
Introducing Recovery Style
for Modeling and Analyzing System Recovery ∗

Hasan Sözer, Bedir Tekinerdoğan
Department of Computer Science, University of Twente

P.O. Box 217 7500 AE Enschede, The Netherlands
{sozerh, bedir}@cs.utwente.nl

Abstract

An analysis of the existing approaches for representing
architectural views reveals that they focus mainly on func-
tional concerns and are limited when considering quality
concerns. We introduce the recovery style for modeling the
structure of the system related to the recovery concern. The
recovery style is a specialization of the module viewtype in
the Views&Beyond approach. It is used to communicate
and analyze architectural design decisions and to support
detailed design with respect to recovery. We illustrate the
style for modeling the recovery views for the open-source
software, MPlayer.

1. Introduction

A software architecture for a program or computing sys-
tem consists of the structure or structures of that system,
which comprise elements, the externally visible properties
of those elements, and the relationships among them [17].
Like this definition implies, the software architecture of a
system does not consist of a single structure but is repre-
sented using more than one architectural view. An archi-
tectural view is a representation of a set of system elements
and relations associated with them to support a particular
concern [17]. The fundamental reason for modeling differ-
ent views of the architecture is that current software systems
are too complex to represent all the concerns in one model.
Having multiple views helps to separate the concerns and
as such support the modeling, understanding, communica-
tion and analysis of the software architecture for different
stakeholders.

Architectural views conform to viewpoints that repre-
sent the conventions for constructing and using a view [14].

∗This work has been carried out as part of the TRADER project under
the responsibility of the Embedded Systems Institute. Thisproject is par-
tially supported by the Netherlands Ministry of Economic Affairs under
the Bsik program.

In the literature initially some authors have prescribed a
fixed set of views to document the architecture. For ex-
ample, the Rational’s Unified Process [12], which is based
on Kruchten’s 4+1 view approach [11] utilizes the logical
view, development view, process view and physical view.
Another example is the Siemens Four Views model [8] that
uses conceptual view, module view, execution view and
code view to document the architecture. Because of the
different concerns that need to be addressed for different
system, the current trend recognizes that the set of views
should not be fixed but multiple viewpoints might be intro-
duced instead. This is also implicit in the IEEE 1471 stan-
dard [14] for architectural description which takes a multi-
view approach by not committing to any view. IEEE 1471
indicates in an abstract sense that an architecture description
consists of a set of views, each of which conforms to a view-
point [14] realizing the various concerns of the stakehold-
ers. The Views and Beyond (V&B) approach as proposed
by Clements et al. is another multi-view approach [17] that
appears to be more specific with respect to the viewpoints.
To bring order to the proposed views in the literature the
V&B approach holds that a system can be generally viewed
from so-called three different viewtypes: module viewtype,
component & connector viewtype and allocation viewtype.
Each viewtype can be further specialized or constrained in
so-called architectural styles. An architectural style isa
specialization of architectural element types and relation-
ship types, along with any constraints. The notion of styles
makes the V&B approach adaptable since the architect may
in principle define any style needed.

Certainly, existing multi-view approaches are important
for representing the structure and functionality of the sys-
tem and are necessary to document the architecture sys-
tematically. Yet, an analysis of the existing multi-view
approaches reveals that they still appear to be incomplete
when considering quality properties. The IEEE 1471 stan-
dard is not specific with respect to concerns that can be
addressed by views. Thus, quality properties can be seen
as separate concerns. In the V&B approach quality con-

cerns appear to be implicit in the different views but no spe-
cific style has been proposed for this yet. One could argue
that for addressing quality properties software architecture
analysis approaches have been introduced. The difficulty
here is that these approaches usually apply a separate qual-
ity model, such as queuing networks or process algebra, to
analyze the quality properties. Although these models rep-
resent often precise calculations they do not depict the de-
composition of the architecture and an additional translation
from the evaluation of the quality model needs to be per-
formed. To solve the problem preferably an architectural
view is required to model the decomposition of the archi-
tecture based on the required quality concern.

The context of this research is in the TRADER (Televi-
sion Related Architecture and Design to Enhance Reliabil-
ity) project [19], which is carried out together with NXP
Semiconductors and several other academic and industrial
partners. One of the key objectives in the project is to de-
velop techniques for analyzing recovery at the architecture
design level. Hereby modules in a TV can be composed
in various ways and each alternative decomposition might
lead to a different recovery properties. To represent the
functionality of the system we have developed different ar-
chitectural views including module view, component and
connector view and deployment view. None of these views
however directly shows the decomposition of the architec-
ture based on recovery concern. On the other hand using
separate quality models such as fault trees helps to provide
a thorough analysis but is separate from the architectural
decomposition. A practical and easy-to-use approach co-
herent with the existing multi-view approach was required
to understand the system from a recovery point of view.

Based on these industrial experiences we introduce the
recovery style as an explicit style for depicting the archi-
tecture from the recovery viewpoint. The recovery style is
a specialization of the module viewtype in the V&B ap-
proach. Similar to the module viewtype, component view
type and allocation viewtype, which define units of decom-
position of the architecture, the recovery style also provides
a view of the architecture. Unlike conventional analysis
techniques that require different models, recovery views di-
rectly represent the decomposition of the architecture andas
such help to understand the structure of the system related
to the recovery concern. The recovery style considersre-
coverable unitsas first class elements, which represent the
units of isolation, error containment and recovery control.
The style defines basic relations for coordination and appli-
cation of recovery actions. As a further specialization of the
recovery style, the local recovery style is provided, whichis
supported with a framework for introducing local recovery
to a system. The usage of the recovery style is illustrated
by introducing local recovery to the open-source software,
MPlayer [16].

The remainder of this paper is organized as follows. Sec-
tion 2 provides background information on fault tolerance
and recovery. Section 3 illustrates the problem in the con-
text of a case study, which is also used to illustrate the us-
age of the recovery style. In Section 4, we introduce the
recovery and the local recovery styles, related definitions,
notations and properties. In Section 5, we utilize the recov-
ery style for the refactored MPlayer software. In Section 6,
we provide a generic method to realize the recovery style
for a system. In Section 7, related previous studies are sum-
marized. Finally, in section 8 we discuss some future work
issues and provide the conclusions.

2. Fault Tolerance and Recovery

Reliability is the ability of a system to perform its re-
quired functions under stated conditions for a specified pe-
riod of time [1]. That is the ability of the system to function
without a failure, which is as a deviation of the delivered
service of a system from the a correct service [1]. A cor-
rect service is delivered when the service implements the
required system function. Anerror is defined as the system
state that is liable to lead to a failure and the cause of an
error is called afault [1]. The following figure depicts the
fundamental chain of these concepts that leads to a failure.

Fault Error Failure
activation propagation

Figure 1. The Fundamental Chain of Reliabil-
ity Threats Leading to a Failure

In fact, the chain of threats can include multiple errors.
An error can propagate to other errors and finally lead to
a failure. In order to prevent a failure, this chain must be
broken. This is possible through 1) preventing occurrence
of faults, 2) removing existing faults, or 3) preventing errors
and their propagation [1].

The last approach is called fault tolerance in which it is
accepted that faults exist and they might get activated but
their consequences (i.e. errors) are taken care of, if possi-
ble before they lead to a failure. Error detection is the first
necessary step for fault tolerance. As another essential step,
detected errors must be recovered. If the recovery affects
the whole system, then the system becomes unavailable dur-
ing the recovery time. For example, in case of a deadlock,
restarting the whole system makes it completely unavailable
until the system is again in its normal operational mode.
This problem can be overcome by applying recovery only
to the erroneous parts of the system when possible. To re-
cover from a deadlock, for instance, only the components
that are involved in the deadlock need to be restarted, while

the other parts can remain available. Moreover, applying
recovery to a subset of the system components rather than
the whole system decreases the mean time to recover [6].
Hence, for better availability and faster recovery, it is neces-
sary to reduce the granularity of the parts in the system that
can be recovered and as such realize local recovery. How-
ever, application of local recovery introduces additionalre-
quirements for the system. First of all, cause(s) of errors
must be localized (i.e. diagnosis). In addition, to preventthe
propagation of errors, the system should be separated into
a set of units with clear boundaries and isolation between
them. Isolation is usually supported by either the operating
system (e.g. process isolation [5]) or a middleware (e.g. en-
capsulation of Enterprise Java Bean objects [6]). The con-
nection and communication between the isolated units must
be managed by a third entity. Recovery actions take place,
while the system is operational. Consequently, there is in-
terference between the recovery mechanism and the core
system functions. This requires the coordination of recov-
ery actions. As the case with the communication control,
coordination can be realized in different ways ranging from
completely distributed to completely centralized solutions.

3. Problem Statement

3.1. Case Study: MPlayer

MPlayer [16] is a media player, which supports many
input formats, codecs and output drivers. It embodies ap-
proximately 700K lines of code and it is available under the
GNU General Public License. In our case study, we have
used version v1.0rc1 of this software that is complied on
Linux Platform (Ubuntu version 7.04). Figure 2 presents a
simplified module view [17] of the MPlayer software archi-
tecture with basic implementation units and direct depen-
dencies among them. In the following, we briefly explain
the important modules that are shown in this view.

Streamreads the input media by bytes, or blocks and pro-
vides buffering, seek and skip functions.Demuxerdemul-
tiplexes (separates) the input to audio and video channels,
and reads them from buffered packages.Mplayerconnects
all the other modules, and maintains the synchronization of
audio and video.Libmpcodecsembodies the set of avail-
able codecs.Libvo displays video frames.Libao controls
the playing of audio.Gui provides the graphical user inter-
face of MPlayer.

We have introduced a local recovery mechanism to
MPlayer, which can recover from transient faults. As one
of the requirements of local recovery, the system had to be
splitted into several units that are isolated from each other.
We have utilized operating system processes [5] for isola-
tion. The communication between multiple processes had
to be controlled and recovery actions had to be coordinated

«subsystem»

Mplayer

«subsystem»KEY Module Dependency (uses)

«subsystem»

Gui

«subsystem»

Libvo

«subsystem»

Demuxer

«subsystem»

Stream

«subsystem»

Libmpcodecs

«subsystem»

Libao

Figure 2. A Simplified Module View of the
MPlayer Software Architecture

so that the processes can be restarted independently, while
the other processes are operational. Note that the split-
ting of the system for local recovery is not necessarily, and
in general will not be, aligned one-to-one with the func-
tional decomposition of the system. Multiple modules can
be wrapped and recovered together.

3.2. Problems

Designing a system with recovery or refactoring it to in-
troduce recovery requires the consideration of several de-
sign choices related to; the types of errors that will be re-
covered, architectural elements that embody error detection
and diagnosis mechanisms, the way that the information
regarding error detection and diagnosis is conveyed, error
containment boundaries, mechanisms for the control of the
communication during recovery and the coordination of re-
covery actions, architectural elements that embody these
mechanisms and the way that they interact with the rest of
the system.

These design choices should take part in the architecture
description of the system to be communicated. Effective
communication is one of the fundamental purposes of an
architectural description that comprise several views. How-
ever, viewpoints that capture functional aspects of the sys-
tem are limited for representing recovery mechanisms and
it is inappropriate for understandability to populate these
views with elements and complex relations related to re-
covery.

Architecture description should also enable analysis of
recovery design alternatives. For example, splitting the sys-

tem for local recovery on one hand increases availability of
the system during recovery but on the other hand, it leads
to a performance overhead due to isolation. This leads to
a trade-off analysis. Architecture description of the system
should comprise information not only regarding the func-
tional decomposition but also decomposition for isolation
to support such analysis.

Realizing a recovery mechanism usually requires dedi-
cated architectural elements and relations that have system-
wide impact. Architectural description related to recovery
is required also for providing a roadmap for the implemen-
tation and supporting the detailed design.

In short, we need a architectural view for recovery to 1)
communicate recovery design decisions 2) analyze design
alternatives 3) support the detailed design. For this purpose,
we introduce the recovery and the local recovery styles.

4. Recovery Style

In this section, we present the recovery style, by means
of which we can represent the architectural properties and
concepts related to recovery. We derived these concepts and
common properties from the literature on recovery [1, 13]
and previously introduced systems that employ fault toler-
ance mechanisms [9] and local recovery [6,10]. The recov-
ery style is a specialization of the module viewtype [17].
First, the properties and elements of the style are introduced
with related definitions and a visual notation. Then, we in-
troduce the local recovery style, which is a specializationof
the recovery style.

4.1. Basic Definitions and Properties

The key elements and relations of the recovery style are
listed below. A visual notation based on UML [18] is shown
in Figure 3 that can be used to document a recovery view.

• Elements: recoverable unit (RU), non-recoverable unit
(NRU)

• Relations: applies-recovery-action-to, conveys-
information-to

• Properties of elements: Properties of RU: set of sys-
tem modules together with their functional importance
and reliability, types of errors that can be detected, sup-
ported recovery actions, type of isolation (process, ex-
ception handling, etc.). Properties of NRU: types of
errors that can be detected (i.e. monitoring capabili-
ties).

• Properties of relations: Type of communication (syn-
chronious/asynchronious) and timing constraints if
there are any.

<< RU >>
recoverable unit

e
le
m
e
n
ts

re
la
ti
o
n
s

applies-recovery-

action-to

conveys-information-to

<< NRU >>

non-recoverable unit

Figure 3. Recovery style notation

• Topology: The target of aapplies-recovery-action-to
relation can only be aRU.

The recovery style introduces two types of elements;RU
andNRU. A RU is a unit of recovery in the system, which
wraps a set of modules and isolates them from the rest of
the system. It provides interfaces for conveying information
about detected errors and responding to triggered recovery
actions. A RU has the ability to recover independently from
other RU and NRUs it is connected to. A NRU, on the other
hand, can not be recovered independent from other RU and
NRUs. It can only be recovered together with all other con-
nected elements. This can happen in the case of global re-
covery or a recovery mechanism at a higher level in the case
of a hierarchic decomposition.

conveys-information-torelation is about communication
between elements for guiding and coordinating the recov-
ery actions. Conveyed information can be related to de-
tected errors, diagnosis results or a chosen recovery strat-
egy.applies-recovery-action-torelation is about the control
imposed to a RU and it affects the functioning of the target
RU (suspend, kill, restart, roll-back, etc.)

4.2. Local Recovery Style

In the following, we introduce the local recovery style,
in which the elements and relations of the recovery style are
further specialized. Figure 4 provides a notation for special-
ized elements and relations based on UML.

• Elements: RU, recovery manager, communication
manager

• Relations: restarts, kills, notifies-error-to, provides-
diagnosis-to, sends-queued message-to, provides-
synch. info-to

<< RU >>

RU name

<<NRU>> recovery mgr

<<NRU>> comm mgr

recoverable unit

recovery manager

communication

manager

e
le
m
e
n
ts

re
la
ti
o
n
s

<<restart>>

<<queued>>

<<error [:type]>>

<<diagnosis>>

restarts

notifies-error-to

provides-diagnosis-to

sends-queued

message-to

provides-synch. info-to
<<synch>>

<<kill>>
kills

Figure 4. Local recovery style notation

• Properties of elements: Each RU has anameproperty
in addition to those defined in the recoverability view-
point.

• Properties of relations: notifies-error-torelation has a
typeproperty to indicate the error type if multiple types
of errors can be detected.

• Topology: restartsandkills relations can be only from
a recovery managerto a RU.sends-queued message-to
can be between a RU and a communication manager.

Communication managerconnects RUs together, routes
messages and informs connected elements about the avail-
ability of another connected element.Recovery manager
applies recovery actions on RUs.

Figure 5 depicts a simple instance of the local recovery
style with one communication manager, one recovery man-
ager and two RUs, A and B. Errors are detected by the com-
munication manager and notified to the recovery manager.
Recovery manager restarts A and/or B. B provides synchro-

nization information to A after A is restarted so that it can
re-synchronize with the system. The messages that are sent
from the communication manager to A are stored in a queue
by the communication manager while A is unavailable (i.e.
being restarted) and sent (retried) after A becomes avail-
able.

<< RU >>

A

<<NRU>> recovery mgr

<<NRU>> comm mgr

<< RU >>

B

<<restart>>

<<restart>>

<<synch>>

<<queued>>

<<error>>

Figure 5. A simple recovery view based on
the local recovery style (KEY: Figure 4)

5. Utilization of the Recovery Style

Our aim is to utilize the recovery style for MPlayer (Sec-
tion 3.1) to choose and realize a recovery design among sev-
eral design alternatives. One such alternative is to introduce
a local recovery mechanism comprising 3 RUs; 1)RU AU-
DIO, which provides the functionality ofLibao2) RU GUI,
which encapsulates theGui functionality and 3)RU MP-
COREwhich comprises the rest of the system. Figure 6
depicts the boundaries of these RUs, which are overlayed
on the module view of the MPlayer software architecture.
In Figure 7(b) the recovery design corresponding to this RU
selection is shown. Here, we can also see two new archi-
tectural elements that are not recoverable; acommunication
managerthat mediates and controls the communication be-
tween the RUs and arecovery managerthat applies the re-
covery actions on RUs.

Note that Figure 7(b) shows just one possible design for
the recovery mechanism to be introduced to the MPlayer.
We could consider many other design alternatives. One
alternative would be to have a global recovery (See Fig-
ure 7(a)). We could also have more than 3 recoverable
units (See Figure 7(c)). On the other hand, there could be
more than one element that controls the recovery actions
and communication (e.g. distributed or hierarchical con-
trol). These elements could be recoverable units as well.

«subsystem»

Mplayer

«subsystem»KEY Module

Dependency (uses)

«subsystem»

Gui

«subsystem»

Libvo

«subsystem»

Demuxer

«subsystem»

Stream

«subsystem»

Libmpcodecs

«subsystem»

Libao

RU

MPCORE

RU

AUDIO

RU

GUI

Boundaries of RU

RU Recoverable Unit

Figure 6. The Module View of the MPlayer
Software Architecture with the Boundaries of
the Recoverable Units

5.1. Analysis based on the Recovery Style

In principle, each style supports a set of analysis. In this
section, we present analysis alternatives that can be per-
formed based on the recovery style. As mentioned in the
previous section, there are several design choices for a re-
covery mechanism. The impact of these choices can be ana-
lyzed to evaluate design alternatives and do the selection ac-
cordingly. As one of the most important design decisions,
if not the most important one, it has been decided to split
MPlayer into three RUs. There are several other alterna-
tives for the selection of RUs. At one extreme, we could
have only 1 RU, which means we do not do any splitting
and apply global recovery (See Figure 7(a)). At the other
extreme, we could decide to split each and every module
of the system and encapsulate them in separate RUs (See
Figure 7(c)).

These alternatives have both pros and cons. The more
we split the MPlayer and decrease the granularity of recov-
ery, the more we gain with respect to the availability of the
system. The probability that all RUs fail at the same time
decreases by increasing the number of RUs. Thus, some
functionality will always be available to the user during re-
covery of the system. On the other hand, all function calls
that pass the boundaries of RUs are captured and directed
through Inter-Process Communication (IPC) calls. This re-
sults in a performance overhead depending on the amount
of interactions between the chosen RU boundaries. As a
result, availability during recovery time and performance
during operational time turns out to be conflicting factors

<< RU >>

MPLAYER

<<NRU>> recovery mgr

(a) global recovery

<< RU >>

AUDIO

<< RU >>

MPCORE

<< RU >>

GUI

<<NRU>> recovery mgr<<NRU>> comm mgr

(b) local recovery with 3 RUs

<< RU >>

AUDIO

<< RU >>

MPCORE

<< RU >>

GUI

<<NRU>> recovery mgr<<NRU>> comm mgr

<< RU >>

DEMUX

<< RU >>

CODECS<< RU >>

VIDEO

(c) local recovery with 7 RUs

Figure 7. Architectural alternatives for the re-
covery design of MPlayer software (KEY: Fig-
ure 3)

Table 1. Comparison of recovery design alter-
natives

recovery global recovery recovery
design recovery with 3 RUs with 7 RUs

PO 0 0,8 4,8
PFS 0,63 0,2 0

leading to a trade-off.
Performance overhead: To measure this overhead we

run the original MPlayer software with a profiler (GNU
gprof) to derive the function control flow together with in-
formation regarding the frequency of function calls. We
have developed an analysis tool,Module Dependency
Graph (MDG) Analyzer, which parses the output ofgprof
andnm(a GNU tool that lists the symbols - including func-
tion names - defined in object files). Based on the parsed
data, MDG Analyzer creates a MDG, which comprises a
module control flow graph (each module is an object file).
This information is stored in a database so that interactions
between a set of modules with the rest of the system can be
queried. We queried this information for the modules that
are part of the chosen RUs. We calculate the performance
overhead with the following metric.

PO =

∑

r∈RU

∑

f∈Fr

∑

h∈FS∧

h/∈Fr

calls(h → f) × tIPC

∑

f∈FS

∑

h∈FS

calls(h → f) × time(f)
× 100 (1)

In Equation 1,Fr denotes the set of functions provided
in RU r andFS denotes the set of functions in the whole
system. Thus,

⋃
r∈RU Fr = FS . In the denominator of

Equation 1 we sum up for all function pairs in the system,
the number of times a function is called by another function
multiplied by the average time (inms) spent in that func-
tion. In the nominator we sum up for all RUs and for all
function calls to a RU from outside the boundaries of that
RU, the number of calls to a function multiplied by the inter-
process communication overhead (tIPC). We multiply the
result with100 to obtain the percentage. Based on our mea-
surements we fixedtIPC to a worst case value (100ms).
PO for three alternatives can be seen at the first row of Ta-
ble 1. Here, we see thatPO for global recovery is0% since
we do not do any splitting. Local recovery with 3 RUs and
7 RUs lead toPO of 0, 8% and4, 8%, respectively.

Availability: As the other trade-off factor, availability is
traditionally measured as the percentage of time that the
system is available. System up-time is considered as a bi-
nary property (The system is either up or down). Degraded
system states and partial availability introduced by localre-

covery is not taken into account by this metric. Our aim
is to analyze the degree of availability of the system dur-
ing its recovery. We want this degree at least to be greater
than 0 meaning that some parts of the system will always be
available even if the system is being recovered. That means
that not all RUs of the system should fail at the same time.
This can be calculated as the probability of system failure
as follows.

PFRU (r) =

nr∑

i=0

(−1)nr
× (nr − i) × PF i

m (2)

PFS =
∏

r∈RU

PFRU (r) (3)

In Equation 2 above the assumption is that RUs encapsu-
late a set of type of errors to provide isolation and therefore
their failures are independent events. For that reason, the
probability of system failure,PFS , is equal to the multi-
plication of probabilities of failure for each RU (PFRU).
Failure of a RU, on the other hand, is a result of joint prob-
ability of failures of modules (PFm) comprised by the RU.
nr denotes the number of modules comprised by RUr. In
this paper, we assume equal failure probabilities for mod-
ules and fixPFm to (0.1). Based on these assumptions,
approximatePFS values for three alternatives can be seen
at the second row of Table 1. Here, we see that the prob-
ability that the whole system will be unavailable,PFS is
0, 63 for global recovery. It decreases to0, 2 with 3 RUs
and approximately0 for local recovery with 7 RUs.

5.2. Realization of the Local Recovery

We have decided to realize the recovery design presented
in Figure 7(b) for MPlayer. Figure 8 depicts a more detailed
design based on the local recovery style notation (See Fig-
ure 4). Here, we can see the communication manager, the
recovery manager and the three RUs, MPCORE, GUI and
AUDIO. MPCORE provides information to GUI for syn-
chronization after GUI is restarted. Each RU can detect
deadlock errors. The recovery manager can detect fatal er-
rors. All error notifications are send to the communication
manager, which comprises the diagnosis facility. Diagno-
sis information is conveyed to the recovery manager, which
kills a set of RUs and/or restarts a dead RU. Messages that
are sent from RUs to the communication manager are stored
(i.e. queued) by RUs in case the destination RU is not avail-
able and they are forwarded when the RU becomes opera-
tional again.

We have implemented a reusablefault tolerance library
(Libft), which comprises IPC communication utilities, seri-
alization/deserialization primitives, error detection and di-
agnosis mechanisms, a RU wrapper template, a recovery

<< RU >>

AUDIO

<< RU >>

MPCORE

<< RU >>

GUI

<<NRU>> recovery mgr<<NRU>> comm mgr

<<restart>>

<<restart>>

<<restart>>

<<error :deadlock>>

<<error :deadlock>> <<error :deadlock>>

<<error :fatal>>

<<diagnosis>>

<<queued>>

<<queued>>

<<queued>>

<<synch>>

<<kill>>

<<kill>>

<<kill>>

Figure 8. Realized MPlayer Software Archi-
tecture with 3 RUs (KEY: Figure 4)

manager and a communication manager. The library is de-
veloped in C language for Linux platform and it is used to
realize the recovery view presented in Figure 8.Libft cur-
rently supports the detection of two error types: 1) Fatal er-
ror: The recovery manager detects if a process is dead1 2)
Deadlock: A RU wrapper detects if an expected response
to a message is not received within a period of time (The
timeout period can be configured). The detected errors are
reported to the communication manager, which employs the
diagnosis facility.

Each RU is wrapped with a template as shown in Fig-
ure 9 so that it runs on a separate process at run-time. A set
of state variables can be declared and they can be preserved
after recovery. If needed, cleanup specific to the RU (i.e.
allocated resources) can be specified.

Each RU provides an interface, through which it accepts
serialized function calls together with its arguments. On
reception of these calls, the corresponding functions are
called and then the results are returned (See Figure 9). In
all other RUs where this function is declared, function calls
are redirected through IPC to the corresponding interface
with C MACRO definitions (See Figure 10).

In Figure 10 a code section is shown from one
of the modules of RU MPCORE, where all calls to
the function guiInit are redirected to the function
mpcore_gui_guiInit, which activates the corresponding
interface (INTERFACE_GUI) instead of performing
the function call.

1The recovery manager is the parent process of all RUs and receives
and handles a signal when a child process is dead.

#include "util.h"

#include "recunit.h"

#include "rugui.h"

...

#define STATE_VARS ... &guiIntfStruct

...

void cleanUp()

{

 /* no component specific cleanup */

}

void __ruGui(struct recunit info)

{

 INIT_RU(SOCK_PATH_RECMGR, SOCK_PATH_CONN)

 ...

 PRESERVE_STATE

 ...

 processMsgs();

}

void catchInterfaces()

{

 BEGIN

 CATCH(INTERFACE_GUI, apOnMsgRcvd_gui)

 END

}

void OnMsgRcvd_gui_guiInit()

{

 guiInit();

 RETURN(INTERFACE_GUI, msg_gui_guiInit)

}

...

Figure 9. RU Wrapper code for RU AUDIO

6. A Method for the Realization of the Local
Recovery Style

In the previous section, we have showed the utilization
of the local recovery style to document, analyze and realize
a local recovery design. To refactor an existing system to
make it support local recovery involves several steps. In this
section, we introduce a generic method, which is supported
by the analysis tool (MDG Analyzer) and the reusable li-
brary (Libft) introduced before. Figure 11 shows the funda-
mental steps of the method.

The first step isAnalysiswhere the basic design choices
are made. The information required as an input to this phase

#define guiInit() mpcore_gui_guiInit()

...

void mpcore_gui_guiInit()

{

 CALL(INTERFACE_GUI, msg_gui_guiInit)

}

...

Figure 10. Function indirection through RU
interfaces

Analysis

Refactoring

Integration

modules, inter-dependencies, reliability

and functional importance of modules

recoverable units, error types,

recovery strategies

architecture with isolated units,

communication control, recovery control

architecture with local recovery

supported by

the MDG Analyzer

supported by

the LibFT

Figure 11. The basic steps of the method for
realizing the local recovery style

includes; modules of the system, their interdependencies,
relative reliability of the modules, an error model and func-
tional importance of the modules. Modules that are impor-
tant in terms of the functionality they provide should be iso-
lated from the rest of the system. On the other hand, mod-
ules that are not reliable should be isolated as well. For
instance, 3rd party software can be isolated to prevent its
undesired effects on the core system functions. Types of
errors that are considered for recovery are also important
and guide the decomposition for recovery. Performance
overhead of the decomposition should also be analyzed, for
which tools can be utilized like the MDG Analyzer as intro-
duced in the previous section.

At the end of the Analysis step, boundaries of recover-
able units, error types and related recovery strategies should
be known, which are provided as an input for theRefac-
toring step. In this step, the architecture is decomposed
according to the boundaries chosen for recoverable units.
Communication control and recovery coordination mecha-
nisms are included based on the error types and recovery
strategies to be applied. At this step. related architectural
elements and wrappers can be re-used by configuring them
to the application-specific needs, error types and recovery
actions. For this purpose, a library likeLibft can be utilized
as introduced in the previous section.

The final step isIntegration, where RUs, communication
manager(s) and recovery manager(s) are integrated. This re-
quires the consideration of basic connections, the synchro-
nization between RUs and combination of error detection
and diagnosis mechanisms with the recovery mechanism.
As a result, the system has the local recovery abilities for
chosen error types and recoverable unit boundaries.

7. Related Work

Architectural tactics [2] aim at identifying architectural
decisions related to a quality attribute requirement and com-
posing these into an architecture design. The recovery style
is used for representing and analyzing architectural tactics
for recovery. It provides a view of the system, by means of
which the recovery design of a system can be captured.

Perspectives [20] guide an architect to modify a set of
existing views to document and analyze quality properties.
Our work addresses the same problem for recovery by in-
troducing the recovery style, which is instantiated as a view.
One of the motivations for using perspectives instead of cre-
ating a quality-based view is to avoid the duplicated infor-
mation. This was less an issue in our project context, where
we needed an explicit view for recovery to depict the re-
lated decomposition, dedicated architectural elements with
complex interactions among them (e.g. Figure 8).

Idealized fault tolerant element [3] makes exception han-
dling capabilities explicit at the architectural level. This ap-
proach is a way to reason about and analyze recovery prop-
erties of a system based on its architecture design.

Other than the solution proposed in this paper, there are
several works that apply local recovery in different contexts.
They can be represented with the local recovery style as
well. For example, in [10] device drivers are executed on
separate processes at user space and microreboot [6] is ap-
plied to increase the failure resilience of operating systems.
They provide a view of the architecture of the operating sys-
tem, where the architectural elements related to failure re-
silience and corresponding relations are shown. According
to this viewProcess Manager, which restarts the processes,
is a non-recoverable unit that coordinates the recovery ac-
tions. Reincarnation Servermonitors the system to facili-
tate error detection and diagnosis and it guides the recovery
procedure.Data Store, which is a name server for intercon-
nected components, mediates and controls communication.
The view also utilizes relations for recovery actions and er-
ror notification.

A generic run time adaptation framework is presented
in [7] together with its specialization and realization for
performance adaptation. According to the concepts in this
framework, ourmonitoring mechanismsare error detectors.
Diagnosis facilities can be considered asgauges, which in-
terpret monitored low-level events, and recovery actions can
be considered asarchitectural repairs. As a difference from
the approach presented in [7], we propose a style specific
for fault tolerance and reliability.

Several software architecture analysis approaches have
been introduced for addressing quality properties. They
usually perform either static analysis of formal architectural
models [15] or a set of scenario-based architecture analysis
methods as described in [4] are applied. The goal of these

approaches is to assess whether or not a given architecture
design satisfies desired quality requirements. The main aim
of the recovery style that we have introduced, on the other
hand, is to communicate and support the design of recovery
to enhance reliability. Analysis is a complementary work
to make trade-off decisions, tune and select recovery design
alternatives.

8. Conclusion and Future Work

We have observed that designing a system with recovery
imposes requirements at the architectural level and it results
in several new elements, complex interactions and even a
particular decomposition for error containment. Existing
viewpoints mostly capture functional aspects of a system
and they are limited for explicitly representing elements,in-
teractions and design choices related to recovery.

In this paper, we introduced the recovery style to docu-
ment and analyze recovery properties of a software archi-
tecture. The recovery style is a specialization of the mod-
ule viewtype. We also introduced a local recovery style
and illustrated its application on the open source software,
MPlayer. Further, a generic method is presented for in-
troducing local recovery to an existing system. Recovery
views of MPlayer based on the recovery style have been
used within our project to communicate the design of the
Libft and its application to MPlayer. These views have
formed the basis for analysis and support for the detailed
design of the recovery mechanisms. Using the views and
analysis we could derive the design that is most feasible
with respect to recovery.

As a future work, we will enhance our analysis met-
rics and develop additional analysis tools to analyze several
properties related to recovery based on a recovery view.

Acknowledgments

We acknowledge the feedback from the discussions with
our TRADER project partners from NXP Research, NXP
Semiconductors, Philips TASS, Philips Consumer Electron-
ics, Design Technology Institute, Embedded Systems In-
stitute, IMEC, Leiden University and Delft University of
Technology.

References

[1] A. Avizienis et al. Basic concepts and taxonomy of depend-
able and secure computing.IEEE Trans. Dependable Secur.
Comput., 1(1):11–33, 2004.

[2] F. Bachmann, L. Bass, and M. Klein. Architectural tactics:
A step toward methodical architectural design. Technical
Report CMU/SEI-2003-TR-004, Pittsburgh, PA, 2003.

[3] R. de Lemos, P. Guerra, and C. Rubira. A fault-tolerant
architectural approach for dependable systems.IEEE Soft-
ware, 23(2):80–87, Mar/Apr 2004.

[4] L. Dobrica and E. Niemela. A survey on software ar-
chitecture analysis methods.IEEE Trans. Software Eng.,
28(7):638–654, 2002.

[5] G. C. Hunt et al. Sealing OS processes to improve depend-
ability and safety.SIGOPS Oper. Syst. Rev., 41(3):341–354,
2007.

[6] G. Candea et al. Microreboot: A technique for cheap recov-
ery. InOSDI, San Francisco, CA, 2004.

[7] D. Garlan, S.-W. Cheng, and B. Schmerl. Increasing sys-
tem dependability through architecture-based self-repair. In
A. R. R. de Lemos, C. Gacek, editor,Architecting Depend-
able Systems. Springer-Verlag, 2003.

[8] C. Hofmeister, R. Nord, and D. Soni.Applied Software Ar-
chitecture. Addison-Wesley, NJ, USA.

[9] Y. Huang and C. Kintala. Software fault tolerance in the
application layer. In M. R. Lyu, editor,Software Fault Toler-
ance, chapter 10, pages 231–248. John Wiley & Sons, 1995.

[10] J.N. Herder et al. Failure resilience for device drivers. In
DSN’07, pages 41–50, Washington, DC, USA, 2007.

[11] P. Kruchten. The 4+1 view model of architecture.IEEE
Softw., 12(6):42–50, 1995.

[12] P. Kruchten.The Rational Unified Process: An Introduction,
Second Edition. Addison-Wesley, Boston, MA, USA, 2000.

[13] M. Elnozahy et al. A survey of rollback-recovery protocols
in message passing systems. Technical Report CMU-CS-96-
181, 1996.

[14] M. W. Maier, D. Emery, and R. Hilliard. Software archi-
tecture: Introducing IEEE Standard 1471.IEEE Computer,
34(4):107–109, 2001.

[15] N. Medvidovic and R. N. Taylor. A classification and com-
parison framework for software architecture description lan-
guages.IEEE Trans. Software Eng., 26(1):70–93, 2000.

[16] MPlayer official website, 2007. http://www.mplayerhq.hu/.
[17] P. Clements et al. Documenting Software Architectures:

Views and Beyond. Addison-Wesley, September 2002.
[18] J. Rumbaugh, I. Jacobson, and G. Booch, editors.The Uni-

fied Modeling Language reference manual. Addison-Wesley
Longman Ltd., Essex, UK, 1999.

[19] Trader project, ESI, 2007. http://www.esi.nl.
[20] E. Woods and N. Rozanski. Using architectural perspectives.

In WICSA ’05, pages 25–35, Los Alamitos, CA, USA, 2005.

