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Abstract  
 
Software product-line engineering aims to maximize 
reuse by exploiting the commonality within families of 
related systems. Its success depend on capturing the 
commonality and variability, and using this to evolve a 
reference architecture for the product family. With 
embedded system families, the possibility of variability 
in hardware and operating system platforms is an 
added complication. In this paper we outline a strategy 
for evolving reference architectures from bi-directional 
feature models. The proposed strategy complements 
information provided by the feature model with 
scenarios that help to elaborate feature behavior.  
 
1. Introduction 
 
Software Product-line Engineering [1] has emerged as 
a major strategy for maximizing reuse when a family 
of related software systems is to be fielded. In this 
approach, an initial phase of commonality-variability 
analysis, often using feature modeling [2][3][4], is 
followed by the design of a reference architecture for 
the family. In this work we address the issue of 
deriving reference architectures from feature models. 
In the case of feature models for embedded system 
families, it can be useful to model both hardware and 
software features and capture the relationships between 
the two. Our scheme of feature modeling does this. It is 
inspired by earlier approaches to feature modeling, 
including FODA[2] and FORM[3][4], and incorporates 
concepts from other work [5][7]. Construction of such 
models is only justified if they can be used as a 
significant aid to the architecture development stage. 
We have evolved an outline methodology for 
architecture design that is guided by and structured 
from the product family feature model, but makes use 
of additional information derived from scenarios 
designed to exercise features.  

 
2.  Rationalised Feature Modelling 
 
Our feature modeling schema partitions the feature 
model into capability, operating environment and 
domain technology feature layers, as does FORM 

[3][4]. Also included is an optional inverted feature 
tree that captures features provided by the hardware 
and operating systems. When this platform layer is 
present there can be relationships across the 
hardware/software boundary, including feature 
dependencies and alternatives. The latter indicates 
product functionality which may be provided as 
software on some products, but as hardware on others.  
 
2.1 Capturing Feature Behavior 
 
Our architecture design methodology entails the 
iterative use of scenarios to elicit details of related 
behavior. To capture this information in a completely 
architecture independent way, we employ the Use Case 
Maps (UCM) path notation [7][8]. Our feature 
modeling tool allows UCM paths to be attached to 
features where this is appropriate.  
 
3. Feature Model Evolution 
 
In the first instance a feature model will be created 
using requirements information assembled from a 
variety of sources. To evolve towards an architecture, 
we begin within the capability feature layer and 
consider each capability feature as a candidate sub-
system. To help to decide on the viability of this 
emerging partitioning we consider the degree of cross-
coupling likely to arise between sub-systems. It may be 
necessary to develop some initial test scenarios or use 
cases to do this. We need to find a partitioning in 
which interaction traffic across the tree is generally 
modest compared with interaction up and down the 
tree. We select a level in the feature tree at which there 
is an acceptably low level of cross-coupling. Sub-
systems are then centered on these capability features. 

For each feature selected as the basis of a sub-
system we now consider whether that sub-system 
should form a passive software component that 
communicates synchronously and executes 
sequentially, or an active task that may execute 
concurrently using asynchronous communication. It 
may be necessary to group multiple sub-systems within 
the same task to ensure that communication can be 
asynchronous.  Other factors like required response 



times, scheduling policy, and issues relating to 
resource sharing may need to be taken into 
consideration. Finding an optimal model for a family 
of products may not be easy, but the feature model 
remains an important source of guidance.  

At this point the model’s top-level structure 
reflects what are really early architectural decisions. 
Before proceeding through the feature tree, we turn our 
attention to the platform features and their relationships 
with features that we expect to provide as software. 
 
4. Platform Independence 
 
The main reason for modeling the features provided by 
the platform is to help with the evolution of a software 
design that is significantly decoupled from the 
hardware and O/S on which it operates. The key 
stratagem for achieving this decoupling is the design of 
an Adaptable Platform Abstraction Layer.  The 
complexity of this layer may vary considerably from 
one situation to another, but it must be able to present a 
fixed interface to software layers above, irrespective of 
the specific hardware devices below. Multiple 
implementations of some interface elements may be 
needed and a modular structure for this layer will 
frequently be appropriate. Having a model of the 
features provided by the platform, and their 
relationships to those to be provided in software, is a 
key enabler at this stage.  
 
5. Elaborating Behavioral Detail 
  
With a sub-system and task model and a platform 
abstraction layer defined, the design is ‘bounded’ at the 
top and bottom levels. The next task is to elaborate 
detail of intermediate layers, by working down 
developing scenarios that help to expose feature 
behavior and variability. Our approach is influenced by 
the PuLSE-DSSA strategy [9]. Features are prioritized 
and scenarios that exercise them are applied in order. 
The understanding gained is captured using UCM path 
representations linked to features. We exploit the UCM 
concepts of stubs and plug-ins [7][8] to capture 
behavioral variability. Thus a feature at one level with 
alternative child features can have a dynamic stub 
within its path. Its child alternatives can then contribute 
alternative plug-in paths.  
       Application of a scenario should typically 
elaborate detail of issues such as task interactions, the 
identification of components and sub-components and 
the services they must provide. Where a high level 
feature has optional or alternative sub-features, we may 
need multiple scenarios. Using multiple scenarios aids 
understanding of the way communication patterns 
change with feature combinations. 

6. Conclusions 
 
To support the design of reference architectures for 
embedded system families, we have evolved bi-
directional feature modeling with behavior capture, and 
a related architecture development methodology. 
Experience with these techniques is limited, but we 
have explored their use in the design of optical network 
products. [10]. More remains to be done to refine both 
the notation and the process techniques. 
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