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Abstract

A common approach to defining architectural views is
to have independent heterogeneous representations that are
tailored to each view’s purpose, but this makes reconcil-
ing views into an overall architectural description harder.
In this paper we put forward a complementary (not alter-
native) approach in which some views are derived from a
given architecture description language (ADL) in a system-
atic way, by listing the design questions each view should
answer. The approach is based on constructing the lan-
guage’s metamodel and extending it with the entities and
associations needed to capture and explicitly relate the re-
quired views.

1. Introduction

The need for multiple views, in order to have a richer
description of a software system that helps capturing var-
ious design decisions and analyse their impact, has been
recognized since the early days of Software Architecture
research [23]. Common to many approaches, including the
IEEE standard on architectural description [1], is the de-
sire to allow for heterogeneous representations of mutually
crosscutting perspectives that are relevant to different stake-
holders. A recurrent problem is that different views might
be inconsistent with each other, in the sense that, when put
together, the views do not obey the constraints for a well-
formed architectural description. Moreover, available no-
tations to represent views, like the various UML diagrams,
might not be ideally suited to describe architectures [18].

In this paper we put forward an approach that takes as
starting point a language that is suitable for architectural
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description (i.e., an ADL) and extracts some views from it.
The approach is model-driven in the sense that it is based on
constructing a metamodel for the given language and then
enriching it with views that aggregate the various architec-
tural concepts embodied in the language. The approach is
complementary to existing ones because the only views that
can be derived are those encompassing concepts included in
the given language. However, an ADL includes core con-
cepts related to architectural design (like structure, behav-
iour, and interaction), and as such the set of views derived
from the ADL is useful in spite of being restricted. A fur-
ther restriction of this approach is that it is likely to only
generate views that are relevant to those stakeholders that
would use an ADL, most often designers or software ar-
chitects. We say “likely” because it may happen that an
ADL is sufficiently rich for views that are relevant for other
stakeholders to be generated, like the implementation and
deployment views. But on the other hand, the use of a
single metamodel to explicitly represent the original lan-
guage’s and the derived views’ concepts has the advantage
of being a homogenous approach that explicitly relates the
various views: this makes it easier to check for consistency
between and within views and to combine views.

Although in principle any metamodeling approach can
be envisaged, the concrete approach suggested in this pa-
per is to use UML’s (meta-)class diagrams and Object Con-
straint Language (OCL) to describe the architectural entities
and their relationships. The reason for this choice, besides
UML being a de facto standard metamodeling language
through the Meta-Object Facility (MOF), is that it eases a
future possible integration of this approach within a wider
model-driven round-trip engineering framework, where one
can envisage the views generated from the overall architec-
tural description being carried over (through model-driven
transformation) to corresponding views at various levels
of detail (e.g., platform-dependent design and implemen-
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tation). The approach consists of the following steps:

1. Construct the model for the given language, specifying
consistency invariants in OCL.

2. List the questions that are possible, but not easy, to an-
swer from an architectural specification, and determine
the views that can provide immediate answers to those
questions.

3. Extend the metamodel with extra classifiers and asso-
ciations for each view, aggregating the architectural
concepts relevant for each view and defining further
consistency invariants for each view.

4. Combine views by adding new associations that enable
further navigations between architectural entities.

Note that step 2 can be seen as a kind of “use cases” or “sce-
narios”, not of the system being designed, but of the design
process itself, i.e., of the ways the architectural specifica-
tion is explored to answer specific design questions, like “is
the system’s functionality centralised?”.

The following sections illustrate in more detail the above
steps, by applying the approach to COMMUNITY, the lan-
guage we have been using to support our research on the
foundations of software architecture [8]. Section 2 intro-
duces COMMUNITY and its metamodel (step 1), section 3
provides the rationale for the views (step 2), and sections
4 and 5 describe two derived views (steps 3 and 4). Due
to space restrictions, and because the aim is just to illus-
trate the advocated approach, we only provide a simplified
metamodel of COMMUNITY, we omit a third view we have
derived, and we show only a few OCL constraints. Finally
we provide a context for our work, relating it to other ap-
proaches to architectural views, and we present some con-
clusions.

2. CommUnity

COMMUNITY provides, like Darwin [17], Wright [3], or
LEDA [4], among others, a formal approach to software ar-
chitecture. It has several advantages over other approaches,
the main one being a precise mathematical semantics: ar-
chitectures are not just depicted through lines and boxes;
they are diagrams in the sense of category theory [7], in-
volving explicit superposition and refinement relationships
between architectural components. This graphical seman-
tics (in both the mathematical and visual sense) mirrors
closely and intuitively the design of the architecture.

In addition, COMMUNITY describes component behav-
iour with a parallel program design language that is similar
to Unity [5] and IP [9] in its computational model but adopts
a different coordination model. More concretely, whereas
in Unity the interaction between a program and its environ-
ment relies on the sharing of memory, COMMUNITY relies
on the sharing (synchronisation) of actions and exchange of

data through input and output channels, and requires inter-
actions between components to be made explicit. Moreover
COMMUNITY is at a higher level of abstraction and is more
convenient to use than the process calculi employed by most
formal approaches to software architecture.

Like most architectural approaches, COMMUNITY en-
forces a strict separation between computation and coordi-
nation, whereby interactions between components are spec-
ified just through their interfaces. The approach has been
extended with a small set of semantic concepts and syntac-
tical constructs in order to include a distribution dimension
[15]. COMMUNITY requires the designer to provide an ex-
plicit representation of the space within which movement
takes place, and as such the formalism is independent of
any specific notion of space. The GSM-Handover protocol
[22] has been modeled with COMMUNITY to illustrate the
distribution extension. Fig. 1 shows the class diagram of a
slightly simplified metamodel of COMMUNITY; the meta-
model is completed with OCL constraints.

In addition to the language and mathematical semantics,
we have been developing a workbench [21] that serves as a
proof of concept of the formal framework. The workbench
provides a graphical integrated development environment
to write, run, debug components and draw configurations of
components and connectors. We are currently starting the
extension of the workbench to provide support for the three
views we defined for COMMUNITY (Section 3).

2.1. Computation

A computational unit of a COMMUNITY system is given
by a so called design, which is defined in terms of input and
output location variables, input, output and private chan-
nels and a set of private and shared actions. Location vari-
ables hold the positions where data (channels) are stored
and where code (actions) is executed. Input channels are
used for reading data from the environment; the component
has no control on the values that are made available in such
channels. Output and private channels are controlled lo-
cally by the component. Output channels allow the environ-
ment to read data produced by the component. Private ac-
tions represent internal computations in the sense that their
execution is uniquely under the control of the component
whereas shared actions represent possible interactions be-
tween the component and the environment.

Channels are typed, and although the COMMUNITY se-
mantics is independent of any type definitions, we have
implemented a small set of types in the workbench (inte-
gers, booleans, lists, etc.). However, the metamodel remains
generic, requiring a type for each channel (class Type in Fig.
1) and a type to represent locations (LocationType).

The computational dimension resides in the bodies of ac-
tions: each action has one or more bodies, each body being
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Figure 1. COMMUNITY metamodel

a guarded set of assignments. Multiple bodies allow for
the distributed execution of an action (see next subsection).
Each body has two guards (shown in Fig. 1), but for the pur-
poses of this paper it is not relevant to distinguish them, and
hence our example assumes they are always represented by
the same boolean expression. At each step, one of the ac-
tions is non-deterministically selected and its assignments
are executed in parallel if the guards of all its bodies evalu-
ate to true. For a more precise definition of the operational
semantics see [8]. The class ActionSkip in Fig. 1 represents
an action, without any bodies, to be used for binding with
other components’ actions.

In order to illustrate the approach we use an example
adapted from [16]: consider an airport luggage delivery sys-
tem in which carts move along a track and stop at designated
locations for handling luggage. The design located cart
models a cart able to move and handle luggage along the
track; the cart is also monitored to count the number of
times it handles luggage. The cart does not control its move-
ment.

The cart (shown in Fig. 2) moves while it is not busy
handling luggage and while its current position is differ-
ent from its destination. However, the move action doesn’t
change the current position because it is an input location
under control of the environment. Handling luggage takes
place only when the cart docks at the destination station,
which is available locally in dest and is recomputed when
the cart undocks from the station. Note that the cart keeps
track of the luggage stations it passed through in the private
channel path. The fact that dest is local to the cart means
that the environment cannot change the destination of the
cart until it reaches the pre-assigned one. There, the en-
vironment can control where the cart will go next because
next is an input location variable with the value of the new
location to where the cart will move.

2.2. Distribution

Distribution is represented by the location variables in
the designs. Each local channel “x” is associated with a lo-
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design located cart
inloc pos, pox, next
outloc dest
prv busy@pos : bool; path@pos : list(int)
do move@pos : ∼busy & (pos /= dest) → skip
[] dock@pos : ∼busy → busy := true

@dest : pos = dest→ path := path : <dest>
[] undock@pos : busy & (pos = dest) →

busy := false || dest := next

Figure 2. Design located cart

cation variable “l”. We make this explicit by simply writing
“x@l” in the declaration of “x”. The intuition is that the
value of variable “l” indicates the current position of “x”.
Note that the location of input channels is unknown, be-
cause they are provided by the environment. Each action
body is also associated with a location variable; hence, the
execution of an action is distributed over the locations of
its bodies. In other words, the execution of the action con-
sists of the synchronous execution of a guarded command
in each of those locations. The granularity of distribution is
very fine (i.e. at the level of individual channels and com-
mands) in order to provide maximum flexibility in the spec-
ification of the distribution of data and code. A modification
in the value of a location variable “l” implies the movement
of all channels and action bodies located at “l”.

Location variables can be declared as input or output in
the same way as channels. Input locations are read from the
environment and cannot be modified by the component and,
hence, the movement of any constituent located at an input
location is under the control of the environment. Output
locations can only be modified locally through assignments
performed within actions and, hence, the movement of any
constituent located at an output location is under the control
of the component.

In Fig. 1 actions and channels are associated to their
locations. This part of the metamodel also shows that the
domain of an action is the set of the local channels and out-
put location variables assigned to in the action’s bodies. For
the example, almost all the cart’s data and code are located
at the cart’s current position (pos in Fig. 2).

For illustration the execution of the action dock is dis-
tributed: locally, i.e. at location pos, it tests if the private
channel busy is false; at the position indicated by dest, it
further stores the current destination in path. The unused
location variable pox is a mistake that will be detected in
the distribution view.

The cart moves because its position (available in variable
pos) is incremented by the environment, more precisely by
the step controller, while the cart has not reached its desti-
nation (available in dest). How this is achieved is explained
in the next subsection. The step controller design is:

design step controller
outloc theirs
do control@theirs : true → theirs := theirs + 1

Although no specific notion of space is assumed (i.e., the
type used to represent locations is user-defined), there is al-
ways a special location, called λ, that represents a “central”
location. The metamodel hence assumes that every local
channel and each action body has a location, but in the con-
crete syntax of COMMUNITY we simply write “x” instead
of “x@λ”. The relevant topological properties of the space
are captured by two binary relations over locations. The
relation touch defines the pairs of positions that are “in
touch” with each other. Coordination among components
takes place only when all the locations of all the actions in-
volved in a synchronization are “in touch”. We assume that
touch is reflexive, symmetric and that all locations are in
touch with λ. The second relation reach defines when one
position is reachable from another, and is assumed to be re-
flexive. Movement to a new position is possible only when
that position is reachable from the current one. Reachability
from or to λ is always valid.

2.3. Coordination

The coordination dimension is made explicit by connect-
ing output and input channels and location variables, and
by synchronizing non-private actions. Bindings have to be
explicit (i.e., cannot be based on implicit naming) because
all names in COMMUNITY are local, i.e., their scope is the
design in which they occur. This makes it easier to reuse
designs in various contexts. Due to the technicalities of the
categorical semantics of COMMUNITY, bindings cannot be
established directly between components’ actions, channels
and location variables, and instead have to be established
through so-called cables (see [8] for details). A cable con-
nects two designs and is itself a restricted form of design,
just with input location variables, input channels and shared
actions without bodies, because cables do not introduce be-
haviour. In the metamodel we require three operations on
cables (represented by class Cable): one to obtain all com-
ponent actions synchronised through a given cable action,
another to obtain all component channels shared through a
given cable input channel, and a third one to obtain all com-
ponent location variables shared through a given cable input
location variable. These operations are necessary to specify
the consistency constraints on cables (constraints over loca-
tion variables are similar to those over channels). For ex-
ample the following constraint prevents the connection of
two channels of the same design with the same channel of
the cable. Moreover, it verifies the two channels belong to
the two different designs involved in the cable, and finally
it prevents the sharing of two output channels:

context Cable

Proceedings of the Working IEEE/IFIP
Conference on Software Architecture (WICSA'07)
0-7695-2744-2/07 $20.00  © 2007



Figure 3. Interactions

inv ConnectionChannels:
self.inChannel->forAll(elem |
self.getConnectionIn(elem)->size() = 2 and
self.getConnectionIn(elem)->forAll(elem1 |
self.getConnectionIn(elem)->forAll(elem2 |
elem1=elem2 or
(elem1.design <> elem2.design and
self.design->exists(elem1.design) and
self.design->exists(elem2.design) and
not(elem1.isInstanceOf(OutChannel) and

elem2.isInstanceOf(OutChannel))))))

Continuing the example, Fig. 3 taken from the work-
bench shows the connections between located cart and
counter, where input channels and location variables are
depicted by inward triangles, output channels and location
variables by outward triangles, and actions by circles. Note
that private constituents are not used in interactions and
hence do not appear. Although the formal semantics of
COMMUNITY (and hence the metamodel) requires cables,
the workbench’s GUI uses bindings directly between com-
ponents for simplification. Design counter (which we omit
for lack of space) simulates the tracking of the handling of
luggage. We assume there are two kinds of locations for
handling the luggage, called odd and even locations, with
a counter for each kind, to be incremented when the cart is
handling luggage at such a location. To illustrate the possi-
bilities of COMMUNITY, action dock is synchronized with
two actions incOdd and incEven, so that for each execution
of dock either of those actions is executed and hence coun-
tOdd or countEven is incremented. The choice is based on
the omitted guards of incOdd and incEven.

To specify that two components are co-located, we just
have to share their location variables: in Fig. 3, we bind
pos of located cart with countLoc of counter to “include”
the counter in the cart. To provide a value for an input lo-
cation variable, it must be shared with an output location
variable: in our example, the cart’s position is provided by
variable theirs of the step controller. As we saw before, the
action move of the design located cart has an empty body.
The cart moves when this action is executed, because it is
synchronized with the action control of step controller, and
the movement is achieved when the action control makes
the assignment to the output location variable theirs which
is connected with pos of located cart.

Complex interaction behaviour between components has
to be defined using connectors. As shown in Fig. 1 con-
nectors are made of a glue and a set of roles, all given by
designs. The glue is connected to each role through a ca-
ble. The glue specifies the interaction behaviour, while roles
serve as a kind of formal parameters, restricting the compo-
nents to which the connector can be applied.

The application of a connector, in the construction of
an architecture, consists in instantiating (formally: refin-
ing) each role with a specific component of the architecture
(see class Refinement in the metamodel). Each channel
of the role has to be refined by a channel of the same type
and kind (i.e., input, output or private) of the component,
and similarly for location variables. But COMMUNITY al-
lows an action of the role to be refined into a set of com-
ponent actions that break a computation step into multiple
sub-steps. We show here only one OCL constraint, for in-
put channels, whereby the getter implements the mapping
between the role’s and the component’s channels:

context Refinement
inv RefiningInChannels:
role.inChannel->forAll(elem |
let c : Channel = self.getRefinementChannel(elem)
in c.isInstanceOf(InChannel) and
c.type = elem.type)

In the example, the previously shown design
step controller is the glue of a unary connector, the
role of which is refined by located cart and Fig. 3 shows
the binding between the glue and the component once the
connector has been applied.

3. Architectural Views

An architectural view describes a part of a system ac-
cording to some perspective of interest, helping the designer
to validate the architecture. Each view highlights and makes
explicit some aspects, while omitting others.

In the setting of COMMUNITY, the views should be de-
fined in such a way as to make it easy for the designer to
answer questions like:

1. Which actions cannot occur simultaneously and which
ones must occur together?

2. Which channels are actually the same (i.e., shared)?
3. Which channels are used by which actions?
4. Which actions from distinct components use a com-

mon channel? Are those actions synchronized?
5. Which constituents (channels or actions) are always

co-located?
6. Which locations might have to be in touch with each

other?
7. Which locations (more precisely channels and actions

located at those locations) are controlled by which ac-
tions?
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Such checks will help the designer to validate the archi-
tecture, detect potential problems (e.g., a design with too
many constituents at the same location), and take correc-
tive actions (e.g., by relocating some of the constituents).
Questions like the above focus on actions, channels and
locations and can therefore be answered by switching be-
tween three basic views: computation, coordination, distri-
bution. For example, the coordination view might help the
designer spot a large set of actions that always execute syn-
chronously, whereas the distribution view shows if they are
scattered among many locations or not. But this switching
can be in part avoided by combining the views, meaning
that, being in a given view it is possible to obtain adapted
version(s) of the other(s) and combine them. The combina-
tion of X with Y is therefore the enriching of view X with
information from view Y . However, some combinations are
not considered in this paper as we explain next.

The combination of the computation view with the co-
ordination view is already subsumed by the architecture,
which is centered on the designs (computation view) com-
bined with the interactions between designs (coordination
view). The combination of the computation view with the
distribution view doesn’t add new insights either, because in
the architecture each design has its channels (computation
view) mapped to a location (distribution view) and each ac-
tion is explicitly distributed or not over several locations.
Finally, the combination of coordination with distribution is
not presented because combining them the other way round
is more clear and succinct. Due to space restrictions we
omit the simplest view (computation), but we refer to its in-
formation in the other views in order to maintain coherence.

Each one of the three view types is defined by a meta-
model, which is obtained from the architectural metamodel
by adding the necessary new entities and associations. The
view’s metamodel must also show (through the class dia-
gram and OCL expressions) how the new entities are re-
lated to those of the architecture, e.g. how co-located ac-
tions dispersed throughout various designs in the architec-
ture become aggregated in a single location in the distrib-
ution view. The aggregation entities of each view will be
called units, to use a neutral term that doesn’t clash with
component or design.

There is one single diagram including all entities nec-
essary for modeling an architecture and its views, and the
associations between those entities and the additional OCL
constraints can be seen as a declarative specification of the
model transformation that is necessary to obtain a view
from the architecture.

The views for our example will be given by very infor-
mal graphs (Fig. 5 and 7), because using the correct UML
notation, with one object for each channel, location vari-
able, action, etc., is infeasible due to space restrictions.

UnsynchronizedUnitOutChannel

InChannelCoordinationChannelUnit

+getConnection(c:Channel):Channel

Design

−name:String

SharedAction

Cable

+getSynchronization(act:ActionSkip):Set

+getConnectionIn(in:InChannel):Set

+getConnectionInloc(inl:Inloc):Set

CoordinationActionsUnit

Coordination_View

*

*
*

*

*

ConnectIn+
*

*

ConnectOut+

*

1..2

0..1

*

*

Created with Poseidon for UML Community Edition. Not for Commercial Use.

Figure 4. The coordination view metamodel

4. Coordination View

This view shows which channels are shared and which
actions can (not) execute simultaneously. As for chan-
nels, the transformation of the architecture into coordination
units is easy:

1. Create one coordination unit for each channel.
2. Merge two units into one if a channel of one unit is

shared with a channel from the other one in the archi-
tecture.

The second step basically uses the architectural cables to
compute the transitive closure of sharing. However, this
will lead to many singleton units (e.g. all those with a pri-
vate channel, which cannot be shared by definition). Such a
proliferation of entities impairs the clarity that each view is
supposed to contribute to system design. Hence, we add a
third transformation step:

3. Remove all singleton units.

Fig. 4 shows the diagram, where the coordination unit
for channels has been called “CoordinationChannelUnit”,
and the OCL expressions that capture the above algorithm
are:

context CoordinationChannelUnit
inv CableBetweenChannels: self.InChannel->
forAll(elem | self.cable->select(c |
c.getConnectionIn(elem)->exists(
self.getConnection(elem)))->notEmpty())

inv NoCableBetweenChannels:
self.allInstances()->forAll(cc1, cc2 |
cc1 <> cc2 implies
cc1.cable->intersection(
cc2.cable)->isEmpty())
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As for the actions, the transformation is more complex:

1. Create one “UnsynchronisedUnit” (Fig. 4) for each
design, containing its unsynchronised actions.

2. Create one synchronised action unit for each maximal
combination of actions a1, a2, . . . , an belonging to n
different designs, such that ai is synchronised with
ai+1, for i = 1, . . . , n − 1.

3. Associate two units A and B if there is an action in A
and an action in B that belong to the same design.

Fig. 5 shows the coordination units for our example’s ac-
tions: control is synchronised with move (Fig. 3), undock
is associated to the unit with move because both belong to
located cart, reset is a singleton because it is the only un-
synchronised action in counter, etc.

reset

control

move

dock
incOdd

dock

incEven

undock

Figure 5. Coordination view for actions

The rationale for this transformation is to answer ques-
tion 1 of Section 3, i.e., to know which actions must and
which cannot execute simultaneously. The operational se-
mantics of COMMUNITY states that two actions in different
designs may execute in parallel, i.e. in some execution steps
only one of them may execute. Actions are only forced to
execute in parallel if they are synchronised. Synchronisa-
tions are transitive (i.e., if a is synchronised with b and b
with c, then all three must co-occur in the trace) and hence
the necessity for maximal groups of actions in step 2 of the
transformation. Moreover, only one action from each de-
sign can be executed at each step. The coordination view
puts all this information together. For each execution step,
first select a group of units without an association between
any pair of them. Then, for each selected synchronised
action unit take all its elements, and for each selected un-
synchronised action unit just take one of its elements: the
actions selected this way will be executed together if their
guards allow it.

For our example, four of the units in Fig. 5 form a com-
plete graph and hence only one of them can execute at a
time. Moreover, reset is “incompatible” with two other
units; so it may only be executed together with control and
move or with undock.

The diagram of Fig. 4 includes these two kinds of action
units and the association between pairs of units, which is
subject to an OCL invariant that says: “The two units share
an action of the same design”.

To sum up, the action units and their associations pro-
vide an answer to question 1 of Section 3, while the channel

units answer question 2. This is quite useful because while
building the architecture, several errors can be made when
modelling the interactions: interactions are created between
two components at a time and therefore undesirable indirect
sharings and synchronisations can be inadvertently created.
For example, indirect sharing of two output channels can be
easily detected in this view with an OCL consistency check
that prevents more than one output channel in each unit.

Having in mind that one of the goals is to improve the de-
sign of the system by being able to answer questions 3 and
4 of Section 3, the coordination view will now be enriched
with computation information (from the omitted computa-
tion view), looking into the guards and assignments. In par-
ticular, the transformation has one more step:

4. Create an association between an action unit and a
channel unit if an action of the former reads or writes
a channel of the latter.

Since the channel units only include shared channels, this
new association allows one to see which actions depend
indirectly on which channels, the direct dependencies be-
ing visible in the omitted computation view. Question 3 is
therefore answered by two different views, each only pro-
viding the part of the answer that is more relevant to the as-
pect under consideration. Moreover, question 4 is answered
by looking for channel units that are associated to two dif-
ferent action units.

5. Distribution View

In its basic form, this view just shows which code and
data are co-located. Enriching it with computation and co-
ordination information makes it possible to also tell the de-
signer which locations might have to be in touch during the
execution of the system, and which parts of the system are
mobile.

Let us start with the basic view, only using location in-
formation. In this case, each distribution unit contains a
group of location variables that are shared, and all channels
and action bodies at those locations (which are actually the
same). Notice that although not visible in the concrete syn-
tax, the model of any architecture also includes the location
variable λ, and as such there is one distribution unit for all
channels and action bodies located at λ. The view is con-
structed as follows:

1. Create one location unit for each location variable, in-
cluding the one named λ.

2. Put into each unit all channels and action bodies whose
location is given by the corresponding variable.

3. Merge two units if in the architecture a location vari-
able of one unit is shared with some location variable
of the other unit.
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Figure 6. The distribution view metamodel

Again, the repeated application of the last step while it is
possible means that the transitive closure of the location
sharing is computed. The diagram in Fig. 6 and OCL ex-
pressions capture this algorithm. The OCL constraints are
similar to those used in the coordination view and are there-
fore omitted.

For our example, the binding between the location vari-
ables theirs, pos and countLoc will produce one unit in this
view. The distribution units are shown in Fig. 7, with the lo-
cation variables, the channels, and the actions in separated
parts of each unit. Note how dock is distributed over two
locations. The arcs will be explained later.

theirs
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countLoc

where

stay

countOdd

countEven

incOdd

incEven

reset

busy
path

next

move
dock

control dest

dock

undock

pox

Figure 7. The example’s distribution view

For the moment, the distribution view allows to easily
check one consistency constraint of COMMUNITY: output
location variables cannot be shared. It is straightforward to
specify an OCL invariant checking that each location unit
contains at most one output location variable. But more im-
portantly, the view allows the designer to answer question 5
on which entities are always co-located (Section 3). If there
are very few location units, the system is highly centralised,
while too many units means a potential high degree of distri-
bution, because all the values of the location variables might
be distinct at some point during the system execution. This
might confirm what the designer intended or might point to
potential problems, requiring the designer to re-define the

sharing of location variables or the location of the channels
and action bodies.

The next step is to enrich the view with information
about which locations might have to be in touch during ex-
ecution. The operational semantics of COMMUNITY im-
poses the following restrictions:

• A distributed action can only execute if the locations
of its bodies are in touch with each other.

• A guarded command (i.e., action body) can only ex-
ecute if the location of the body is in touch with the
locations of all the channels read and written by the
guarded command.

• Synchronised actions can only execute if all their bod-
ies’ locations are in touch with each other.

For actions to execute synchronously, or for a distributed ac-
tion to execute atomically, the involved action bodies must
be able to communicate with each other to achieve the trans-
action, and they must be able to access all channels they
read and write. Hence the three constraints impose the in-
volved locations to be in touch.

The evaluation of the three conditions requires using
computation information (i.e., looking into the guard ex-
pressions and into the assignments) but also coordination
information (e.g., which actions are synchronised). There-
fore, two location units A and B will be connected by an
“InTouch” association (see Fig. 6) if either of the following
conditions occurs:

4. A body in A belongs to the same action as some body
in B.

5. A body in A reads/writes some channel in B.
6. A body in A and a body in B belong to two actions

that are synchronised.

These conditions can be defined by OCL constraints.
For our example, Fig. 7 shows the “InTouch” associa-

tions as undirected arcs. Note that the dest and theirs loca-
tions might have to be in touch due to the distributed dock
action. Such a view allows the designer to answer question
6 of Section 3, which is important to have a better under-
standing of the potential distributed execution of the system.

Finally, we wish to know which location units are po-
tentially mobile. By looking into the omitted computation
view, one could see which location variables are on the left-
hand side of assignments. We could simply flag the loca-
tion units containing those variables as being mobile. How-
ever, we can provide more information by also taking note
in which action bodies those assignments occur and what is
the location of those bodies. With this information, the de-
signer can easily see which location units move which other
ones. The last construction step for our complete distribu-
tion view is thus:
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7. Create an association “Moves” from location unit A to
location unit B if an action body of A assigns to some
location variable of B.

The diagram in Fig. 6 shows the new association.
In our example there is a “Moves” arrow in Fig. 7 from

the theirs distribution unit to itself, because that position is
changed by control located in the same unit.

The complete distribution view, with the two associa-
tions among units, allows the designer to detect several po-
tential problems. Firstly, if there is any unit just with one
location variable, it means that no action body or channel is
located there, which can be an error or simply denote a yet
incomplete architecture. Fig. 7 shows one of those empty
units (with location variable pox). Secondly, any unit with-
out an incoming “Moves” arrow has only static locations
(i.e., no action ever changes their values). Hence the code
and data in those units never move and stay at the position
the variable was initialised with. This kind of information
is useful to study the mobility (or lack of it) of the system.
For our example, it is clear that a cart destination is at a
fixed position. Thirdly, it is easy to see which location units
control the movement of which ones, which can lead to the
detection of potential problems. A loop arrow indicates that
(part of) a component is controlling its own movement; in
the case of our example it is the step controller, located at
theirs and including action control.

6. Related Work

The need for multiple architectural views has been advo-
cated at least since Perry and Wolf’s seminal paper [23].
However, there is no consensus on which view system
should be adopted, what are the most relevant views and
in what notations they should be specified; the result is a
wide range of proposals (e.g., [14, 13, 12, 11, 6]), some of
them omitting details about the exact notation to use or the
precise definition of views.

Nevertheless, some fundamental types of views emerged
from various proposals, and we used them to test our ap-
proach: our computation view (omitted from this paper) is
like the functional view of [12], the logical view of [14], the
conceptual view of [11], and the module views of [6]; our
coordination view (Section 4) corresponds to the interaction
view of [12], the process view of [14], the execution view
of [11], and the C&C views of [6]; and the distribution view
(Section 5) is similar in spirit to the physical view of [14]
and the allocation views of [6].

Using heterogeneous notations for multiple views has
the advantage of using the most expressive and appro-
priate language for each view. Various approaches (like
[14, 10, 11]) have taken advantage of UML’s diagrammatic
notations and extension capabilities to use it as an ADL

that allows the description of multiple views. However,
not even the UML, one of the largest “family” of languages
ever specified, is capable of encompassing all the views that
might be required, as argued in [10]. Moreover, there will
be always an architectural abstraction mismatch between
the concepts provided by a specialist ADL and those of a
generalist language like the UML, as pointed out in [18]. A
further disadvantage is that multiple languages make it even
harder to handle two basic problems recognised in the SA
[19] and Requirements Engineering [20] communities: to
establish relations between different views and to check for
consistency.

Our approach instead assumes as a starting point that the
architect has chosen an ADL that covers those design con-
cepts that are central to the problem at hand. Our goal is
to help the architect make the best use of such a language,
by extracting multiple view representations from it in or-
der to facilitate the architectural design task. Given that a
“one-unified-language-fits-all-views” approach is infeasible
anyhow, we believe the restricted set of views that can be
derived from a single language is not a major drawback, be-
cause the views will correspond to those concerns that lead
the architect to choose the ADL.

Given that the approach is based on an overall meta-
model that encompasses the ADL’s concepts and aggregates
them into various views that can be associated in any way,
there is no prevailing nor subordinate view, contrary to ap-
proaches like [19, 12, 13]. In the latter, the main view de-
scribes the structure and other views provide additional in-
formation, in different notations. This means that views can
only be related through the main system decomposition into
components. By contrast, we do not constrain the ways the
system is decomposed or views are related. This flexibility
also makes non-symmetric combination of views possible,
in which any view can be taken as the prevailing one, en-
riched with information from other views. As we have il-
lustrated in the preceding sections, this allows for the same
design question to be answered with different foci, accord-
ing to the chosen view or combination thereof.

Our approach also differs from [2], in which each com-
ponent is described in an aspect-oriented way, and there is
a metamodel for the aspects, but there is no notion of archi-
tectural view to put together the information about a single
aspect across all components.

7. Concluding Remarks

Views are helpful in the architectural design process be-
cause they hide some concerns and focus on others, making
it easier for stakeholders to find errors or potential prob-
lems. However, views are often defined in an ad-hoc and
informal fashion, using loosely related heterogeneous nota-
tions, with an incomplete or informal treatment of inconsis-
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tency due to inexistent, weak or implicit relationships be-
tween views.

This paper proposes an approach to define multiple
views that are homogeneous, coherent, relevant, and explic-
itly related, because they stem from the constructs of a lan-
guage suitable for the description of important architectural
concepts. The approach is based on two principles. First,
architectural concepts, their relationships, and their aggre-
gations into various different views should be explicitly de-
fined through a metamodel that enables to relate the var-
ious views explicitly and enforce their mutual consistency
through constraints. Each view can be described in a declar-
ative way through the metamodel, and operationally as a
transformation from the architecture. Second, the decisions
on which views to define and how to define them should be
guided by an explicit enumeration of the design questions
the architect would like the views to answer.

Our approach does not cover all views that might be
needed, only those that can be extracted from the ADL. This
work is therefore not a replacement of other approaches to
architectural views, but an additional technique in the ar-
chitect’s toolbox, when a restricted set of tightly integrated
views is sought.

Given that the views emanate from a single architectural
description, the design questions can also be answered di-
rectly from that description. However, this requires navigat-
ing the description and then aggregating various pieces of
information. Moreover, often the sought answer is not just a
set of architectural entities but also particular relationships,
i.e., the answer is basically a graph. Defining views is thus a
way of factoring out the navigation and aggregation compu-
tations common to various queries, a way of pre-processing
information into a graph that makes it easy to answer vari-
ous design questions at once.

We believe that a metamodel integrating both architec-
ture and views also makes it possible for changes in a con-
crete view to be propagated to other views, because each
view is a model that conforms to part of the overall meta-
model that relates all architectural concepts. Such a view
updating mechanism requires further research.
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