

Feature-Guided Architecture Development for Embedded System Families

T. J. Brown, R. Bashroush, C. Gillan, I. Spence, P. Kilpatrick
School Of Computer Science, Queen’s University of Belfast.

{tj.brown, r.bashroush, c.gillan, i.spence, p.kilpatrick}@qub.ac.uk

Abstract

Software product-line engineering aims to maximize
reuse by exploiting the commonality within families of
related systems. Its success depend on capturing the
commonality and variability, and using this to evolve a
reference architecture for the product family. With
embedded system families, the possibility of variability
in hardware and operating system platforms is an
added complication. In this paper we outline a strategy
for evolving reference architectures from bi-directional
feature models. The proposed strategy complements
information provided by the feature model with
scenarios that help to elaborate feature behavior.

1. Introduction

Software Product-line Engineering [1] has emerged as
a major strategy for maximizing reuse when a family
of related software systems is to be fielded. In this
approach, an initial phase of commonality-variability
analysis, often using feature modeling [2][3][4], is
followed by the design of a reference architecture for
the family. In this work we address the issue of
deriving reference architectures from feature models.
In the case of feature models for embedded system
families, it can be useful to model both hardware and
software features and capture the relationships between
the two. Our scheme of feature modeling does this. It is
inspired by earlier approaches to feature modeling,
including FODA[2] and FORM[3][4], and incorporates
concepts from other work [5][7]. Construction of such
models is only justified if they can be used as a
significant aid to the architecture development stage.
We have evolved an outline methodology for
architecture design that is guided by and structured
from the product family feature model, but makes use
of additional information derived from scenarios
designed to exercise features.

2. Rationalised Feature Modelling

Our feature modeling schema partitions the feature
model into capability, operating environment and
domain technology feature layers, as does FORM

[3][4]. Also included is an optional inverted feature
tree that captures features provided by the hardware
and operating systems. When this platform layer is
present there can be relationships across the
hardware/software boundary, including feature
dependencies and alternatives. The latter indicates
product functionality which may be provided as
software on some products, but as hardware on others.

2.1 Capturing Feature Behavior

Our architecture design methodology entails the
iterative use of scenarios to elicit details of related
behavior. To capture this information in a completely
architecture independent way, we employ the Use Case
Maps (UCM) path notation [7][8]. Our feature
modeling tool allows UCM paths to be attached to
features where this is appropriate.

3. Feature Model Evolution

In the first instance a feature model will be created
using requirements information assembled from a
variety of sources. To evolve towards an architecture,
we begin within the capability feature layer and
consider each capability feature as a candidate sub-
system. To help to decide on the viability of this
emerging partitioning we consider the degree of cross-
coupling likely to arise between sub-systems. It may be
necessary to develop some initial test scenarios or use
cases to do this. We need to find a partitioning in
which interaction traffic across the tree is generally
modest compared with interaction up and down the
tree. We select a level in the feature tree at which there
is an acceptably low level of cross-coupling. Sub-
systems are then centered on these capability features.

For each feature selected as the basis of a sub-
system we now consider whether that sub-system
should form a passive software component that
communicates synchronously and executes
sequentially, or an active task that may execute
concurrently using asynchronous communication. It
may be necessary to group multiple sub-systems within
the same task to ensure that communication can be
asynchronous. Other factors like required response

times, scheduling policy, and issues relating to
resource sharing may need to be taken into
consideration. Finding an optimal model for a family
of products may not be easy, but the feature model
remains an important source of guidance.

At this point the model’s top-level structure
reflects what are really early architectural decisions.
Before proceeding through the feature tree, we turn our
attention to the platform features and their relationships
with features that we expect to provide as software.

4. Platform Independence

The main reason for modeling the features provided by
the platform is to help with the evolution of a software
design that is significantly decoupled from the
hardware and O/S on which it operates. The key
stratagem for achieving this decoupling is the design of
an Adaptable Platform Abstraction Layer. The
complexity of this layer may vary considerably from
one situation to another, but it must be able to present a
fixed interface to software layers above, irrespective of
the specific hardware devices below. Multiple
implementations of some interface elements may be
needed and a modular structure for this layer will
frequently be appropriate. Having a model of the
features provided by the platform, and their
relationships to those to be provided in software, is a
key enabler at this stage.

5. Elaborating Behavioral Detail

With a sub-system and task model and a platform
abstraction layer defined, the design is ‘bounded’ at the
top and bottom levels. The next task is to elaborate
detail of intermediate layers, by working down
developing scenarios that help to expose feature
behavior and variability. Our approach is influenced by
the PuLSE-DSSA strategy [9]. Features are prioritized
and scenarios that exercise them are applied in order.
The understanding gained is captured using UCM path
representations linked to features. We exploit the UCM
concepts of stubs and plug-ins [7][8] to capture
behavioral variability. Thus a feature at one level with
alternative child features can have a dynamic stub
within its path. Its child alternatives can then contribute
alternative plug-in paths.
 Application of a scenario should typically
elaborate detail of issues such as task interactions, the
identification of components and sub-components and
the services they must provide. Where a high level
feature has optional or alternative sub-features, we may
need multiple scenarios. Using multiple scenarios aids
understanding of the way communication patterns
change with feature combinations.

6. Conclusions

To support the design of reference architectures for
embedded system families, we have evolved bi-
directional feature modeling with behavior capture, and
a related architecture development methodology.
Experience with these techniques is limited, but we
have explored their use in the design of optical network
products. [10]. More remains to be done to refine both
the notation and the process techniques.

7. References

[1] L. M. Northrop, “A Framework for Software Product
Line Practice – version 3”, Software Engineering Institute,
2001.

[2] Kyo C. Kang, G. C. Shalom, J. A. Hess, W. E. Novak
and A. S. Pettersen, “Feature-Oriented Domain Analysis
(FODA) Feasibility Study”, Technical Report CMU/SEI 90-
TR-21, 1990.

[3] K. Lee, Kyo C. Kang, W. Chae and B.B. Choi, “Feature-
based approach to object-oriented engineering of applications
for reuse”, Software Practice and Experience, Vol. 30, pp.
1025 – 1046, 2000.

[4] Kyo C. Kang, S. Kim, J. Lee and K. Lee, “Feature-
Oriented Engineering of PBX Software for Adaptability and
Reusability”, Software Practice and Experience, vol. 29, pp.
875 – 896, 1999.

[5] K. Czarnecki and U. W. Eisenecker, “Generative
Programming: Methods Tools and Applications, - Chapter
4”, Addison-Wesley, 2000.

[6] D. Fey, R. Fajta and A. Boros, “Feature Modeling: A
Meta-model to Enhance Usability and Usefulness”,
Proceedings of the 2nd International Conference on Software
Product Lines (SPLC2), Springer, LNCS 2379, 2002. pp. 198
– 216.

[7] D. Amyot, “Use Case Maps as a Feature Description
Notation”, in Language Constructs for Describing Features:
Proceedings of the FIREworks workshop, Eds. Gilmore and
Ryan, Springer-Verlag, 2001.

[8] Web reference: http://www.usecasemaps.org/index.shtml

[9] M. Anastasopoulos, J. Bayer, O. Flege and C. Gacek, “A
Process for Product Line Architecture Creation and
Evaluation: PuLSE-DSSA – version 2”, Fraunhofer Institute
for Experimental Software Engineering IESE-Report
038.00/E, 2000.

[10] C. Gillan, I. Spence, T. J. Brown, P. Kilpatrick, R.
Bashroush, R Smith, “Applying Product Line Engineering
Techniques to SDH Multiplexing, submitted to The
International Journal of Embedded Systems, September
2005.

