
 1

Reflection on Software Architecture Practices – What Works, What
Remains to Be Seen, and What Are the Gaps

Chung-Horng Lung

Systems and Computer Engineering
Carleton University

Ottawa, Ontario, Canada
chlung@sce.carleton.ca

Marzia Zaman, Nishith Goel
Cistel Technology

Ottawa, Ontario, Canada
{marzia, ngoel}@cistel.com

Abstract

This report presents a reflection on software architecture
practices based on our past ten year’s industrial
experiences, particularly in the areas of communications
networks and telecommunications and. The report
summarizes the methods, tools, and techniques that we
have used on various projects. We also discuss, based on
our experiences, what methods are useful, what remains
to be validated, and what the gaps are between the state
of practices and our desired wishes.

I. Background and Past Experiences

We started the software architecture analysis program in
the Software Engineering Analysis Lab (SEAL) at Nortel
Networks in 1995. Since then, we have developed or
experimented some methods or techniques to help us
conduct software architecture analysis or support
architecture evolution of products developed within the
company. In some cases, the analysis was conducted
after the product had been built and was mainly used for
evaluation purpose. While in some cases, we applied
some methods during the process of design or evolution.
The result of the analysis facilitated the design or re-
engineering of the product.

The program ended in 2001 at Nortel. After that, we
have been continuing on some research and practices on
some third party systems. This report briefly describes
those methods and their effects based on our experiences.
We also identify some areas that could be potentially
useful on the state of practice of software architecture.

II. Methods Used and What Works and What …

We have adopted, adapted, and developed some methods
and techniques to support software architecture analysis.
The following is a list of those methods and the
applications of them. We also briefly describe the effects
of those methods based on our experiences, primarily in
the area of competitive telecommunications.

1. Development of measurement technique for real-time

object-oriented systems based on high-level design
using ObjecTime graphical tool [Arora95]. The
metrics were obtained by parsing the textual version of
the design to identify complex components or
subsystems . The main challenges were the
understanding or interpretation of the metrics and the
maturity of the graphical tool. Many metrics are still
not well understood. Changes had to be made when the
internal representation of the graphical tool was
modified, which was time consuming and an
unpleasant process.

2. Adaptation of the s takeholders-centric [Bot96]

approach based on Gacek, et al. , [Gacek95] and
extension of the scenario-based software architecture
analysis method from SAAM [Kazman95, Kazman96].
During the process, we also identified issues related to
scenario coverage. In other words, when should we
stop generating more scenarios? QFD (Quality
Function Deployment) was adopted to trace the
priority between the stakeholder objectives and
corresponding architectural / quality objectives and
scenarios. The results indicated that twice as many
scenarios were needed for particular classes, which
was usually conducted in an ad-hoc manner or ignored
[Bot96]. QFD emphasizes on the customer needs and
could provide a balanced view in terms of scenario
coverage. However, in practice, in highly competitive
areas, time-to-market may dominate in the initial phase
or requirements could not be clearly identified even by
customers. In such cases, usage of QFD becomes less
compelling.

 Stakeholders and scenarios have been widely

appreciated as necessary ingredients in software
architecture analysis. QFD provides useful feedbacks
and balanced views in terms of scenario generation
and coverage. But the approach does not address the
issue of concurrent scenarios. We also have adopted
design combinatorial theory that has been discussed
intensively in testing [Lung05a] to support concurrent-
scenario coverage. The motivation is that a system
typically supports multiple functionalities at the same

 2

time. Those functionalities may work correctly when
executed individually, but may encounter faults when
run collaboratively, especially for complex concurrent
or distributed systems . Design combinatorial theory
from the testing discipline is useful to identify
potential complicated scenario interactions. But it has
not been verified yet in terms of acceptance.

 Take a case study as an example [Lung98a]. The

system behaved well while three scenarios were
conducted separately. However, performance degraded
significantly when these three scenarios happened
simultaneously. The use case where these three
scenarios could happen at the same time was initially
missed, which caused performance problem in a real-
time telecommunications system. Using a more formal
approach reduces the risk of missing use cases where
many scenarios may occur simultaneously.

3. Various views are advocated to support architecture

design and evaluation [Kruchen95]. We also
developed and evolved several architectural views to
meet our needs [Lung97, Lung00]. The concept has
also been well accepted and built into UML. Various
views provide diverse aspects. However, in practice,
not all the views depicted in UML may be needed or
some other view(s) may be needed for particular cases
or stakeholders. For instance, a more general notation
is more useful to communicate with product
requirements teams or business analysts . Another issue
with UML is that architecture design frequently
changes for a new project. Architects or designers
typically do not capture various diagrams in details in
forward engineering, except the basic needs, due to
fact that they will be changed anyway. Maintaining the
consistency between views is time consuming, tedious,
and volatile due to frequent changes. Typically, only
lightweight modeling in the early stage is needed to
avoid over-diagramming. This point has also been
addressed in the Unified Process.

4. Identification or capture of architecture styles or

patterns can facilitate communications between
stakeholders, especially designers. However, some
designers may not be familiar with some technical
terms, even though they have used something
conceptually identical or similar for some time. This
brings to the social aspect of this field. Senior
architects or designers may feel uncomfortable if
“advanced technologies” are brought into
managements attentions.

 Styles may be too abstract. For examp le, layered

architecture is standard in network communications.
Everything evolves around the style. Additional

insights are expected. Patterns, on the other hand,
capture more specific solutions. But patterns may not
be that easy to understand if they are new concept.
Concrete examples and case studies using patterns are
extremely helpful for the designers [Lung02b]. The
concept of case-based reasoning and software analogy
could be tied together with patterns to provide more
leverage.

5. Software architecture recovery and reengineering is

often inevitable due to changes in requirements and
evolution. Tools (code browsers, reverse engineering
tools) are useful to recover the software architecture or
design. One of the techniques that has been intensively
studied and discussed as a software reengineering
technique in the literature is software clustering. We
have been applying clustering techniques to many
projects in this area. For some cases, just capturing the
architecture has tremendous value. For others, much
more detailed analysis is needed to identify specific
problem areas or bottlenecks for improvement, e.g.,
software performance engineering [Smith90] or
architecture reengineering [Lung98b, Lung04,
Kostelijk05].

Software performance is a tricky issue in architecture
evaluation. It requires a lot of details, which often may
not be supported at the architecture level. Performance
modeling can be useful in this phase [Smith90,
Lung98a]. However, there are issues related to
performance modeling. First, modeling itself may take
a long time. In one exercise of a telecommunications
system evaluation, model building along took several
months, which is generally not acceptable in a highly
competitive industry. Second, there are constraints or
limitations for the modeling techniques. In another real
case study, the results from modeling were very
different from the actual measurements of the
reengineered implementation. In addition, software
performance engineering (SPE) is a specialized area,
which people may not be familiar with. Academic
researchers usually adopt modeling techniques,
whereas industrial practitioners mostly rely on
measurements. Modeling is valuable to help us better
understand the system and is better than “build-break-
fix” approach. However, in some practical areas, we
need to consider more detailed information than just
that of typical high level modeling techniques to
provide more useful insights.

 Software architecture visualization is another useful

approach to display the system and components and
the relationships of components for an overall
understanding of the system for maintenance and/or
evolution. Architecture visualization can be coupled

 3

with other information such as software metrics to
show the complexity, performance and reliability
[Zaman99]. One caveat is that a powerful visualization
tool is expensive. Many organizations are reluctant to
invest thousands of dollars on something that is not so
critical to the project development.

6. ATA (Architecture Tradeoff Analysis) [Kazman99] or

sensitivity analysis based on some architecture metrics
[Lung00] or high-level design metrics [Arora95] is
useful for comparisons, especially in cases where
multiple candidate architectures are possible. Those
approaches can help identify more specific areas that
are critical or different. Quantitative measurements
may be needed for some qualities, e.g., performance.
But quantitative analysis may not be available.
Qualitative reasoning sometimes is the only option, but
ill-founded reasoning can favor unsupported tradeoffs
[Kostelijk05]. Unfortunately, this is a reality at this
level due to uncertainties of technologies and/or
requirements, and timing pressure. Even if quantitative
data are available, it dose not mean that they are well
understood for some qualities. For instance, what does
it mean it you can get a final value of X for
maintainability? In some cases, the most critical
attribute dominates, even if the final score, if a scoring
mechanism is adopted, may be lower than other
options.

There are still challenges in this area. On one hand, we
need concrete evidence to demonstrate the benefits of
one alternative over the other. On the other hand, it is
often difficult to derive concrete results at this level,
particularly for new systems . A typical example is
“How to evaluate the performance or availability at the
architecture level?” In telecommunications,
availability is crucial and the industrial requirement for
this quality is 99.999%. But how to support the claim
or compare multiple alternatives at this level? The
traditional model used in telecommunications is
passive replication, e.g., one active and one standby
processor with a switch to connect the clients to the
current active processor. Another model is active
replication, e.g., clients talk to a group of servers, but
only one will respond. But there are many possible
alternatives in between [Yu00, Hobbs05].

Evaluation of an alternative could be very complicated
and time consuming. Modeling techniques can provide
useful information in this case, but they require
predicated rates (e.g., failure rates or performance
data) of components that are as close to the real system
as possible. For hardware components, the rates have
been systematically captured based on testing and real
results from the field and are published. But the

relevant data generally are not available for software
components, which is a great challenge in software
architecture evaluation. Moreover, how to support the
architect to make the decision even given the mo deling
results is another challenge. For instance, if the
availability modeling result is 99.99% (which is lower
than the carrier grade product requirement of
99.999%) does it mean that we should find an
alternative architectural solution or continue the design
and tune the product at the end? Increasing the value
from 99.99% to 99.999% of a product may require
tremendous efforts in practice. On the other hand, if
the result obtained from the modeling is better than
five 9s, does it guarantee that the product will satisfy
the requirement?

7. From requirements to architecture has been discussed
intensively, e.g., [STRAW01, STRAW02]. We have
experimented methods, based on the idea postulated by
Alexander [Alexander64] for system decomposition.
Decomposition provides heuristics on how to partition
the system into subsystems to increase cohesion and
reduce coupling. We adopted the method to identify
the relationships between requirements and cluster
requirements based on the relationships [Lung02a] on
a new system in network traffic controller.
Unfortunately, it turned out that it was difficult to
identify the relationships between requirements,
because requirements may not be clear or may be
ambitious, or the level of abstraction may be different
for various requirements. This is particularly true for a
new system.

We have modified the approach by identifying the
relationships between requirements and a set of
relevant attributes instead. After that, we used the
clustering technique to group related requirements to
form subsystems or a conceptual architecture. The
approach was applied to a network protocol system
and the result looked promising [Lung05b]. The main
reason for the good result could be that the
requirements for network protocols are well specified
by the Internet community. The experiment was
conducted after the system had been built for concept
demonstration. It could provide some heuristics in
system partitioning. However, the effect of this
approach remains to be seen.

III. What Are the Gaps

Tre mendous efforts are still under way in software
architecture research. We identify some gaps based on
our limited experiences and biased views. They are:

 4

1. Architecture-centric expert systems (ACES): The
knowledge or skills that a software architect should
process are enormous. In practice, it is rare that people
are skillful in both the problem and many of the
solution spaces as well as the non-technical area. This
is an unreasonable expectation. Various expert systems
to support the tasks discussed in the previous section
or other relevant areas can provide valuable
information just in time. The expert systems should
consist of concrete examples in addition to rules. In
addition, those examples should compose real or
realistic data obtained from similar systems , which can
fill the gap between some modeling techniques and
actual development. To support this step, we need to
define requirements for data gathering for those
modeling techniques, and more importantly, actually
gather and characterize data for software systems or
components .

2. Generative frameworks based on well understood
components or patterns : They are needed to rapidly
generate either a realistic prototype or a working
system or sub-system to support effective design and
efficient evaluation/comparison. Modeling techniques
tend to deal with abstract data. Generative frameworks
can provide more concrete or specific information.
They can be filled in with more detailed information or
design. After all, the devil is the details in practice.
Patterns can be viewed as a result of domain analysis
conducted by a number of experts. More fruitful
results may be obtained by merging patterns and
domain engineering disciplines. Techniques are more
mature in generative approach or compositional
approach to support some domain engineering and
software reuse concepts. Generally speaking, patterns
are robust and they are captured, partly, for reuse. The
next step is to support effective development by reuse
postulated by domain engineering.

3. Architecture or program transformation in specific

scopes or domains: If certain architecture is known
better, how effectively can the designer transform the
existing system to that one? In an exercise, we spent
several months reengineering a distributed and
concurrent system mainly based on a well know design
pattern, Half-Sync/Half-Async [Schmidt00]. In fact, in
the post-mortem analysis, we identify that many
changes are related to concurrency control, which
mostly can be mechanically transformed. With the
support of architecture transformation, it is easier to
provide insights for architecture assessment and
comparison.

4. Ease of use and usefulness: There is a dilemma in

what we have been doing. On one hand, we need

powerful techniques that allow us to capture detailed
or realistic data to provide more accurate information.
On the other hand, we want the techniques to be easy
to understand and use. This is another gap in practice.

 Many methods and technologies have been developed
but not adopted, including ours. One reason may be
that we have focused too much on technology itself.
We can learn from lessons presented in business
management on technology adoption. For instance,
Davis [1989] proposed that two particular factors, ease
of use and usefulness, form a person’s attitude toward
adopting a technology. Other important factors
reported in this field include relative advantage,
compatibility, trialbility, visibility, results
demonstrability, external pressure (voluntariness),
demographics such as age or education [Moore91,
Morris00]. Take telecommunications or embedded
systems as an example, many architects had electrical
engineering background and some of them may not
have up-to-date software engineering trainings since.
Asking them to adopt some advanced software
technologies may be challenging if the technologies
are not easy to use or provide useful information they
need. Time-to-market also has a crucial role in the
success of a system, which is directly related to ease of
use and usefulness.

 Those reports may provide valuable hints. As we are

trying to “push” technologies into the software
community, we may need to frequently ask ourselves,
“How should we “pull” from our customers (designers
or other stakeholders) to find out more about what they
need and what are really useful for them?”

References:
[Alexander64] C. Alexander, Notes on the Synthesis of
Form, Harvard University Press, Cambridge, MA, 1964.

[Arora95] V. Arora, K. Kalaichelvan, N. Goel, and R.
Munikoti, “Measuring High-Level Design Complexity of
Real-Time Object-Oriented Systems”, Proc. of Annual
Oregon Workshop on Software Metrics, pp. 91-94, 1995.

[Bot96] B. Sonia, C.-H. Lung, and M. Farrell, “A
Stakeholder-Centric Architecture Analysis Approach”,
Proc. of the 2nd Int’l Software Architecture Workshop,
pp. 152-154, 1996.

[Davis89] F. Davis, “Perceived Usefulness, Perceived
Ease of Use, and User Acceptance of Information
Technology”, Management of Information Science
Quarterly, vol. 13, no. 3, pp. 319-339, 1989.

 5

[Gacek95] C. Gacek, A. Abd-Allah, B. Clark, B. Boehm,
“On the Definition of Software System Architecture”,
Proc. of the 1 st Int’l Software Architecture Workshop,
April 1995.

[Hobbs05] C. Hobbs, “Architectures and tools for
Sufficiently-Available Software”, Internal Training
Courses, Nortel Networks, 2005.

[Kazman94] R. Kazman, L. Bass, G. Abowd, and M.
Webb, “SAAM: A Method for Analyzing the Properties
Software Architectures”, Proc. of ICSE 16, pp. 81-90,
1994.

[Kazman 96] R. Kazman, G. Abowd, L. Bass, P.
Clement, “Scenario-Based Analysis of Software
Architecture”, IEEE Software, pp. 47-55, Nov 1996.

[Kazman98] R. Kazman, M. Klein, M. Barbacci, T.
Longstaff, H. Lipson, and J. Carriere, “The Architecture
Tradeoff Analysis Method”, Proc. of the 4th Int’l Conf.
on Eng. of Complex Comp. Sys., pp. 68-78, Aug. 1998.

[Kostelijk05] T. Kostelijk, “Misleading Architecting
Tradeoffs”, Computer, pp. 20- 26, May 2005.

[Kruchten95] P. B. Kruchten, “The 4+1 View Model of
Architecture”, IEEE Software, Nov. 1995, pp.42-50.

[Lung97] C.-H. Lung, S. Bot, K. Kalaichelvan, and R.
Kazman, “An Approach to Software Architecture
Analysis for Revolution and Reusability,” Proc. of
CASCON, pp. 144-154, 1997.

[Lung98a] C.-H. Lung, A. Jalnapurkar, and A. El-
Rayess, “Performance-Oriented Software Architecture
Analysis: an Experience Report”, Proc. of the 1st Int’l
Workshop on Soft. Performance, pp. 101-104. Oct 1998.

[Lung98b] C.-H. Lung, "Software Architecture Recovery
and Restructuring through Clustering Technique", Proc.
of the 3rd Int'l Software Architecture Workshop (ISAW) ,
Nov. 1998, pp.101-104.

[Lung00] C.-H. Lung and K. Kalaichelvan, “A
Quantitative Approach to Software Architecture
Sensitivity Analysis ”, Int'l Journal of Software Eng and
Knowledge Eng, vol. 10, no. 1, pp. 97-114, Feb 2000.

[Lung02a] C.-H. Lung, A. Nandi, and M. Zaman,
“Applications of Clustering to Early Software Life Cycle
Phases ”, Proc. of the Int’l Conf. on Software Eng
Research and Practice (SERP) , June, 2002, pp. 625-631.

[Lung02b] C.-H. Lung, "Agile Software Architecture
Recovery through Existing Solutions and Design
Patterns", Proc. of 6th IASTED Int'l Conf. on Software
Engineering and Applications (SEA) , Boston, MA, Nov.
2002, pp. 539-545.

[Lung04] C.-H. Lung, M. Zaman, and A. Nandi,
“Applying Clustering Techniques to Software
Architecture Partitioning, Recovery and Restructuring”,
Journal of Systems and Software, vol. 73, no. 2, Oct
2004, pp. 227-244.

[Lung05a] C.-H. Lung and M. Zaman, “Application of
Design Combinatorial Theory to Scenario-Based
Software Architecture Analysis”, to appear in the Int’l
Conf. on Software Eng and Knowledge Eng, July 2005.

[Lung05b] C.-H. Lung, X. Xu, and M. Zaman, “Attribute
Driven Software Decomposition”, to appear in the Int’l
Conf. on Software Eng and Knowledge Eng, July 2005.

[Moore91] G. C. Moore and I. Benhasat, “Development
of an Instrument to Measure the Perceptions of Adopting
an Information Technology Innovation”, Information
Systems Research, vol. 2, no. 3, pp. 192-222, 1991.

[Morris00] M. G. Moore and V. Venkatech, “Age
Differences in Technology Adoption Decisions:
Implications for a Changing Work Force”, Personnel
Psychology , vol. 53, no. 2, pp. 375-403, 2000.

[Schmidt00] D. Schmidt, et al., Pattern-Oriented
Software Architecture Patterns for Concurrent and
Networked Objects, John Wiley & Sons, 2000.

[Smith90] C. Smith, Performance Engineering of
Software Systems, Addison-Wesley, 1990.

[STRAW01] From Software Requirements to
Architectures Workshop (STRAW), 2002.

[STRAW02] From Softwa re Requirements to
Architectures Workshop (STRAW), 2002.

[Yu00] H. Yu and A. Vahdat, "Building Replicated
Internet Services Using TACT : Tunable
Availability/Consistency Tradeoffs." Proc. of the 2nd Int’l
Workshop on Advanced issues of E-Commerce and Web-
Based Information Systems, June 2000.

[Zaman99] M. Zaman, C.-H. Lung, and A. Nandi,
“Automated Software Architecture Partitioning and
Visualization Using Arch”, Nortel Design Forum, 1999.

