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ABSTRACT been deployed in products that identify audio from shop<cli

Content fingerprints are widely employed for identifyinglmu recosrded bly molfnle gho?es. inting techni h b

timedia in various applications. A “fingerprint” of a video o everal multimedia ingerprinting techniques have been
proposed in the literature and have been reviewed in [1].

audio is a short signature that captures unique charaatsris These techniaues have mostly been evaluated throuah exper
of the signal and can be used to perform robust identification q y 9 P

Several fingerprinting techniques have been proposed in tH@etnts Ontr? encfh mark djt?bg Ses tOf I_|m||t|ed S|zte_s. In [_)Iﬁctlca
literature and are often evaluated using benchmark dagabas SY>€Ms, e relerence database typically contains ms

To complement these experimental evaluations, this pager dVIdrecr)iSr{tiind 'th'sr:'ﬁ'cﬂtt:) pr?dr'Ct tget pbe rforrr}?n;er:;mr— i
velops a theoretical model for content fingerprints andweval gerp g schemes on these 1arge databases 1ro erate

ates the identification accuracy. Fingerprints and thearamis sc_ale experiments. Thereis a st_rong need for theoretiadﬂ an
modeled as Markov Random Fields and the optimal decisio>'s that can complement ex;_)(_arlmental evaluations to ¢_eow
rule for matching is derived. An algorithm to compute theun_de_rstandmg of the scallablllty and performance of finger-
probability of correct detection and the false alarm ratesy prlntlng systems and gu.'d.e the design of better schemes.
timating the density of states is described. Numericalltgesu Usmg aspects from deC|S|on.theory 'and. game theo.ry,'our
are provided for a model of a block based binary fingerprint-prevIOUS work [2, 3] has provided guidelines for designing

ing scheme and the influence of the fingerprint correlatiah anig]girhpgnésaaggs.fggose'?f%r&iggetisé SL:.(:: agrlzhaes_l,er;?;g’
the noise on the detection accuracy is studied. eV ! P : prior w u

Index Terms— Content fingerprints, content identifica- that the fingerprint components were independent and identi

tion, Markov Random Fields, Wang-Landau density of stat .aIIy d|§tr|butgd (1.i.d.), but many practical schemesega[e
estimation ingerprints with correlated components. In this paper, we

develop a model using Markov Random Fields (MRFs) to an-
1. INTRODUCTION alyze the performance of such fingerprinting schemes whose
The Internet is emerging as a new and powerful medium focomponents are correlated.
multimedia distribution and consumption. These new distri ~ Section 2 provides a brief overview of MRFs and Sec-
bution channels have also raised several challenges in mulon 3 describes a model for content fingerprints using MRFs.
timedia management and rights enforcement. Popular copyi-he matching accuracy using fingerprints is also examined
righted videos are often reposted on user generated contantSection 3, and an algorithm is developed to compute the
(UGC) websites, such as Youtube, without authorization. Tgrobabilities of detection and false alarm. Section 4 ptesi
ensure that the content is being used in accordance with thrimerical results and Section 5 summarizes the main results
content owner’s guidelines, UGC websites should be able tand contributions of this paper.
correctly identify posted videos. Content fingerprintirgg i
emerging as a promising technology for multimedia identifi- 2. MARKOV RANDOM FIELDS
cation, wherein, for each video or audio, a short “fingeprin Markov Random Fields (MRFs) are a generalization of
is computed that captures robust and unique characteredtic Markov chains in which time indices are replaced by space
the signal. Given a video/audio that needs to be identifiedndices [4] MRFs are undirected graphical models and rep-
a fingerprint is computed and compared with a database @ésent conditional independence relations among random
known fingerprints. If a match is found, then the content hagariables. In this section, we briefly review key concepts
been identified, else it is deemed as unknown. related to MRFs.

Content identification also has several applications in  An MRF consists of an undirected gragh= (V, £) with
multimedia management. Many multimedia databases arg set of node$’ and a set of edge$ between nodes. Each
often not fully annotated, and manual annotation is impracnodeX < V represents a random variable, and we will 6&e
tical. Fingerprints can be used to automatically identifg t to denote the node and the random variable interchangeably.
database content and annotate them. Fingerprints have alshe vectorX denotes all random variables represented by the

Ermal - MRF. Two nodesX; and X ; are said to be neighbors if there
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. . As described in Section 2, the joint probability distribu-
_%Q_ tion of the fingerprint can be specified by defining an energy

A
A

function for the model. We use the energy function that has

i been commonly used for modeling binary images [5]:
Eo(x):—hzwi—ﬁ Z TjT. (1)
i (4,k)€E0

@ () This corresponds to the 2-D Ising model that has been widely
Fig. 1. Markov Random Field model for (a) fingerprint com- sed in statistical physics. Hergcontrols the correlation be-
ponents and (b) fingerprint and noise. tween nodes that are connected antetermines the marginal
distribution of the individual bits. A higher value fgrwould
increase the correlation among neighboring bits, and large
would bias the bits to be-1. The joint distribution can then
be written agy(x) = 7- exp(—FEo(x)).

While the above model suffices to describe the fingerprint
s of the original video frame, in practice, fingerprinte a
extracted from possibly modified versions of the video and

: o : : may be noisy. The noise components may be mutually cor-
:Eztranrrl:dt?(f ;sxfhoengQgé);)o;th%:cc:(ﬂ?ig{jr%}ﬁ)ér:S sometimes related an.d. depend on the fingerprinF bits. To accommodate
such modifications, we propose a joint model for the noise

MRF.S have been used_lr_1 several applications in 'MaGFjis and the fingerprint bits of the original unmodified vigdeo
processing and computer vision [5] as they can represent 10

. ; . which is shown in Fig. 1(b). The filled circles represent the
cal correlations among random variables. In the next sectio . . . : . .
i ) : noise bits and the open circles represent the fingerpriat bit
we develop a model for content fingerprints using MRFs t

capture local dependencies and examine the performance he solid edges capture the dependencies among the finger-
P P P " print components, while the dashed and dotted edges repre-

3. MRF MODEL FOR CONTENT FINGERPRINTS sent the local correlations among the npise bits. The dashgd
edges can be used to model the correlations between the noise
We model content fingerprints as a Markov Random Fieldjts and the fingerprint bits, but such an undirected edge can
to capture correlations among individual fingerprint compo not completely capture the causal nature of this dependance
nents. Each fingerprint value is represented as a node in the |n this paper, we consider the case where the noise bits
MRF, and pairs of nodes that have dependencies are joined byay be mutually dependent, but are independent of the fin-
edges. We illustrate our model using a representative ingegerprint bits, implying that the dashed edges are absent. In
printing scheme that partitions each video frame into bdock thjs case, the model for the noise bits; ;} reduces to a 2-D
and extracts one bit from each block [1]. For example, such gsing modelg; = (V1, £;) similar to that for the fingerprints.

scheme could perform thresholding on the average luminancghe energy function for a configuratiencan be defined as:
of a block. Alternatively, the differences between the ager

luminance of neighboring blocks could be quantized to one Ei(n) = _O‘Z”i -7 Z A ©
bit accuracy. While we use a simple 2-D Ising model for ease ! (G.k)EEL
of illustration, the main principles behind our modelinghca and the distribution is specified ag(n) = z% exp(—FE1(n)).

neighbors and there is no nodeYN( that is a neighbor of
every node inC. An energy functiont¢ ({z¢}) is associated
with every maximal cliqgu€ that maps the valugs:¢} of the
nodes inC to a real number. The joint probability distribution
of all the random variables represented by the MRF is thelB.
given asp(X = x) = L exp(—> ¢ Ec({zc})), whereZ I
is a normalization constant called the partition functidhe

be extended to 3-D and more complex models. The parametera and~ control the marginal distribution and
) o the pairwise correlation among the noise bits, respegtivel
3.1. Model for a block-based Fingerprinting scheme The above MRF can be used to model block based binary

Suppose that each video frame of si2él; x (QH, is par-  video fingerprints computed on a frame by frame basis. For
titioned into P blocks of sizeH; x H, each and one bit other fingerprinting schemes, different graphs can be used t
of the fingerprint is extracted from each block. Due to un-capture the local dependencies among the fingerprint compo-
derlying correlations among the blocks of the frame, thes@ents. Given such a model for the fingerprints and the noise,
bits are likely to be correlated. We represent the bit exédic  we analyze the process of matching two fingerprints as a hy-
from each block as a node in a gra@ih= (1o, &), with the  pothesis testing problem, as illustrated in the next sectio
nodeX; ; representing the bit from the, j)1N block. Each ~ 3.2. Hypothesis Testing

node may take one of two valued, with bit ‘b’ represented Given a query videolW and a reference vided in its
as(—1)b, and is connected to the four nearest neighbors, sdatabase, the detector has to decide whetkieis derived
that the overall graph satisfies 4-connectivity as shown ifirom V' or whether the two videos are unrelated. To do so, the
Fig. 1(a). For convenience, we use a vecXito represent detector computes the fingerpringsandx from the videos

the bits{X; ;}, which could be obtained by any consistentiW andV, respectively. The detector then performs a binary
reordering, such as raster scanning. hypothesis test, with the null hypothestf, that the two



fingerprints are independent and the alternate hypottiésis PrEC

that the fingerpring is a noisy version ok: 35
Hy : (x,¥) ~po(x)po(y) 3
Hy @ (x,y)~po(x)p1(n), 3) @Zz
wherepy(-) is the distribution of the fingerprintg; (-) is the T1s
distribution of the noise and the noise is the element-wise 1
product of the two fingerprinta = x ® y. 05 K[ I T T T
We consider a Neyman-Pearson setting, where the detec- % e — T I T % 0
E

tor seeks to maximize the probability of detectiBp under

the constraint that the probability of false alafftp < 6. The  Fjg. 2 Relative error in the estimation of density of states for

optimal decision rule is obtained by comparing the log likel 3 4x4 Ising model with periodic boundary conditions.
hood ratio (LLR) to a threshold:

H, My, Ecm’r(x) = €g, M(Y) = My, Ecorr(}’) = €y, M(n) =
LLR(x,y) = Eo(y) — E1(n) 5 T, (4)  m,, andE,,,(n) = e,. Note that this “density of stateg’
0

] depends only on the underlying graphical model and is inde-
where the constants have been absorbed into the thresholdpendem of the paramete(is, 1, ., 7) of the distributions.

which is chosen such thd&t; = J. In cases where the LLR
is discrete, it may be necessary to incorporate randoroizati
when the LLR equals the threshold. Py(r) = > UHLLR(x,y) > t}po(x)pi(n)
For the frame-wise block-based binary fingerprinting (xy)
scheme model described in Section 3.1, the LLR is given by:
gen sy = Y g(ULLR > Tipo(x)p(n),  (5)

LLR(x,y) = *thi - 172 YiYk + O‘Z n; + 'yannk.
' & ‘ & where the summation in the second equation is over all possi-

If the fingerprint bits are i.i.d. and equally likely to bel, ~ ble values ok = (m., e,, my, ey, mn, €,,). Similarly,
corresponding tgy = h = 0, and the noise bits are indepen- —
dent (yp: 0), t%e (})ptimum decision rule reduces to a corFT)1par- Fr(m) = zs: g(e)HLLE > Tipo(x)po(y)- (©)
ison of_the Hamming distance betwe:eandy to athreshold, _ As the LLR and the probabilitieg; (n) and po(x) depend
as de.rlved in [?]. However, when the bl.tS are correl'ated, flnbmy ons, knowledge ofg(s) allows us to compute®; and
gerprint matchmg using the Hamming distancsuigoptimal. P;. Thus, the problem of computing, and P; has been
The probability of detection’y = Pr(LLR(x,y) >  converted into one of estimating the density of staés.
7|H,) and the probability of false alar#; = Pr(LLR(x,¥) > an algorithm to estimate the density of states by constgcti

7|Hp). Itis not possible to accurately estimate these tail probz narkov chain that haslT as its stationary distribution and

S . " ; ) 3
abilities using traditional techniques such as Markov €@hai ensuring that all states are visited approximately equsn

Monte Carlo (MCM_C) simulations [6], since these events .. proposed in [7]. An advantage of this “Wang-Landau”
have small probability of occurrence and are rarely Obsbrvealgorithm is that states with low probability of occurrerzre

in a typical MCMC simulation. Instead, we take a different o, yisited as often as high probability states, enablmtpu
approach inspired by statistical physics to first estimbée t oginate their probabilities accurately. We first use this a

o) F:alled (r:i]ensity of sta};tg_s and then utilize this infornmatm gorithm [7] to estimate the density of statgés) and then
estimate these probabilities. computeP; and Py using Eqgns. (5) and (6).

The probability of detectio®; can then be rewritten as:

3.3. Computing Pz and Py

For ease of illustration, we again use the example of the bi-
nary fingerprint model described in Section 3.1. Suppose wé/e use the MRF model coupled with the technique for com-
defineM(x) = 3, z; and Ecorr(X) = — 32, pyee, TiTk,  Puting Py and Py described in the previous section to study
the LLR in Egn. (4) can be written dsL R(x,y) = —hM (y)+ theinfluence of correlation among the fingerprint compasient
NEeorr(y) + aM(n) — vE.or-(n), sinceéy, = & in this  on the overall detection performance. We focus on binary
model. Similarly, the energy for the fingerprint bits and thefingerprinting schemes and provide numerical results fer th
noise ,Ey(x) and E1(n), described in Eqns. (1) and (2) can model described in Section 3.1. As most binary fingerprint
be rewritten in terms of these functions. Thus, the tuple schemes generate equally likely (but not independent) bits
S(x,y) = (M(x), Ecorr(x), M(y), Ecorr (¥), M(n), Ecorr(n)),  we set the parametér= 0 in our simulations. This also has
captures all necessary information regarding the configuthe effect of reducing the parameter space from a 6-D space
ration (x,y). Define g(s) = g(mys, es,my, ey, mp,e,) (Mg, €z,my, €y, My, e,) 10 @ 4-D spacée,, ey, m,, e,), as
as the number of configuratiorix, y) that haveM (x) =  the expressions for theL R and probability distributions will
not involvem, andm,,.

4. NUMERICAL RESULTS
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Fig. 3. Typical correlation structure among the various fingerng bits. Correlation coefficients for the (&), 1)th bit, (b)
(2, 1)th bit, (c) (2, 2)th bit and the remaining bits. The **’ denotes the bit under ¢daation.

4.1. Density of states estimation neighbor with a correlation coefficiept, ~ 0.3 and the cor-

We evaluate the accuracy of the estimation algorithm usingelation decays with distance. This is the typical coriefat
known exact results for the density of energy stateg”)  behavior observed in our model and reflects the correlation
for the 2-D Ising model [8]. To enable comparison, periodicexpected in practice, as bits extracted from adjacent block
boundary conditions are used - the nod&s; in the top row  are expected to be more correlated than bits extracted from
are connected to the corresponding nodas ; in the bot-  blocks far apart. We observe a similar correlation striectur
tom row, and the nodes in the first column are similarly conamong the noise bit%’; ;, as the noise and fingerprint models
nected to the nodes in the last column, so that every node is are similar.

connected. 4-connectivity is similarly achieved for théseo
nodes{N; ;}. We use the Wang-Landau algorithm to estimat

the density of stateg(s) = g(e., ey, mn, en) by performing  ysing the estimated density of states, the probabilfigand
a random walk in the 4-D parameter space and use the ep. are computed as described in Section 3.3 to obtain the Re-
timatedg(s) to estimatey;(E). In our simulations, we use cejver Operating Characteristics (ROC) curves. We examine
the parameters suggested in [7] and the maximum number gfe influence of different parameters on the detection perfo
iterations is capped an'. o ~_mance. At the outset, we note that errors in the estimation
We measure the accuracy of estimation by computing thgs the density of states will also affect the accuracy of ¢hes
relative erroe(g; (£)) in the estimate of the density of states, gstimates. However, as shown in Section 4.1, these errrs ar
defined as (x) = [“=2==t|_ Fig. 2 shows the relative error in small, and the accuracy can be improved by obtaining a better
the estimation of the density of states for a 2-D Ising modekstimate of the density of states.
of size4 x 4 with periodic boundary conditions. From the  First, we examine the effect of the noise on the detection
figure, we observe that the maximum relative error is approxXaccuracy. We characterize the noise by the probabiljtpf
imately 0.37%, and the mean relative error @s1%. These 3 noise bit being~1’ - the equivalent of a binary ‘1’ bit, and
results demonstrate that accurate estimates of the defsity the correlation among the noise bits, which are estimated
states can be obtained using the Wang-Landau algorithm. Thgym the MCMC trials. Fig. 4 shows the ROC curves for a
estimation accuracy can be improved by suitably altering pafingerprint of sizet x 4 bits with correlatiorp,, = 0.2 under
rameters in the algorithm as necessary. two differentp,, and fixedp,, = 0.2, for a detector using the
4.2. Performance of correlated fingerprints Log Likelihood Ratio (LLR) statistic and a detector using th

To examine the performance of correlated fingerprints, vee usHamming distance statistic. As expected, the performagice |
the model without periodic boundary conditions. The nodedVorse when there is a higher probability of the noise chapgin

at the corners are only connected to theglosest neighbors, the fingerprint bits.  We also observe that for a given noise
the remaining nodes at the borders are connected to zheir'€vel, the LLR statistic gives — 10% higherF; at a givenPs

closest neighbors, and all the other nodes are 4-connected, c0mpared to the Hamming distance detector. _
4.2.1. Correlation among Fingerprint bits Fig 5, shows the influence of the noise correlation on the

detection performance. From the figure, we infer that for a
The correlation is estimated frord® MCMC iterations by fixed correlation among the fingerprint bijts = 0.2 and a
retaining onlyl out of 100 iterations. Fig. 3 shows the corre- fixed marginal probability of the noise bits, = 0.3, detec-
lation among the fingerprint bits for&ax 4 model, obtained tion using the LLR statistic is not significantly affected by
by settingn = 0.3, « = 0.3, andy = 0.1. Fig. 3(a) shows the noise correlation. This is due to the fact that the LLR
the correlation between the, 1)th bit (top left corner) and takes into account the correlation among the noise bits. On
every other bit while Figs. 3(b) and (c) show the same for thehe other hand, using the Hamming distance leads to a slight
(2, 1)th bit and the(2,2)th bit, respectively. By symmetry, degradation in the performance as the correlation incsease
other bits in corresponding positions will have similarreer  This can be explained by the fact that as the noise corralatio
lations. We observe that each bit is correlated with itsestar increases, noise vectors with large Hamming weights become

e4.2.2. Detection Performance
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Fig. 6. Influence of correlation of the fingerprint bits on the
detection performancef = p, = 0.2).

We have also described a technique to compute the proba-
bility of correct detection and the false alarm rate by eatim
ing the density of states and have provided numerical iesult
for a model of a block-based fingerprinting scheme. Our re-
sults show that the Likelihood Ratio statistic can comptnsa
for correlations in the fingerprint or noise and providesa-co
sistent performance. Increasing the marginal probabiifty
the noise, however, lowers the detection performance. The
Likelihood Ratio test also consistently outperforms theri-la
ming distance statistic, which was found to be sensitivé¢o t

P

Fig. 5. ROC for different noise correlatiop, at fixedp,
0.3 andp, = 0.2.

more probable, leading to higher missed detections. .
Next, we examine the influence of the correlation among
the fingerprint bits on the detection accuracy. Fig. 6 show
the ROC curves for content identification using fingerprints
of size4 x 4 for different correlations, where the noise pa-
rameter,, = p, = 0.2. From the figure, we again observe
that detection using the LLR statistic, which compensates f 3]
the correlation among the fingerprint bits is not signifitant
affected by the correlation. For the Hamming distancesstati
tic, there is an increase in false alarms at a givgmas the a1
correlation among the fingerprints increases, as similar co
figurations with smaller distances become more probable. 5]

5. CONCLUSIONS

We have proposed a model for content fingerprints usinés]
Markov Random Fields that capture local correlations among
individual fingerprint components. We examined the proble
of matching two fingerprints as a binary hypothesis testin
problem and derived the optimal decision rule. For the case
of independent and equally likely bits, the optimum rule re-
duces to the comparison of the Hamming distance betwee[ﬁ]
the fingerprints to a threshold. In a general fingerprinting
scheme with correlated bits, however, comparing the Ham-
ming distance to a threshold is suboptimal.

7]

{52] A. L. Varna, A. Swaminathan, and M. Wu,

f correlations among the fingerprint and noise bits.

6. REFERENCES

J. Lu, “Video fingerprinting for copy identification: From re-
search to industry applications,” I8PIE and 1S&T Media
Forensics and Security, San Jose, CA, Jan. 2009.

“A Decision-
Theoretic Framework for Analyzing Binary Hash-based Content
Identification Systems,” ifProceedings of the ACM Workshop

on Digital Rights Management, Oct. 2008, pp. 67-76.

A. L. Varna and M. Wu, “Theoretical Modeling and Analysis
of Content Identification,” IEEE International Conference on
Multimedia and Expo, pp. 1529-1531, Jul. 2009.

R. Kinderman and J. L. SnelMarkov Random Fields and their
Applications, American Mathematical Society, 1980.

C. M. Bishop, Pattern Recognition and Machine Learning,
Springer, 2006.

A. Doucet and X. Wang, “Monte Carlo Methods for Signal Pro-
cessing,”|EEE Sgnal Processing Magazine, vol. 22, no. 6, pp.
152-170, Nov. 2005.

F. Wang and D. P. Landau, “Efficient, Multiple-Range Random
Walk Algorithm to Calculate the Density of StatesPhysical
Review Letters, vol. 86, no. 10, pp. 2050-2053, Mar. 2001.

P. D. Beale, “Exact Distribution of Energies in the Two-
Dimensional Ising Model,” Physical Review Letters, vol. 76,
pp. 78-81, 1996.



