
A Case Study of the Architecture Business Cycle

for an In-Vehicle Software Architecture

Ulrik Eklund

Electric & Electronic Systems Engineering

Volvo Car Corporation

Göteborg, Sweden

E-mail: ulrik.eklund@ituniv.se

Carl Magnus Olsson

Software Engineering & Management

IT University of Göteborg

Göteborg, Sweden

E-mail: carl.olsson@ituniv.se

Abstract

This paper presents the theoretical and practical

benefits from a case study using a the Architecture

Business Cycle to understand the management of

software architecture at an automotive manufacturer.

The study was done to prepare for architectural

changes driven by new technology and in the

automotive business environment.

Our results show that the architecture business cycle

worked well in defining the theoretical context for the

study after some modifications; the architecture had to

be precisely defined in the interview situation to gain

more useful data rather than broad generalisations.

Further contributions of the study were a deeper

understanding of role of the architecture and it’s

position among other artefacts in the organisation,

and an increased focus on architectural issues in

management meetings. The study also indirectly

affected a subsequent re-organisation.

1. Introduction

As all other car manufacturers, Volvo Car

Corporation (VCC) is facing tough times and there

is a strong demand to develop in-vehicle software

with shorter lead times and improved quality. Several

authors have identified that one key element to

accomplish this, as well as handle the increasing

complexity that follows the ever-increasing feature

content, lays in the establishment of a software

architecture [1]–[4]. For example, Broy states “The

enormous complexity of software in cars asks for an

appropriate structuring by architectures in layers and

levels of abstraction” [3]. But not just any architecture

will meet the challenges described, the architecture in

question must address the relevant business forces and

the architecture must actually be used as a guide for

the software development in the organisation.

The first step towards improvement in working with

architecture in an organisation is to capture the present

situation, i.e. to identify the actual forces shaping the

architecture, how well the architecture is used, and

if the architecture actually helps in addressing the

present challenges. In this particular case we wanted

to capture how the Electronic and Electric Systems

Engineering (EESE) unit at Volvo Cars viewed the

present software architecture, originating from 1998,

and how the architecture affected the work of the

developers within the unit. Of particular interest to the

architect running the study were the business forces

and feedbacks involved in eventual implicit decisions

concerning the architecture and how homogeneous

the view on software architecture was among people

working at the EESE unit.

In order to get that understanding, we performed

the case study presented in this article. We choose

to base the case study on the Architecture Business

Cycle, originally presented by Bass et al [5], with the

goal this would help identify potential areas for future

study and improvement when developing software. As

a side benefit we also draw some conclusions about the

applicability of using the architecture business cycle to

understand the role of 3 partial scenarios of a software

architecture in the automotive industry in practice.

The contributions from this study are a procedure to

capture an instance of the general architecture business

cycle [5]–[7], with some modifications to the cycle

to keep a manageable scope of our study, and the

conclusion that the architecture business cycle works

well as a theoretical framework for practical studies.

We find the main contribution to be a rich empirical

91978-1-4244-4985-9/09/$25.00 c©2009 IEEE

insight in the role of software architecture in the

automotive industry through the theoretical lens of the

architecture business cycle.

Finally, the study contributes with a deeper

understanding for the studied organisation of the role

of the architecture and it’s position among other

artefacts, and an increased focus on architectural issues

in management meetings.

2. Background

2.1. Software in Automotive Systems

A modern high-end car is an embedded software

system consisting of 30-70 different Electronic Control

Units (ECUs), each with a microprocessor1 executing

in the order of 1 MByte compiled code. All software in

the vehicle is deployed to these ECUs and they control

the behaviour of virtually all electrical functions, from

power windows to valve timing of the engine.

The in-vehicle software executing on the ECUs

share a number of characteristics common to the

automotive domain (see e.g. [2] and [3] for further

elaboration):

• A large number of variants and configurations

(often several brands sharing common platforms)

• Highly distributed real-time system

• Distributed development at vehicle manufacturers

and suppliers

• Low product cost margins

• Stringent dependability requirements

This combination of characteristics together with a

steady growth of features realised by electronics and

software, makes the electrical system in a vehicle

a highly complex software system, even though the

amount of compiled code is smaller than in many other

business domains.

2.2. The Architecture Business Cycle

According to Bass et al. the model of the

architecture business cycle (ABC) is based on the

assumption that “software architecture is the result

of technical, business and social influences”. The

resulting architecture “in turn affects the technical,

business and social environments” [5]. The key

elements of the cycle are the forces influencing

the architecture, the requirements that result from

these forces, the architect and his experience, the

architecture and the system (or systems in a product

1. A few safety-critical ECUs have two microprocessors for
redundancy or internal monitoring.

���������

�������	
���
��
�

���������

�����������������

����	�����������	�

������

���������	�

��������������������

��������	�

�����������

��	�����	�������

��������	�������� 	
����

 �����������

�����

!��	���� ����"���

#�$���������

���
�%���

������������

����������

����������������������

���������

#�$���������

&��������	�

#�$���������

	
����

	
����

Figure 1. The architecture business cycle as

defined by Kazman et al. [7].

line architecture). The architecture business cycle also

shows how these key elements influence each other,

seen in Figure 1. In a later report the originators

clarified the purpose; “. . . the architecture business

cycle was envisioned as a means to depict the

influences on a software architect and to show how

architectures can eventually influence the very things

that originally shaped them” [6].

The influences of the original cycle have been

updated by the original authors in [6] and are

subsequently called forces in [7]. This study is based

on the latest of these updated architecture business

cycles, since the seven categories of forces, seen in

Figure 1, shaping the architecture was easier to relate

to the interview responses.

The main idea of the cycle, that the architecture

provides feedback in turn affecting one or more of

the original influences or forces, have remained the

same through all evolutions of the the architecture

business cycle. The cycle is often used as a theoretical

framework, e.g. in textbooks [5], [8], but it is hard to

find empirical studies involving the actual stakeholders

and not only as an observation of an architecture

business cycle from a distance.

2.3. Automotive Software Development at

Volvo Car Corporation

The Electronic and Electric Systems Engineering

(EESE) unit is responsible for defining the software

requirements for the in-vehicle software for all Volvo

cars. The EESE unit is one of five units within Product

Development at VCC. In most cases the coding of

92 2009 IEEE/IFIP WICSA/ECSA

the software is outsourced and written by suppliers,

a practice very common in the automotive industry,

but some parts of the code is also written in-house or

auto-coded from models. The software development

process at the EESE unit includes everything from

collecting or defining vehicle level use cases down to

allocating specific requirements to software deployed

to certain Electronic Control Units (ECUs). The ECU

software requirements details for example interfaces,

state machines and/or control algorithms.

The EESE unit is also responsible for defining the

architecture of the electrical system, both hardware and

software. This includes enabling the quality attributes

in the architecture necessary to achieve the business

goals of the product development organisation.

2.4. Studied Subset of the Software

Architecture

The architecture studied dates back to the first

Volvo S80, launched in 1998. Obviously the software

in present vehicles is not identical to that car, but

many of the fundamental architectural strategies and

views are still the same as when they were defined

in 1995-98. We limited the scope of our study to a

subset of the entire software architecture, described as

three scenarios resulting from architecture decisions

affecting virtually all in-vehicle software developed

at the EESE unit, regardless if the code was written

in-house or by suppliers. These scenarios are mostly

unchanged in the ten years between when the first

architectural decisions were made and when the study

was conducted, even if updates have been necessitated

by added functional content, legal requirements, etc.

In our study the selection of what scenarios to

include was made according to four basic criteria:

• The scenario should be well-known by all

developers and not need significant explanations

in order to be studied.

• The scenario should not be excessively

complicated to grasp.

• The scenario should be non-trivial, i.e. the

captured cycles should be representative for the

theory behind the architecture business cycle.

• The scenario should affect the development and

design of software at the EESE unit (some

architectural decisions mostly affects hardware,

such as physical routing of the cable harness) .

The selection of scenarios was then made by an

architect at Volvo Cars based on his “inside” perception

of what subset of the architecture would be interesting

to understand more in-depth. Of particular interest to

the architect were scenarios resulting from eventual

implicit decisions concerning the architecture. A

second goal for the architect was to suggest a subset

that were the result of architecture decisions that are

likely to be affected by the future introduction of

the AUTOSAR standardised software architecture [9].

Based on this the study focused on three architectural

scenarios:

S1) Network topology of the in-vehicle multiplexed

communication networks.

S2) Handling of software variants in production.

S3) Split of development responsibility among teams

at the EESE unit.

2.4.1. Network Topology. The ECUs in a Volvo

vehicle, and the software that runs on them, exchange

information via a number of multiplexed network buses

to enable functions that would not have been possible

otherwise or overly costly if not being distributed.

Almost all ECUs have a number of sensors and

actuators connected to them depending on purpose and

location, and these can be shared among distributed

functions. The communication buses that exchange

information between these ECUs are typically 2-4

CAN buses, 1 optical MOST bus and a number of

LIN sub-buses.

Controller Area network (CAN), Local Interconnect

Network (LIN) and Media Oriented Systems Transport

(MOST) are all de-facto standards in tthe automotive

industry, each having a different balance between

cost versus bandwidth and dependability. CAN [10]

and LIN [11] are twisted-pair and single copper

wires respectively, while MOST [12] is an optical

fibre for interconnecting multimedia components. All

Volvo CAN and MOST connected ECUs are re-

programmable, i.e. has flash memory and not ROM,

which allows programming both in the manufacturing

plant as well as at dealers and workshops after delivery

to the end-user.

A multiplexed network topology was a major change

for Volvo Cars when the decisions were made leading

to the topology seen in Figure 2. At that time, 1998,

only a few high-end cars had distributed system based

on multiplex networks and the most common solution

among vehicle manufacturers was to have point-to-

point communication on dedicated wires between

ECUs that needed to exchange information.

The layout of which ECUs are connected to which

bus and what ECUs are acting as communication

gateways between the buses is the network topology

of a vehicle, of which the Volvo XC90 shown in

Figure 2 is a representative example. Compared to

other similar competitor vehicles designed at the same

2009 IEEE/IFIP WICSA/ECSA 93

Figure 2. The network topology of a Volvo XC90.

The ECUs connected to CAN and MOST and

the main multiplexed networks are seen in their

approximate physical location.

time the number CAN buses are usually lower in a

Volvo vehicle, integrating all powertrain and chassis

ECUs on one CAN bus and all comfort and body

functions on another.

2.4.2. Software Variant Handling. The architecture

prescribes two main strategies on how to support

vehicles built to order with all the thousands of

variants this means. The first solution is to handle

software articles the same way as nuts and bolts in

manufacturing, i.e. with separate article numbers for

ECU software and hardware in the manufacturing

system. Before this was introduced in 1998 all ECUs

with both hardware and software were considered a

single article, and the software were mostly stored in

ROM, i.e. there was no possibility to update or change

the software without changing the hardware.

The second solution for handling variants of the

software on ECU level is using adaptation during start-

up [13], i.e. when the ECU is powered it receives

configuration parameters from a centralised stored

parameter file over the vehicle networks. In some cases

an ECU can in addition to the central parameters also

have a local configuration file, which in this case is also

having a separate article number in manufacturing.

2.4.3. Development Responsibility. The development

responsibility at the EESE unit is typically assigned

to teams according to end user functions, or grouping

of functions. A example of development responsibility

would be for locking functions, including central

locking, double lock and child-blocked door. The

teams are part of the line organisation at the EESE

unit, i.e. the development responsibility does not

vary a lot between different vehicle projects. These

end user functions can span over several ECUs,

and the development responsibility for the physical

components (e.g. ECUs, sensors and actuators) are

Table 1. Interviewees at Volvo Car Corporation.

Role Years at VCC

1 Project manager 5
2 Function designer 2 Consultant
3 System designer 3 Consultant
4 System designer 6.5 Consultant
5 Programmer 10
6 Tester 5 Consultant
7 Tester 2
8 Domain expert 18
9 Function designer 1 Consultant

10 Domain expert 7
11 Component Designer 25
12 Line manager 24
13 Quality Assurance Staff 15
14 Project manager 6
15 Architect 1.5 Consultant
16 Tester 10
17 Architect 7
18 Component designer 2
19 Line manager 7.5
20 Line manager 11

usually assigned to the same line organisation that

are most strongly involved in defining the functional

requirements on that component. Some support

functions, not visible to the end-user, are handled in

the same way, examples of these could be vehicle

diagnostics, electrical energy management, etc.

3. The Case Study

In the course of the study 20 persons were

interviewed, which were selected as a purposive

sample [14] in order to cover a comprehensive

variety of roles and teams at EESE unit. We

selected the interviewees to cover all roles of those

that develop, deliver and maintain the system that

is, all developer stakeholders according to IEEE

Standard 1471. More specifically we aimed to have

at least one interviewee each of “architects, designers,

programmers, maintainers, testers, domain engineers,

quality assurance staff, configuration management

staff, suppliers and project managers or developers”

[15]. The 20 interviewees who participated in the study

are seen in Table 1.

The interviews were semi-structured with open-

ended questions and started with some introductory

questions to get some background about the

respondent, like present role in the organisation,

time employed at Volvo Cars, and a general idea of

how the respondent viewed software at the EESE unit.

Then the three architectural scenarios were briefly

described to achieve a mutual agreement of what

subset of the architecture was included in the scope

94 2009 IEEE/IFIP WICSA/ECSA

of study. The scenarios discussed in the interviews

were chosen so they would allow the respondents to

present their view of forces and feedback based on

their understanding. The majority of each interview

was based on a set of questions (Table 2) directed

at exploring the respondents view of the architecture

business cycle without necessitating an explanation

of the theory behind the cycle. The questions were

originally published in [16].

The interviews were performed by three students

from the IT University of Göteborg, minimising bias in

the interview situation by having an interviewer with

a preconceived understanding of the current situation

at Volvo Cars. This also eliminated any personal bias

during the interview situation if the interviewer would

have been previously known to the interviewees or

would have worked together with them. The students

performed and transcribed the interviews as part of

their final project towards their bachelor’s degree in

Software Engineering and Management [16].

We used the theory of the architecture business cycle

in our case study “as an initial guide to design and data

collection” [17]. Our main goal with the study was

neither to validate nor to redefine the existing theory

behind the architecture business cycle. Our intent was

to do an exploratory case study [18] in order to better

understand how the EESE unit viewed the software

architecture and how the architecture affected the work

of the developers at this organisation.

3.1. Adaptation of the Interview Strategy

One dry-run interview was performed initially which

was not included in the data. The sole purpose

of this interview was to test the feasibility of

the interview strategy and the questions and the

data from this respondent was not included in the

results. The interview result of this dry-run did not

capture much useful knowledge for Volvo Cars. The

forces identified were very general and basically only

mimicked the general architecture business cycle as

described by the original authors (Figure 1). These

findings lead us to re-evaluate our interview design

from general questions about software architecture

to specific questions about the three significant

automotive architecture scenarios in Section 2.4. The

change in interview design was necessary since

we judged this the most efficient way to keep a

manageable scope of the study with the resources

and time available, rather than elaborating with an

interview design to cover the entire architecture. This

change meant we gained a detailed insight in some

parts of the architecture at the expense of coverage.

Table 2. In-depth questions to identify the

architecture business cycle for the architecture

scenarios [S1/S2/S3]. The questions were

repeated for each of the three scenarios.

Question Purpose

1 Could you, briefly, tell us
about the architecture for
[SCENARIO] from your
own perspective?

Understand how the
respondent sees the
realisation of the
architecture. Build a
foundation to base the next
questions on.

2 What do you think
influenced the architect to
structure the architecture
in that particular
way? Persons, Roles?
Techniques, Documents,
Standards, Laws, Business
Goals, Competition,
Lifecycle Issues?

Gain knowledge of
what the respondent
thinks influences the
architecture. Categorise in
the following 7+2 force
categories: Stakeholder
Needs, Business
Management Issues,
Legal/Contractual Issues,
Commercial/Competitive
Pressures, Technical
Environment, Political
Issues and Lifecycle
Issues, Developing
Organisation and Legacy.

3 Do you normally
consider “Non-functional
requirements” or “Quality
attributes”(QA) in your
work? If so, which ones
are the most important for
you for [SCENARIO]?
What kind of trade-offs
among QA’s does the
architecture exhibit?

First of all, realise if the
respondent uses/thinks of
quality attributes at all
when working, see if they
are related to software
engineering and not only
hardware specific. See
which QA’s are the most
important and how they
conflict/relate.

4 Do you know who or
which group of architects
created the architecture for
[SCENARIO]? How did
their previous knowledge
and experience affect the
outcome?

Map the force category:
“Architect’s experience”

5 In which ways do you
think the influences have
been realised in the
actual architecture for
[SCENARIO]?

Find out about concepts,
strategies, patterns, or
the respondents lack of
knowledge of them.

6 Have you ever reflected
over how the architecture
of [SCENARIO] or the
system has influenced
your role at VCC? Your
group’s role? The entire
organisation in any way?

Map the force-feedback
of the cycle, see how the
influences that influenced
the architecture are
affected.

3.2. Data Collection

The interviews were recorded, transcribed and coded

by looking for statements related to the forces,

architecture and feedbacks according to the general

architecture business cycle. The data after transcribing

and coding the 20 interviews are 60 diagrams each

2009 IEEE/IFIP WICSA/ECSA 95

���������

�������	
���
��
�

	
����
���
��������

����������
����

���������������

�
������

����
��
��������
�

�������
����
������

���������	�

���������������������

��������
���
�����

�
����������
���

��������������
����
��

�
������
��

������

���������������

�����
���

������������

��������
���������

����������� ��������

�
������

!
��������
���
���

"!��#$

#
������������
��

��������������

%
����

���	����

����������

�
��

���
������

�
���
�&�

�
��������

����
������
�����
�� �����

�'�������
�'�������������
������������
�
���

�����%
���(
�
���
�����

��������

!���"�#$$%�$&�#$

'�	�)��
��
�������������*

����������������
�����
��+������

������������������'��,

Figure 3. The architecture business cycle for

software variant handling according to one of the

interviewed component designers. Figure adapted

from [16].

showing an instance of the general architecture

business cycle for a scenario. An example of such

a diagram for the software variant handling scenario

from one of the developers can be seen in seen

in Figure 3. Each of the 20 respondents’ opinions

were captured with one diagram for each of the three

scenarios studied.

The subsequent coding of the data to a

comprehensive cycle for each of the three scenarios

was done by grouping similar recorded quotes

together into categories. The categories emerged

when examining and comparing the data from the

individual interviews. The categories found could then

be assigned to a single force or feedback according

to the general architecture business cycle. An excerpt

of this categorisation is seen in Figure 4. This coding

made it possible to build up a comprehensive cycle for

the three architecture scenarios based on the merged

information from all 20 respondents. The coding was

done by three different persons, depending on the

scenario being studied due to practical reasons, but

the same person coded all responses regarding the

same scenario to ensure consistency.

4. Results

Figure 3 shows an example of the data resulting

from one of the interviews, in this case a component

designer’s view of the cycle for software variant

handling. This cycle could be seen as a little

“thin”, he only mentioned one single explicit quality

Stakeholder needs

Positive effect on the
development process

Can easier fix
H/W problems

Facilitates dev/test

Affects the manufacturing
process

Need to manage
compatible versions

Work becomes hard if
parameters are wrong

Business management

Reusability

Possibility of
reusing code

Possibility of reusing
requirements

Sourcing

Suppliers need to
be familiar with

adaptation
during start-up

Respondent #1
Domain expert

7 yrs

Respondent #2
Component designer

25 yrs

Respondent #3
Component designer

2 yrs

Respondent #4
Tester
2 yrs

Figure 4. Example of how statements from some

of the respondents are categorised and then

sorted under the seven forces in the architecture

business cycle.

attribute requirement, cost, which in his experience

influenced the architecture. This respondent’s view

of the cycle only had forces regarding stakeholder

needs, and commercial/competitive pressures while the

feedback in the cycle was thought to affect business

management. While other respondents were not as

extreme in their reflections, cost was clearly on of the

main forces mentioned in all interviews. A broader

view of the architecture business cycle from the

viewpoint of a section manager with 24 years of

experience at Volvo Cars can be seen in Figure 5.

We note also in this cycle only quality attributes were

listed as explicit requirements to the architecture and

our conclusion is that the subset of the architecture

studied is mostly driven by quality attributes rather

than functional or business requirements.

The original architects responsible were not included

in the study due to practical reasons, the architectural

decisions were made ten years prior to the study,

but a summary from one of the original architects

can be found in [19]. Considering our focus was

not to timeline what decisions had led to the current

architecture, we do not perceive this omission to be

problematic. Instead we were looking to capture the

current view of the architecture business cycle for our

three scenarios.

4.1. Disagreement on Development

Responsibility

The more visible the results of architecture decisions

were in the actual system and component design, the

more agreement between the interviewed stakeholders

there was in how the cycle looked like for that the

scenario. For the abstract decisions leading to design

96 2009 IEEE/IFIP WICSA/ECSA

���������

����
���	�

�
����
��
�

	
���
���'����
�

�-����
������������

�
�����������
�

����
�������

������
�������

������&

�(��������'�����

������&

����
����

��
�����
��������

(�,�������������
�

��������
�������

�����������

�������������

���������	�

��������������������

.��
������
��

��������
�
��
��

�
�������*������

��������
�����,����

�����������������

����
�,&

���������������

�����
���

������������

/����0��������������

��	*�#1	�����(2! �

'����

������'�����

������������

%
����

(��������������

����
��*���
��

��������������������

����������

���
�
��
�

���	����

����������

�
��

!�����

��
�����
��"�
�

�������

�������$

���
�����

�
���
�&�

�
��������

���������3��

�4��������

!���	���
������
������

	���������5&���������
����
�������������

(�������	���������

(
������������
�*���,����
���������*�����
���

��������&

����
������
�����
��������

!���
�����������������
���������
��&

	
����
���������

!���"�676897

'�	�)�!����
���������*

����������������
�����
��+8������

������������������'��,

Figure 5. The architecture business cycle

for network topology according to one of the

interviewed line managers. Figure adapted from

[16].

responsibility (where we could find no underlying

conceptual principle) there was no overall agreement

on the cycle. On one end there was a set of

respondents saying the architect was in full control

of the architectural decision, while on the other end

respondents said the architect was largely bypassed

and the feedback in the cycle counteracted the

original forces. Figure 6 shows some details of the

business cycle according to the latter respondents2.

An interpretation of the latter respondents is that the

development responsibility was perceived as an meta-

level constraint to the architecture and not a decision

possible for the architects to make, or at best an

implicit architectural decision. The organisation of

domain experts on brakes, climate, locking and other

customer functions into separate groups together with

respective hardware and software developers could be

seen as a natural from an management viewpoint, while

an architect could conceive it as a constraint.

4.2. Counteracting Feedbacks in the Captured

Business Cycles

Our study revealed examples where an architecture

decision actually counteracted the initial forces leading

to the decision. For example, it was considered

time consuming to request a new or changed global

2. Some forces and feedbacks have been left out due to intellectual
property rights of Volvo Cars, but those listed still illustrate the
implicit effects on the business cycle from this scenario.

�������	
���)��
�

%���������������������������

�
�,��������
�

��
��
����
��������
����

�
����
��
���� "
���
��$

.�����
���4�������

������-���*��
�����������

��������

(�����

/���
��������������������
��

���
�
��� ����������

��
��
����

 ������
����
�����������,��

����
������� ���������

��
���������
�������

����
����*�
�����
��

 �����

 ���������
�
���
���������

��
��
������
��

�
��
�����

���������	�������������

+��������

(�������,���������������

���������� ��
����
��

������
��0��������

 ���������
���������������
��

�������,���'�� ��
��
�����

���������
��

������

�������������������

�����
���

%
����

���	����

����������

(��������'�����

.����'�����

�������	
���)��
�

:�������������
�����������
�����
���������
�

�����������������
��'��������
���������
�����

 ���������
���������
����4��������
�����������������������
���

�
����������
����������
�,��
�
�
��

����������
���������

���������������

����
����*�
�����
�� �����

�����������'������������
�������
��������;3�*�������������
�

�

���������������������

!���	���
��,���
������

�
���������
��'���������
��
������������
�,��

���

�����������������
������
���'�������

	�����
��������'�������������������
���������
�

<������������������������������
���������
�*���������
������

��
=���*�����������
��
�������
���

����
���	�-
����
��
�

(�������.���
����.
�������'��������
�������
�����
���

��
��
�����������������
����4���������
���������
�

(�������	�� �����

/��������
���
�������
���������
��

	
�������
����������
�������������
��*��������
���������"�������

������
�$

��������������%���'��,

�

��
��
��
��

�
�

�
��������
��
!���	���
��

����
������

��
��������
�

������
�������

���������

������������

��;��������������

��
��������
�

�����;������
�����

���
�������
�������

 �����
���
�����
�����5

����
������
��
���'������

�����
������

����������������

������
��������������

���������
��������������

����"��;>�$

Figure 6. The architecture business cycle for the

split of development responsibility based on the

set of respondents which thought the architect was

bypassed in the cycle. The figure highlights where

some of the feedback in the cycle counteracts the

original forces. Figure adapted from [16].

parameter used for the adaptation during start-up.

Another example, from Figure 6, is where one

of the needs was to “facilitate and simplify the

working method” while the split of development

responsibility has lead to “monster documentation”.

There was a clear “will to outsource the development

of components” (i.e. ECUs) but in practice it was

“hard to coordinate the suppliers” with the present

deployment of functionality onto ECUs.

Since our study was a snapshot in time of the cycle

we have not evaluated if these counteracting feedbacks

have affected a change in the originating forces for the

next generation architectures developed at EESE, as is

explained by the theory in [5], but we are looking to

explore this aspect in future work.

4.3. Role of the Architect at the EESE Unit

To capture the benefits for the organisation

participating in the study we interviewed the Senior

Manager for Electrical Architecture, a section within

the EESE unit, who sponsored the original case study.

This interview was made approximately 1 1/2 year

after the original study took place and looked to

capture the lasting effects of the initial study. The

manager reflects on how the respondents at EESE

2009 IEEE/IFIP WICSA/ECSA 97

unit showed a discrepancy in perceptions of the role

architecture and architect plays:

“Where primarily management viewed

architects to be the main contributors to

early prerequisites of design work and

limiting the number of design alternatives

down-streams [later in the development

work], the architects themselves found their

role to be more reactive and victimized of

decisions taken elsewhere.”

This difference in views was only captured since

from looking at such a variety of roles among

the respondents, and was a major finding for the

organisation. The manager continues and clearly finds

major benefits for the EESE unit as a whole from the

participating in the case study:

“The study was an eye opener for the

organisation that the architecture team may

be under-utilized, which has since led to

greater focus on strategic architectural issues

in management team meetings. The study

itself is no longer referred to, but acted as

the initiator of the discussion.”

When asked specifically about possible impacts the

study have has on processes, artefacts or organisation

he answers:

“There has been a major reorganisation

within EESE since the study was conducted

and the study influenced that activity

indirectly, resulting in co-organisation of

architecture related disciplines into the

Electrical Systems Design department.”

This quote goes one step further by illustrating the

impact the case study has as initiator for one of the

goals in the re-organisation of the EESE unit—a re-

organisation that resulted in strengthening the role

and impact of architecture by defining a department

dedicated to this. The initial study, and in particular the

development responsibility scenario, played a role as

one of several triggers for understanding and change.

4.4. Reflections on the Architecture Business

Cycle

In our study we aimed to capture an instance of

the architecture business cycle for the comprehensive

software architecture in a modern vehicle, but our dry-

run interview did not reveal much information useful

to Volvo Cars beyond what was already described in

the general architecture business cycle [6].

In the study we therefore focused on a subset of the

architecture and as a result captured a separate cycle

for each of three architecture scenarios. Our conclusion

is that each architecture scenario in itself had a set of

forces and feedback according to the theory behind the

general architecture business cycle.

4.4.1. Difficulties in Capturing the Cycle. The

interview responses for one of the architectural

scenarios investigated varied too much to be captured

in a single diagram of a cycle. We are at this time

hesitant to conclude if this means the theory of

the architecture business cycle needs to be expanded

or if our methodology to capture the cycle must

be improved to resolve ambiguities. We can think

of three possible explanations why we could not

capture a single architecture business cycle for the last

architecture scenario:

1) The captured architecture business cycle is

very dependent on the respondent, or set of

respondents.

2) It is an inherent fact that the results from

some decisions are not easily captured in single

diagram of an architecture business cycle.

3) The particular decisions leading to the scenario

for which we could not capture capture a

coherent cycle, did not involve the architect

(or the architecture), at least according to some

respondents.

It was not possible for us to determine the exact cause

of why it was so difficult to capture a coherent cycle for

the last scenario of development responsibility, as this

would have required an extended study and additional

run of interviews.

4.4.2. Additional Forces. In the course of the

interviews some of the respondents mentioned forces

influencing the architect and the architecture not

readily categorised according to the general forces of

the architecture business cycle in [7]. The students

who performed the interviews suggested two additional

categories of forces: Developing Organisation and

Legacy, besides the seven forces proposed in [7]. We

agree with this analysis and note that the development

organisation category can be seen as a result of

Conway’s law [20]. The development responsibility

is likely shaped by the existing organisation, where

different teams have their areas of expertise, and not

only by the other seven forces. Legacy is the result

of the strong demand to re-use existing and proven

system solutions when developing new vehicles, i.e. a

domain specific category. If a similar study of using

the architecture business cycle would be performed in

other particular domains it is reasonable to expect that

98 2009 IEEE/IFIP WICSA/ECSA

more categories would need to be added besides the

seven original categories of forces.

4.5. Generalisation of the Case

We believe the presented method of capturing an

architecture business cycle by scenarios defining a

subset of the software architecture is possible to

generalise beyond our case in the automotive domain.

We found the mapping of the feedback in the cycle

valuable in understanding the role of the architecture

in the development process and we expect this

understanding would be equally valuable for other

architectures studied.

The nature of the architecture business cycle

for a specific architecture make the cycles we

captured unlikely to generalise to other architectures or

organisations. However, some of the forces identified

in our case study may be similar also for other

automotive manufacturers with comparable products

operating in the same markets, most likely forces in

the following categories:

• Legal/contractual issues

The automotive domain is very regulated and the

OEM-supplier relationship does not vary much

between European companies. Also the OEM-end

customer relationship is very similar between car

brands on the same markets.

• Commercial/competitive pressures

Premium car manufacturers are competing for the

same customers on the same global market.

• Technical environment

Some automotive technology are de-facto

standards, such as CAN [10], and other is

defined by legal requirements (e.g. diagnostics).

Similarly, we would expect that if identical

architectural decisions have been made by other

architects in other automotive companies, they would

assert the same influencing feedback on the original

forces according to the architecture business cycle.

The last generalisation we see is based on our

experiences with working with architecture business

cycle “as an initial guide to design and data collection”

[17]. We think the architecture business cycle worked

quite well in this respect and believe it would be useful

as a theoretical framework in the design of other case

studies and in the collection and organisation of the

data, even if some hands-on adaptations are needed.

5. Conclusions

There were several, both theoretical and practical,

benefits resulting from our study:

From a research perspective we found that the

architecture business cycle worked very well in

defining the context for the interviews. The cycle also

worked well as a guiding model to understand the

role of the architecture in the software development

process. So both the theoretical framework and the

interview methodology used in this case should be

possible to generalise for studies at other organisations.

However, when trying to capture the a

comprehensive architecture business cycle in a

single interview situation the answers we got were

too general to be of use to the organisation studied.

We therefore tried to capture a separate cycle for

a subset of the architecture, defined by three major

architecture scenarios. Our conclusion is that these

scenarios in themselves have a set of forces and

feedback which could be described according to the

architecture business cycle.

The Electric and Electronic Systems Engineering

unit at Volvo Cars gained several benefits from

participating in this study: The architects gained a

better understanding of how the identified forces

affected the decision process and the architecture

resulting from these decisions. The management at

the EESE unit discovered the architecture team may

not be fully utilised and as a result the organisation

increased the focus on strategic architecture issues in

management meetings. Finally findings in the study

indirectly influenced a subsequent re-organisation at

the EESE unit. We believe that studies at other

organisation could also gain similar benefits.

Finally we find that the architecture business cycle

is useful, not only in theory but also in practice,

in understanding the relationship between the will of

stakeholders, the architects, the decisions shaping that

architecture and how these decisions in turn affect the

stakeholders, as shown in this case study.

6. Future Work

The obvious follow up to this study would be to see

if the “more focus on strategic architecture issues in

management team meetings” and “the co-organisation

of architecture related disciplines into the Electrical

Systems Design department” had the intended results

of better utilising the architecture team.

One thought is to use the architecture business cycle

for predicting change, i.e. how would the feedback

cycle look like and how would the originating forces

be affected if a specific software architecture would be

introduced. A current example would be AUTOSAR in

the automotive industry. A first attempt to do this can

be seen in [16], but to support this a study would need

2009 IEEE/IFIP WICSA/ECSA 99

to investigate more scenarios of the architecture than

covered there.

Acknowledgements

VINNOVA funded this work as a part of project

2009-00091. We are grateful for all the time the

participants from Volvo Car Corporation have willingly

contributed. The authors would like to thank Prof.

Thomas Arts and the three anonymous reviewers for

their useful comments.

The authors would also like to extend huge thanks to

David Smallbone Tizard, John Wallmark and Thomas

Warrby, students at the IT University 2004-2007, for

their invaluable work in conducting and transcribing

the interviews and providing useful ideas as part of

their bachelor thesis project. We are not surprised their

work was nominated as best bachelor thesis in Sweden

2007.

References

[1] G. Reichart and M. Haneberg, “Key drivers for
a future system architecture in vehicles,” in Proc.
Convergence 2004. Detroit, MI, USA: Society of
Automotive Engineers, oct 2004. [Online]. Available:
http://www.sae.org/technical/papers/2004-21-0025

[2] A. Pretschner, M. Broy, I. H. Kruger, and
T. Stauner, “Software engineering for automotive
systems: A roadmap,” in 2007 Future of Software
Engineering. IEEE Computer Society, 2007, pp. 55–
71. [Online]. Available: http://portal.acm.org/citation.
cfm?id=1253532.1254710

[3] M. Broy, “Challenges in automotive software
engineering,” in Proceedings of the 28th International
Conference on Software Engineering. Shanghai,
China: ACM, 2006, pp. 33–42. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1134285.1134292

[4] J. A. McDermid, “Complexity: Concept, causes
and control,” in Proceedings. Sixth IEEE
International Conference on Engineering of Complex
Computer Systems, ICECCS, 2000, p. 29.
[Online]. Available: ftp://ftp.cs.york.ac.uk/pub/hise/
Complexity-Concept,Causes&Control.pdf

[5] L. Bass, P. Clements, and R. Kazman, Software
Architecture in Practice, 2nd ed., ser. SEI Series in
Software Engineering. Addison-Wesley, 2003.

[6] R. Kazman and L. Bass, “Categorizing business goals
for software architectures,” Carnegie Mellon Software
Engineering Institute, Tech. Rep. CMU/SEI-2005-TR-
021, dec 2005. [Online]. Available: http://www.sei.
cmu.edu/pub/documents/05.reports/pdf/05tr021.pdf

[7] R. Kazman, L. Bass, P. Clements, and R. Nord,
“The architecture business cycle revisited: A business
goals taxonomy to support architecture design
and analysis,” http://www.sei.cmu.edu/news-at-
sei/columns/the architect/2005/2/architect-2005-2.htm,
Carnegie Mellon Software Engineering Institute, 2005.

[8] T. Noergaard, Embedded Systems Architecture: A
Comprehensive Guide for Engineers and Programmers.
Newnes, feb 2005.

[9] AUTOSAR, AUTomotive Open System ARchitecture
(AUTOSAR), http://www.autosar.org, AUTOSAR
development partnership Std., 2009.

[10] ISO - International Organization for Standardization,
Controller Area Network (CAN), International
Organization for Standardization Std. 11 898, 2003.
[Online]. Available: http://www.iso.org/

[11] LIN Consortium, Local Interconnect Network (LIN),
http://www.lin-subbus.org/, LIN Consortium Std.,
2008.

[12] MOST Cooperation, Media Oriented Systems Transport
(MOST), http://www.mostcooperation.com/, MOST
Cooperation Std., 2008.

[13] F. Bachmann and L. Bass, “Managing variability
in software architectures,” SIGSOFT Software
Engineering Notes, vol. 26, no. 3, pp. 126–132, 2001.
[Online]. Available: http://portal.acm.org/citation.cfm?
id=379377.375274

[14] B. L. Berg, Qualitative Research Methods for the Social
Sciences, 6th ed. Allyn & Bacon, mar 2006.

[15] IEEE Recommended Practice for Architectural
Description of Software-Intensive Systems,
IEEE Std. 1471, 2000. [Online].
Available: http://standards.ieee.org/reading/ieee/std
public/description/se/1471-2000 desc.html

[16] D. Smallbone Tizard, J. Wallmark, and T. Warrby,
“Architecture and change: A case study using the
architecture business cycle for assessing an organisation
facing a major architectural change,” Bachelor thesis,
IT University, Göteborg, Sweden, jun 2007.

[17] G. Walsham, “Interpretive case studies in IS
research: nature and method,” European Journal
of Information Systems, vol. 4, pp. 74–81, 1995.
[Online]. Available: http://www.palgrave-journals.com/
ejis/journal/v4/n2/abs/ejis19959a.html

[18] R. K. Yin, Case Study Research: Design and Methods,
3rd ed. Sage Publications, 2003.

[19] K. Melin, “Volvo S80: Electrical system of the
future,” Volvo Technology Report, vol. 1, pp. 3–
7, 1998. [Online]. Available: http://www.artes.uu.se/
mobility/industri/volvo04/elsystem.pdf

[20] M. E. Conway, “How do committees invent?”
Datamation, apr 1968. [Online]. Available: http:
//www.melconway.com/research/committees.html

100 2009 IEEE/IFIP WICSA/ECSA

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

