
HAL Id: hal-00664851
https://hal.science/hal-00664851

Submitted on 31 Jan 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

From Object-Oriented Applications to
Component-Oriented Applications via

Component-Oriented Architecture
Simon Allier, Salah Sadou, Houari Sahraoui, Régis Fleurquin

To cite this version:
Simon Allier, Salah Sadou, Houari Sahraoui, Régis Fleurquin. From Object-Oriented Applications to
Component-Oriented Applications via Component-Oriented Architecture. 9th Working IEEE/IFIP
Conference on Software Architecture (WICSA’11), Jun 2011, Boulder, United States. pp.214-223.
�hal-00664851�

https://hal.science/hal-00664851
https://hal.archives-ouvertes.fr

From Object-Oriented Applications to Component-Oriented Applications via

Component-Oriented Architecture

Simon Allier

Valoria lab.

Université de Bretagne Sud

Vannes, France

Simon.Allier@univ-ubs.fr

Salah Sadou

Valoria lab.

Université de Bretagne Sud

Vannes, France

Salah.Sadou@univ-ubs.fr

Houari Sahraoui

DIRO

Université de Montréal

Montreal, Canada

sahraouh@iro.umontreal.ca

Régis Fleurquin

Valoria lab.

Université de Bretagne Sud

Vannes, France

Regis.Fleurquin@univ-ubs.fr

Abstract—Object-oriented applications of significant size are
often complex and therefore costly to maintain. Indeed, they
rely on the concept of class which has low granularity with var-
ied dependencies not always explicit. The component paradigm
provides a projection space well-structured and of highest
level for a better understanding through abstract architectural
views. But it is possible to go further. It may also be the ultimate
target of a complete process of re engineering. The end-to-end
automation of this process is a subject on which literature
has made very little attention. In this paper, we propose
such a method to automatically transform an object-oriented
application in an operational component-oriented application.
We illustrate this method on a real Java application which is
transformed in an operational OSGi application.

Keywords-automatic reengineering; object oriented applica-
tions; component-based architecture

I. INTRODUCTION

A system is complex and particularly difficult to under-

stand and to maintain when it is described with a large

number of highly interdependent parties. An object-oriented

application is often complex because it uses hundreds or

thousands of classes with many different dependencies more

or less explicit. Conversely, the concept of component is

deemed to provide modeling elements well suited to high-

level representation, synthetic and well-organized structure

of complex software. A component view tends to a descrip-

tion characterized by a smaller number of parties loosely

coupled, highly cohesive with clear inter-dependencies that

are rigorously defined. Thus, the component paradigm can

provide a ”space of projection” that simplifies the under-

standing of a complex object-oriented system. It allows

the construction of higher-level architectural views, simpler

and more regular than those provided by an object-oriented

system. Such views may facilitate the step of understanding

a system prior to any activities of changing all or part of an

object-oriented system.

In this case, the component-based architecture remains

only a ”contemplative” view. It is used only by the designer

but is not the entry point of further automatic processing.

It is possible to use such a view in a more ”productive”

way in the sense of Model Driven Engineering. One can

use this view as a blueprint to do a complete re-engineering

including a source code translation: transforming an oper-

ational object-oriented application into an equivalent oper-

ational component-based application. The new form of the

application benefits from all the good properties associated

with component-oriented paradigm. Indeed, the process of

identifying a component is always guided by the rela-

tionships between classes while meeting certain criteria:

implementation of a specific functionality, optimization of a

given structural metric, etc. Thus, the provided and required

interfaces, corresponding to interactions between these sets

of classes (discovered components), enforce some good

structural properties in terms of coupling and cohesion.

To achieve this goal, we must solve two problems: i) iden-

tifying classes that should be grouped to form abstract com-

ponents and then constructing their required and provided

interfaces. Thus we obtain a component-based architectural

view of the application; ii) using this component-based

architectural view to restructure the application into a new

operational one, which conforms with a concrete component

model. There are several works that partially deal with the

first problem (a summary is given in Ducasse et al. [1]). In

CBSE of the last year, we have also presented an approach

that improves the identification of components in object-

oriented applications [2]. Except works presented in [3],

[4], none of the other works propose provided and required

interfaces. So most of the existing works do not provide a

complete architectural view. To the best of our knowledge,

there is no work dealing with the second problem. What we

propose in this paper is an approach to completely automate

the process of transforming an operational object-oriented

application into an operational component-based application:

identify abstract components (groups of classes), extract

their interfaces (architectural view) and finally, transform the

application using a concrete component model (OSGi).

The remaining of the paper is organized as follows:

Section II describes some related works. In Section III

we describe our approach to obtain a component-based

architecture of the object-oriented application. Our approach

to restructure the operational object-oriented application into

an operational component-based application is describe in

Section IV. Before concluding, we present a case study in

Section V.

II. STATE OF ART

The complete re-engineering of object-oriented applica-

tions into component-based applications is not a trivial task.

The first step is to identify the components by studying the

clustering of the classes according to different criteria such

as coupling and cohesion. Several works have focused on the

problem of classes clustering with the aim of repackaging. A

complete state of the art can be found in [1]). For example,

the Bunch algorithm [5] extracts a high-level architecture by

clustering modules (files in C or classes in C++ or Java) into

subsystems based on module dependencies. This clustering

is done using heuristic-search algorithms.

Some works specifically deal with components identifica-

tion. For example, Kim et al. [6] propose a systematic UML-

based method using, both functional and structural criteria,

to identify the components. From use case, sequence or col-

laboration diagrams, they measure the dependency between

use cases. These dependencies are used to cluster the use

cases in components. Then, dependency between classes,

involved in the use cases, are used to check and refine

the identified components. Also based on UML diagrams,

Lee et al. [7] proposed a clustering algorithm that considers

cohesion (functions supported by classes), class interaction

(caused by method invocations) and class static coupling

(caused by association, composition and inheritance). In

the ROMANTIC method, Chandigny et al. [3] use an

annealing clustering algorithm. The used fitness function is

based on some quality characteristics (such as composability,

maintenability, reliability, etc.) measured by existing metrics

(such as complexity, class cohesion, etc.).

However all these approaches do not formally identify the

provided and required interfaces of components. This is the

second necessary step to build a complete component-based

architecture. The FOCUS [4] approach proposes a light-

weight method to architectural recovery of OO systems.

This approach recovers components (clustering classes using

relation-ships among them with respect of some rules)

but also high level connectors. However, these connectors

indicate only that there are some communications between

two components. Thus, they remain too abstract in regard of

a complete identification of required and provided interfaces.

The third and final step consists in transforming the

existing object-oriented application into a component-based

application starting from the architectural view obtained

previously. This step should lead to an executable version

of the application in the target concrete component model.

To the best of our knowledge, there is only one work

that deals with this step: Washizaki et al. [8] propose a

method that gives a set of candidate components, starting

from the relations between classes, in the source code,

and a desired functionality represented by a given class.

When a component is selected from the candidate ones, its

corresponding set of classes is refactored into a JavaBean

component. Thus, the aim is the extraction of reusable

components. The use of this approach to automatically

restructure an object-oriented application into a component-

based application raises two main problems: Identify all the

functionalities that the application covers, and assemble the

extracted components to rebuild the application. If the first

problem can be solved using the initial specifications of the

application, the second problem remains a real challenge.

III. FROM OBJECT-ORIENTED APPLICATION TO

COMPONENT-BASED ARCHITECTURE

Two steps are necessary to produce an component-

oriented architectural view from an object-oriented appli-

cation: i) identify components, ii) identify the provided

and required interfaces and to bind them together. We will

examine each of these aspects in the following sub-sections.

A. Component Identification

A component is a group of classes collaborating to provide

a function of the application. Thus, to build a component-

oriented view of all the application, we have to define a parti-

tion of its classes. Each member of this partition will become

a component. To do so, we apply an extension of a method

that we already presented in [2]. This method includes 3

steps (see Figure 1). In the first step, we use traces obtained

by executing scenarios corresponding to application’s use

cases to identify what we call ”core components”. We use

an heuristic search to find a near-optimal solution. In the

second step, we rely on a static call graph to add, in the core

components, some application’s missing classes. Indeed, all

classes of the application are not necessarily covered by the

executions traces. This step uses the same heuristic search

as the previous step. The last step is to manually refine

the generated partition. In this step, the user benefits from

some information provided by the tool on the generated

solution.We will discuss each of these three steps in detail

in the following subsections.

1) First step: Core component identification: A clustering

algorithm allows to partition the classes of the application.

Unfortunately, the number of possible partitions grows ex-

ponentially with the number of application classes. Makes

for exhaustive search, for the optimal solution, infeasible

in most cases. Thus, we decided to use a meta-heuristic. It

designates a computational method that optimizes a problem

by iteratively trying to improve a candidate solution. The

improvement is done thanks to a given measure of quality

using a fitness function. Meta-heuristics make few or no

assumptions about the problem being optimized and can

tackle a very large spaces of candidate solutions. However,

meta-heuristics do not guarantee that the optimal solution

will be found.

Figure 1. The steps for component identification.

In our approach, the search for the space of all possible

partitions is implemented using an hybrid search [9], which

combines two different meta-heuristics: genetic algorithm

(GA) [10] and simulated annealing (SA) [11]. GA and SA

algorithms are two well-known heuristic search algorithms

used in many software engineering works [12]. We will not

discus theses in detail in this paper. GA is a global heuristic

search that applies changes to multiple solutions and returns

a solution that is near-optimal. We use a GA solution as the

initial solution of a SA algorithm. SA algorithm performs

a local search that explores the neighbourhood to refine the

GA solution. In our cases, both SA and GA algorithms use

the same data, solution representation (a partition of the

classes) and fitness function.

The used data are execution traces. An execution trace is a

tree where each node is the execution of a method and each

edge is a call of a method. They are obtained by capturing

the calls between instance of classes during the execution

of a use case scenario. Every thread, created during the

execution, produces an execution trace. The identification

of core components from execution trace is relevant only if

the execution traces cover the major part of the application

functions. Therefore, to extract the traces, we apply all

the recorded execution scenarios from the documentation.

Execution traces capture a subset of the application classes

and some of their dependencies. One of the advantages

associated with the use of execution traces is getting a call

graph simpler than a call graph built on the source code.

Indeed, it only lists the dependencies observed and not the

potential ones.

The used fitness function (Equation 1) evaluates the

quality of a solution (a partition defining a set of core

components) considering both the internal cohesion of com-

ponents and the level of inter-component coupling of every

component C.

eval(A) =
1

|Cl|

∑

C∈A

(evalComp(C) ∗ |C|) (1)

The function takes as input a solution A (a set of

core components) and calculates the weighed average of

the fitness of individual components. (Cl being the set of

classes of the application covered by traces). The fitness of

individual component (Equation 2) depends mostly on their

cohesion unless the coupling level is too high, in which case

the fitness score is heavily penalized. The used threshold

cm corresponds to the average coupling of all the classes in

the application. The cohesion and coupling are evaluated as

follows:

evalComp(C) =

{

evalCoh(C)/2 if evalCoupling(C) < cm

evalCoh(C)/2 + 0.5 otherwise.
(2)

• Internal cohesion: a good component should include

classes that interact with each other to provide a specific

set of functionalities. Therefore, the strength of these

interactions are what we call cohesion. The internal

cohesion measure (evalCoh(C)) evaluates how close

the different classes are in the execution traces.

• Coupling: One of the strengths of component-based

development is that its components are loosely coupled

and can be combined to build applications. Therefore,

the coupling of a component (evalCoupling(C)) is the

number of its classes that are connected to classes from

another component.

We have shown in [2] that this approach can lead to

interesting architectures.

2) Second step: Adding the missing classes: At the end

of the previous step, we get a partition of the classes covered

by the execution traces. Thus, it is possible that some classes

have been ignored. From a functional point of view, These

classes have low contributions in the application function-

alities. Consequently, we believe that they should have less

influence on the final component-based architecture of the

application. Therefore, we decided to consider them in a

second round and only to refine the solution obtained in the

first step. A class that is already present in a core component

can not migrate to another component during this step. Each

missing class must either be placed in an existing core

components, or participate in the creation of a new one.

We use in this step the same meta-heuristics GA and SA.

The search space is the same as in the previous step (the set

of all the possible partitions) but with a strong additional

constraint that no existing classes can migrate from one

component to another. However, the used data are different.

We use a static call graph (built using a type analysis algo-

rithm) to identify all the (potential) dependencies between

the missing classes and the existing ones. This call graph is

a super-set of the previous dynamic call graph.

The fitness function of this step is still using the equa-

tion 1, but it relies on a new function to evaluate each

component (equation 3). This function is always based on

cohesion and coupling, but uses the static dependencies. The

cohesion of a component C is evaluated by evalCoh′(C):
the number of calls between the methods of the component’s

classes. The coupling of a component C is evaluate by

evalCoupling′(C): the number of calls between the com-

ponent’s classes and the other classes.

evalComp′(C) = 1−
evalCoh′(C)

evalCoupling′(C) + evalCoh′(C)
(3)

Equation 3 is somewhat different from equation 2 because

we wanted to promote the complement of existing core

components with the missing classes rather than create new

core components. At the end of this step we obtain a partition

of all the classes of the application.

3) Third step: refining the architecture: With the two

previous steps, we automatically obtain a partition of all the

classes of the application. However, a meta-heuristic can not

guarantee obtaining the optimal solution. The obtained solu-

tion is considered sufficiently close to the optimal. Moreover,

thanks to the previous steps we have a lot of information

about the solution: such as the score of each component

(coupling, cohesion), the score of each class in its assigned

component and the list of components to which it might

belong to without significantly affecting the final score.

Thus, a designer with good knowledge of the application,

can significantly improve the solution, if she/he receives

some recommendations derived from information on the

solution. To this end, we added a step, called collaborative,

where the designer can refine the solution thanks to some

points raised by our system. For example, if a class is not

cohesive with the classes of its component and strongly

coupled with another component, our approach recommends

to move this class from one component to another.

4) Object-Oriented Interfaces: To finalize the distribution

of elements coming from the object-oriented application

into the core components we need to situate the interfaces

(object-oriented meaning). In the object-oriented approach,

an interface corresponds to the common definition of a type

that may be implemented by several classes. In our case,

a type implemented by a class only makes sense in the

component that contains this class. Indeed, the types shared

by the components are those defined by their provided in-

terfaces (see next sub-section). Thus, the interfaces (object-

oriented meaning) are placed in components that contain

classes that need them. This implies that the same interface

can be located in two different components.

B. Identifying Required and provided interfaces

In the first stage, we identified groups of classes working

together to form components that provide high level features.

Figure 2. The application’s Call Graph.

However, in order to make an architectural view with

these components, we need not only make their internal

structure (classes and their relationships) invisible from the

other components, but also provide them with provided

and required interfaces to describe how they bind together.

To build provided and required interfaces, we must first

identify, respectively, provided and required services in order

to organize them into consistent sets (interfaces).

1) Identifying component’s services: In our case, pro-

vided and required services match to, respectively, incoming

and outgoing method calls in respect with the component.

Service identification is made from a system’s call graph

(CG). A CG is a graph whose nodes represent the system’s

methods and arcs represent calls between these methods.

Provided services of a component correspond to all its

methods (those defined in classes that it encompasses) that

correspond to source nodes of arcs whose target node is

in another component. Conversely, required services of a

component corresponds to all its methods that correspond

to target nodes of arcs whose source node is in another

component.

As we said above, the identification of services uses a

CG. But, there are two approaches to construct a CG:

• The first approach uses algorithms of type analysis. In

this case, the obtained CG is called static. It contains

a superset of all possible calls but not those related to

dynamic class loading nor dynamic method invocations.

Indeed, these calls are impossible to determine stati-

cally. Depending on the used type analysis algorithm,

the CG will be more or less accurate (i.e. the super set

of all possible calls will be more or less close to the

set of all ”real” calls). For example, the Variable Type

Analysis (VTA) algorithm [13] produce a more accurate

CG than the Class Hierarchy Analysis algorithm [14].

VTA is a simple dataflow analysis that tracks, for each

object reference (e.g., variable) in the program, the set

of object types that it can contain. This information is

used to further reduce the set of possible invocations at

any given call site.

• The second approach uses execution traces. In this

case, the obtained CG is called dynamic.This approach

Figure 3. Component-oriented architecture of the application.

gives precise CG (calls have actually taken place) but

perhaps not complete (it may lack of method calls).

Moreover, such CG may contain calls due to dynamic

class loading and dynamic method invocation.

The used CG, to extract the services, must be both accu-

rate and as complete as possible. Indeed, if the CG contains

too many calls, we’ll get noisy interfaces provided by un-

necessary services (never used). Moreover, such a situation

can lead to unnecessary dependencies between components.

In contrast, if the CG is not complete, provided/required

services could be omitted, which would lead to an inaccurate

architecture of the application.

For these reasons, we built the CG as follows: First,

we built a static CG using the VTA algorithm (which is

sufficiently accurate). Then we completed It with the missing

calls taken from a dynamic CG created using the execution

traces that served for the step 1 of our process (see Figure

1). Thus we have a CG that combines the advantages of both

approaches mentioned above. The analysis of this CG allows

us to easily identify the required and provided services

for each component. For example, in Figure 2 the set of

provided services of component1 is: {C::getNewB():
B} and its set of required services is: {A::apply(C),

E::mth(), E::mth(B)}.

2) Defining component’s interfaces: So far, thanks to

CG, we have identified the required and provided services

for each component. To obtain the required and provided

interfaces of a component,we need to distribute its provided,

respectively required, services into coherent subsets, in re-

gards to of the application domain, to form these provided,

respectively required, interfaces. As the application was built

using the object paradigm, we use this same paradigm to

identify these subsets.

We begin by identifying subsets representing provided in-

terfaces for each component. For this, we gather in the same

subset, provided services of a component, which come from

the same class. Thus, the component provided interfaces

will be as many as the number of its classes with methods

needed from the outside (of the component). As shown in

Figure 3, the number of services in a provided interface may

be less than the number of methods of the class that supports

this provided interface. Thus, the provided interface, which

is supported by the class C, contains only the service

getNewB(). The other methods of this class will only be

used by classes from the same component(Component1).

The required interfaces of a component are constructed

by analysing its needs. when a component requires at least

one service from another component, we will construct a

required interface, of the same type as the provided interface

of the latter, concerned by this service. Thus, the component

Component11 of figure 3 will have two required interfaces,

corresponding to its needs of interfaces provided by the

component Component2.

At this point, we obtained an architectural representation,

based on the component paradigm, with the bare necessities

of interactions between components in order to have an

abstract view on the application (see again Figure 3). The

aim of this abstract view is to simplify the understanding of

the application in a maintenance stage.

IV. FROM COMPONENT-BASED ARCHITECTURE TO

COMPONENT-ORIENTED APPLICATION

the previous step leads to the construction of a component-

based architecture, of the object-oriented application, where

components are represented by sets of classes with well

identified provided and required interfaces. To restructure the

operational object-oriented application into an operational

component-based application, we will: i) use the object-

oriented concepts, to implement the provided and required

interfaces of the components; ii) map the identified com-

ponents on a concrete component model. In this paper, we

have chosen to show the mapping for the case of the OSGi

component model.

A. Operational Interfaces

The previous step leads to an architecture composed with

abstract components. The interfaces of these components

are inferred elements which have no existence, as such,

in the used object-oriented application. Threrefore, to make

these components operational, we need to describe how their

interfaces (required and provided) work with the classes they

contain.

1) Making Provide Interfaces Operational: To be con-

form with component paradigms, only the services present

in the provided interfaces should be accessible from outside

the component, and only through these interfaces. It is not

wise to modify existing classes to achieve this goal. Indeed,

the modification of existing classes can cause problems

with their internal consistency. Thus, we decided to use

the Adapter design pattern. This is illustrated through

the figure 4. The provided interface InterfaceE, from

component Component2, is implemented by the adapter

adaptE. The latter serves as a relay to the class E that

actually implements the services of the provided interface

Figure 4. Interface

interfaceE. The code, below, shows a little more pre-

cisely the role of the adapter.

class AdaptE implements InterfaceE {

private E adapt_object;

...

public void mth3(){ // delegation

adapt_object.mth3();

}

// manage shared objects

public void mth(InterfaceB ib){

B b = unWrapB(ib);

adapt_object.mth3(b);

}

}

The method mth receives, as a parameter, an object

of type InterfaceB. In fact, in the object-oriented ap-

plication, the parameter is of type B. No matter where

stands the class B (Component2 in our example), the

components only share objects of type defined by provided

interfaces. Thus, before being passed as parameters, objects

are wrapped into a type consistent with their corresponding

provided interface (see next subsection). At the reception,

as here in the method mth, objects are unwrapped in the

correct type.

2) Satisfying Required Interfaces: In our case, when a

component contains a required interface, it means that its

classes need a class located in another component. Actually,

they need only a subset of the methods from the needed

class. This subset is represented by a provided interface in

the component containing this class. To remain consistent

with the component paradigm, and therefore, allow compo-

nents to see only services that are visible through a provided

interface of another component, we use the facade design

pattern to represent a required interface. Thus, as shown in

figure 4, each class is used by a component, but located in

another, and replaced by a class of the same name that acts

as a facade. The code of such a class is sketched below:

class E {

private InterfaceE facade_object;

public E() {

facade_object = new AdaptE();

}

public E(InterfaceE o) {

facade_object = o;

}

public void mth3(){

facade_object.mth3();

}

public void mth(B b){

InterfaceB ib = wrapB(b);

facade_object.mth(ib);

}

}

The class E, in Component1, acts as a facade to ac-

cess services provided by InterfaceE of component2.

It keeps the same name (E) as the class located in

Component2, in order to avoid modifications on classes

of Component1, but it reduces the number of available

methods to only those which are present in InterfaceE.

Thus, it redirects calls through an object implementing

InterfaceE. In addition, the facade class wraps objects,

which must be passed as a parameter, in a type known by

the other components (a corresponding provided interface).

In the example above, this is achieved by wrapB() in the

method mth().

The methods wrap() (facade object) and the method

unwrap() (adapter object) together form a mechanism that

ensures that only objects with a ”public” type (a type

corresponding to a provided interface) can be exchanged

between components. Moreover, classes that use objects of

type E can also ask for creation. In this case, the constructor

of the facade class (see the constructor E() above), which

will be called by those classes, forwards the request of

creation to the adapter of the right class E, which stands

in another component (Component2).

B. Component Deployment

Once the object-oriented application is restructured into

a component-based application, we need to reorganize it

according to a concrete component model to make it op-

erational. To illustrate this, we chose to use the OSGi com-

ponent model [15]. Below we present the most important

elements.

1) Creating the Bundles: In the OSGi framework, a

component (called a bundle) is a set of classes organized

into packages, which are by default not visible from outside

the bundle. With the help of a manifest, it is possible to

export packages. Classes and interfaces in these exported

packages become visible from outside the bundle. Thus,

they act as provided interfaces. Similarly, it is possible to

indicate packages that the component requires to operate.

Thus, classes and interfaces of these packages play the role

of required interfaces.

In order to export the provided interfaces of our com-

ponents, through the manifest, we placed them in specific

packages. Similarly, the required interfaces are specified in

the manifest by importing the packages containing them.

Figure 5. Example of a bundle

Indeed, then these are necessarily exported by other compo-

nents.

For example, the bundle of figure 5 contains a pro-

vided interface InterfaceC that is located in the pack-

age interface_comp_2. Moreover, this bundle requires

the interfaces InterfaceA and InterfaceE from the

package interface_comp_1. All this is specified in the

manifest as follow:

Import-Package: interface_comp_2

Export-Package: interface_comp_1

2) Management of the activators: Once the object-

oriented application is restructured according to the con-

crete component model, its launch must conform with

the framework of this model. The OSGi framework al-

lows the specification of actions to be performed dur-

ing the different phases of the bundle’s lifecycle using

the class BundleActivator. We use this mechanism

to launch the restructured applications. Thus, for each

class containing an entry point (the main() method in

Java), we create in its corresponding bundle a subclass of

the class BundleActivator that redefines the method

start(BundleContext). These subclasses are the po-

tential activators of the bundle. The redefined method is only

used to call the original entry point (main() method) of

the application. Its parameter (BundleContext) contains,

among others, the parameter of the main() method. Among

all the potential activators of a bundle, the designer should

designate the actual one. It is identified in the fanifest as

follows:

Bundle-Activator:

activator.Component1Activator

Finally, to build an OSGi bundle, the classes and the

interfaces of a component, its activators (if any) and its

manifest are archived in a jar file. For example, Fig-

ure 5 shows Component1 structured as a bundle. This

bundle consists of classes C and F, its unique provided

interface (InterfaceC and its adapter AdaptC) and

its facade classes (A and E). As this component has an

entry point (main() method of class C), then the class

Component1Activator was created and added to the

bundle.

V. CASE STUDY

In this section we present a case study on an interpreter of

the logo language written in Java. Logo is a language created

for learning programming. The interpreter has a graphical

interface which allows writing the code and a window which

shows the result graphically. It contains 40 classes and 2

interfaces. The purpose of this study is to demonstrate the

feasibility of our approach.

A. Used Tools

All the necessary tools for our approach have been

implemented in Java using Soot [16] as an API. Soot is

a popular Java static analysis framework. It provides call

graph construction algorithms and an API that allows various

operations on or from a Java byte code.

The implemented tools are:

• Tracer: This tool allows the generation of execu-

tion traces. Using Soot, cookies are injected into the

bytecode of classes in order to trace method calls.

Subsequently, the execution of use cases generate the

desired traces.

• CBAExtracter: This tool allows to provide the

component-based architecture. It uses the traces, pro-

vided by the Tracer, and a static call graph to produce

the abstract components (sets of classes) of the appli-

cation. The static call graph is used in a second time

to take into account the missing classes, if any. Finally,

it identifies the provided and required interfaces of the

components in order to provide the component-based

architecture.

• CBAToOSGi: This tool is used to implement the com-

ponent interfaces, then to organize each component as

an OSGi bundle.

B. Process

The first step in our approach consists in obtaining the

necessary data for identification of a the component-based

Figure 6. The Parsor component

architecture. For this, thanks to Tracer, cookies were injected

into the classes of the Logo interpreter. Then, we executed

scenarios corresponding to the 12 identified use cases. Ex-

amples of use cases are “file creation/saving”, “code writing

in the editor”, “code interpretation”, etc. We were given 26

execution traces (sequences of method calls) covering 38

classes of the interpreter. Two classes of the interpreter are

not covered by these traces.

After that, the CBAExtracter is executed to build the

component-based architecture. The latter builds a static call

graph that allows on one hand to find dependencies of

the missing classes, and on the other hand, to identify the

component interfaces. The built static call graph contains

354 different method calls. The extracted component-based

architecture is illustrated by Figure 7.

Let us look in more detail at the results of the different

sub-steps (see Figure 2) necessary to obtain the component-

based architecture of the Logo interpreter.

The first sub-step consists of obtaining cores components:

We identified five of these. Four of these core components

are made of highly cohesive sets of classes and there are

few coupled with other components. In addition, each of

these four components contains classes involved in the same

functionality. For example, the first core component contains

the necessary classes to parse and tokenize a sentence of the

Logo language (see figure 6). The second core component

consists of classes responsible for the output of the Logo

language instructions.

Similarly 2 classes of the application are not covered

by the traces, thus third sub-step is executed. These two

classes are related to the errors management in parsing

and evaluation. They are respectively added to the core

components related to parsing and evaluation of Logo. This

was done using the static CG.

In the manual refinement sub-step, of our process, the fifth

component is highlighted for consideration. This component,

consisting of two classes, was poorly evaluated by the fitness

function. In fact, its classes have no special relationship

between them, but are more coupled with other components.

Figure 7. The component-based architecture of Logo interpreter

We decided to put its classes in the components to which

they are most coupled. Thus, this component will no longer

exist.

Then, the two interfaces of the application are added to

components that have classes which implement them. This

is done by the 4th sub-step. For example, the interface

TransConstants is added to the first component (see

Figure 6).

During the step of identifying interfaces, the components

have been manually named according to their provided inter-

faces. For example, the component of Figure 6 provides four

interfaces: ITrans, ExceptionFctInconnue, textt-

tIParseException and ITokenMgrError. The interface

ITrans provides services for use of the Logo language

parser. The 3 other interfaces provide services to manage

the parse errors and these interfaces, all related to the parser,

are mutually consistent. We call this component Parsor .

The identification of provided interfaces of the component

display is an example of the need for a CG built using

static and dynamic data. Indeed, in the class Evaluation

of the component Evalaluator the method eval uses

the dynamic method invocation to call the methods of the

Logo interpreter which implements various functions of the

Logo language. This is done as follows:

Object eval(List<Object> instr) {

...

try {

return ((Method)instr.get(1))).invoke(null,v,env);

}

...

}

With a type analysis (static analysis), it is impossible to

determine the targets of the method invoke and thus the

CG will be incomplete. However, the methods providing

the graphical functions of Logo are implemented by the

class AffichageGraphe of the component Display,

and these methods are used by the class Evaluation.

Thus, without dynamic calls obtained from the use cases

we could identify the interface IAffichageGraphe .

Finally, the interfaces are instantiated and components are

packaged in OSGi bundles. This is done automatically by

following the approach described in Section IV.

VI. CONCLUSION

As we saw in the introduction of this paper, despite the

use of object-oriented approach, the task of maintenance is

always the biggest part of the overall cost of an application.

Thus, reducing this cost is a real challenge. Furthermore,

having an abstract view of an application greatly facilitates

its understanding. Moreover, if the implementation of the

application is easily mappable on this this view, then the

achievement of the maintenance will be greatly facilitated.

So, what we proposed in this paper allows : i) to build

the abstract view of an object-oriented application as a

component-based architecture. ii) to restructure the appli-

cation according to this architecture. iii) and, to implement

it according to a concrete component model.

The proposed solution is complete. Indeed, it restructures

an operational object-oriented application into its equivalent

operational component-oriented application. To our knowl-

edge, this problem has never been treated as a whole. Thus,

we tried to propose the more generic solutions to points

listed above. The first two points are generic solutions: they

are based only on general concepts of object and component

approaches. So, the solution maybe applicable on any object-

oriented language and any component model. The last point

naturally depends on a particular object-oriented language

and a concrete component model. We chose as an example,

for this paper, the Java language and the OSGi framework,

as a concrete component model, because they simplify the

understanding. With the information contained by the built

architecture, it seems pretty easy to map it to any other

specific concrete component model.

We wanted a solution that is as possible automatic. But

to achieve the most satisfactory solution, a collaboration

with the designer is required. Thus, we have identified in

the restructuring process the step that requires help from

the designer. In this step the designer can have relevant

information from the system in order to greatly improve

the proposed solution. To illustrate our approach and show

the process from beginning to end, we presented a real case

study. We are behind the implementation of this case study,

which allowed us to draw good conclusions.

However, the components extracted with our approach are

influenced by the application on which they depend. We

do not claim that they are reusable in any context. This is

because the way to design of object-oriented applications

is quite different from that for component-oriented appli-

cations. As it was said by Lorenz “A good object-oriented

design does not necessarily make a good component-based

design, and vice versa” [17].

Currently, the definition of component’s interfaces is

based on existing classes. As future work, we want to capture

more general semantics of a set of classes (component) to

derive a better partitioning of services on the interfaces.

REFERENCES

[1] S. Ducasse and D. Pollet, “Software architecture reconstruc-
tion: A process-oriented taxonomy,” IEEE Transactions on
Software Engineering, vol. 35, pp. 573–591, 2009.

[2] S. Allier, H. A. Sahraoui, S. Sadou, and S. Vaucher, “Restruc-
turing object-oriented applications into component-oriented
applications by using consistency with execution traces,” in
CBSE, 2010, pp. 216–231.

[3] S. Chardigny, A. Seriai, D. Tamzalit, and M. Oussalah,
“Quality-driven extraction of a component-based aachitecture
from an object-oriented system.” in CSMR, 2008, pp. 269–
273.

[4] N. Medvidovic and V. Jakobac, “Using software evolution
to focus architectural recovery.” Automated Software Eng.,
vol. 13, no. 2, pp. 225–256, 2006.

[5] B. S. Mitchell and S. Mancoridis, “On the evaluation of the
bunch search-based software modularization algorithm.” Soft
Comput., vol. 12, no. 1, pp. 77–93, 2008.

[6] S. D. Kim and S. H. Chang, “A systematic method to identify
software components,” in APSEC. Washington, DC, USA:
IEEE Computer Society, 2004, pp. 538–545.

[7] J. K. Lee, S. J. Seung, S. D. Kim, W. Hyun, and D. H. Han,
“Component identification method with coupling and cohe-
sion,” in APSEC. Washington, DC, USA: IEEE Computer
Society, 2001, pp. 79–86.

[8] H. Washizaki and Y. Fukazawa, “A technique for auto-
matic component extraction from object-oriented programs
by refactoring.” Sci. Comput. Program., vol. 56, no. 1-2, pp.
99–116, 2005.

[9] V. Kelner, F. Capitanescu, O. Léonard, and L. Wehenkel, “A
hybrid optimization technique coupling an evolutionary and
a local search algorithm,” J. Comput. Appl. Math., vol. 215,
no. 2, pp. 448–456, 2008.

[10] J. Holland, Adaptation in natural and artificial systems.
University of Michigan Press, 1975.

[11] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.
Teller, and E. Teller, “Equation of state calculations by fast
computing machines,” Journal of Chemical Physics, vol. 21,
pp. 1087–1092, 1953.

[12] M. Harman, “The current state and future of search
based software engineering,” in 2007 Future of Software
Engineering, ser. FOSE ’07. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 342–357. [Online]. Available:
http://dx.doi.org/10.1109/FOSE.2007.29

[13] V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallée-
Rai, P. Lam, E. Gagnon, and C. Godin, “Practical virtual
method call resolution for java,” in OOPSLA ’00: Proceedings
of the 15th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications. New
York, NY, USA: ACM, 2000, pp. 264–280.

[14] J. Dean, D. Grove, and C. Chambers, “Optimization of object-
oriented programs using static class hierarchy analysis,” in
ECOOP ’95: Proceedings of the 9th European Conference
on Object-Oriented Programming. London, UK: Springer-
Verlag, 1995, pp. 77–101.

[15] O. Alliance, “OSGi Service Platform, Core Specification, Re-
lease 4, Version 4.2,” OSGI Alliance, Tech. Rep., September
2009.

[16] R. Vallée-Rai, E. Gagnon, L. J. Hendren, P. Lam,
P. Pominville, and V. Sundaresan, “Optimizing Java bytecode
using the Soot framework: Is it feasible?” in International
Conference on Compiler Construction (CC), 2000, pp.
18–34. [Online]. Available: www.sable.mcgill.ca/publications

[17] D. Lorenz and J. Vlissides, “Designing components versus
objects: a transformational approach,” in ICSE, May 2001,
pp. 253–263.

