formalizing Architectural
Connection. In Proceedings of the Sixteenth International
Conference on Software Engineering, pages 71-80, Sorrento,
Italy, May 1994.

[2] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M.
Young, and G. Zelesnik. Abstraction for Software
Architecture and Tools to support Them. IEEE Transactions
on Software Engineering, volume 21, number 4, pages 314-
335, April 1995.

[3] D. Batory and S. O’Malley. The Design and
Implementation of Hierarchical Software Systems with
Reusable Components. ACM Transactions on Software
Engineering and Methodology, Vol 1, No 4, pp. 355-398,
October 1992

[4] T.J. Brown, I. Spence, and P. Kilpatrick. ADLARS: A
Relational Architecture Description Language for Software
Families. Proceedings of the Fifth International Workshop
on Product Family Engineering, Siena, Italy, 2003.

[5] R. Bashroush, I. Spence, P. Kilpatrick, and T.J. Brown. A
Real-time Network Emulator: ADLARS Case Study.
Proceedings of the Third Asia Pacific International
Symposium on Information Technology, pages 610-617,
Istanbul, Turkey, Jan 2004.

[6] D. E. Perry and A. L. Wolf. Foundations for the Study of
Software Architecture. ACM SIGSOFT Software Engineering
Notes, Vol 17, No 4, pages 40-52, October 1992.

[7] D. Garlan and M. Shaw. An introduction to software
architecture. Ambriola & Tortola (eds.), Advances in
Software Engineering & Knowledge Engineering, vol. II,
World Scientific Pub Co., Singapore, 1993, pp. 1-39.

[8] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad,
and M. Stal. Pattern-oriented Software Architecture: A
system of patterns. John Wiley & Sons Ltd., England, 1996.

[9] Object Management Group. The Common Object Request
Broker: Architecture and Specification (CORBA 2.1).
<http://www.omg.org/>, Aug. 1997.

[10] ISO/IEC JTC1/SC21/WG7. Reference Model of Open
Distributed Processing. ITU-T X.901: ISO/IEC 10746-1, 07
June 1995.

[11] R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J.
Whitehead, Jr., and J. E. Robbins. A Component- and
Message-Based Architectural Style for GUI Software. In
proceedings of the 17th International Conference on Software
Engineering, pages 295-304, Seattle, WA, April 1995.

[12] R. N. Taylor, N. Medvidovic, K. M. Anderson, E. J.
Whitehead, Jr., and J. E. Robbins. A Component- and
Message-Based Architectural Style for GUI Software. IEEE
Transactions on Software Engineering, Vol 22, No 6, pages
390-406, June 1996.

[13] A. Sinha. Client-server computing. Communications of
the ACM, 35(7), July 1992, pp. 77-98.

