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ABSTRACT

Content fingerprints are widely employed for identifying mul-
timedia in various applications. A “fingerprint” of a video or
audio is a short signature that captures unique characteristics
of the signal and can be used to perform robust identification.
Several fingerprinting techniques have been proposed in the
literature and are often evaluated using benchmark databases.
To complement these experimental evaluations, this paper de-
velops a theoretical model for content fingerprints and evalu-
ates the identification accuracy. Fingerprints and the noise are
modeled as Markov Random Fields and the optimal decision
rule for matching is derived. An algorithm to compute the
probability of correct detection and the false alarm rate byes-
timating the density of states is described. Numerical results
are provided for a model of a block based binary fingerprint-
ing scheme and the influence of the fingerprint correlation and
the noise on the detection accuracy is studied.

Index Terms— Content fingerprints, content identifica-
tion, Markov Random Fields, Wang-Landau density of state
estimation.

1. INTRODUCTION

The Internet is emerging as a new and powerful medium for
multimedia distribution and consumption. These new distri-
bution channels have also raised several challenges in mul-
timedia management and rights enforcement. Popular copy-
righted videos are often reposted on user generated content
(UGC) websites, such as Youtube, without authorization. To
ensure that the content is being used in accordance with the
content owner’s guidelines, UGC websites should be able to
correctly identify posted videos. Content fingerprinting is
emerging as a promising technology for multimedia identifi-
cation, wherein, for each video or audio, a short “fingerprint”
is computed that captures robust and unique characteristics of
the signal. Given a video/audio that needs to be identified,
a fingerprint is computed and compared with a database of
known fingerprints. If a match is found, then the content has
been identified, else it is deemed as unknown.

Content identification also has several applications in
multimedia management. Many multimedia databases are
often not fully annotated, and manual annotation is imprac-
tical. Fingerprints can be used to automatically identify the
database content and annotate them. Fingerprints have also
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been deployed in products that identify audio from short clips
recorded by mobile phones.

Several multimedia fingerprinting techniques have been
proposed in the literature and have been reviewed in [1].
These techniques have mostly been evaluated through exper-
iments on benchmark databases of limited sizes. In practical
systems, the reference database typically contains millions of
videos, and it is difficult to predict the performance of fin-
gerprinting schemes on these large databases from moderate-
scale experiments. There is a strong need for theoretical anal-
ysis that can complement experimental evaluations to provide
understanding of the scalability and performance of finger-
printing systems and guide the design of better schemes.
Using aspects from decision theory and game theory, our
previous work [2, 3] has provided guidelines for designing
fingerprints and choosing parameters, such as the length,
to achieve a desired performance. The prior work assumed
that the fingerprint components were independent and identi-
cally distributed (i.i.d.), but many practical schemes generate
fingerprints with correlated components. In this paper, we
develop a model using Markov Random Fields (MRFs) to an-
alyze the performance of such fingerprinting schemes whose
components are correlated.

Section 2 provides a brief overview of MRFs and Sec-
tion 3 describes a model for content fingerprints using MRFs.
The matching accuracy using fingerprints is also examined
in Section 3, and an algorithm is developed to compute the
probabilities of detection and false alarm. Section 4 provides
numerical results and Section 5 summarizes the main results
and contributions of this paper.

2. MARKOV RANDOM FIELDS

Markov Random Fields (MRFs) are a generalization of
Markov chains in which time indices are replaced by space
indices [4]. MRFs are undirected graphical models and rep-
resent conditional independence relations among random
variables. In this section, we briefly review key concepts
related to MRFs.

An MRF consists of an undirected graphG = (V, E) with
a set of nodesV and a set of edgesE between nodes. Each
nodeX ∈ V represents a random variable, and we will useX

to denote the node and the random variable interchangeably.
The vectorX denotes all random variables represented by the
MRF. Two nodesXi andXj are said to be neighbors if there
is an edge between them, i.e.(i, j) ∈ E . A set of nodes
C is called a maximal clique if every pair of nodes inC are
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Fig. 1. Markov Random Field model for (a) fingerprint com-
ponents and (b) fingerprint and noise.

neighbors and there is no node inV\C that is a neighbor of
every node inC. An energy functionEC({xC}) is associated
with every maximal cliqueC that maps the values{xC} of the
nodes inC to a real number. The joint probability distribution
of all the random variables represented by the MRF is then
given asp(X = x) = 1

Z
exp (−

∑
C EC({xC})), whereZ

is a normalization constant called the partition function.The
term in the exponent,E(x) =

∑
C EC({xC}), is sometimes

referred to as the energy of the configurationx.
MRFs have been used in several applications in image

processing and computer vision [5] as they can represent lo-
cal correlations among random variables. In the next section,
we develop a model for content fingerprints using MRFs to
capture local dependencies and examine the performance.

3. MRF MODEL FOR CONTENT FINGERPRINTS

We model content fingerprints as a Markov Random Field
to capture correlations among individual fingerprint compo-
nents. Each fingerprint value is represented as a node in the
MRF, and pairs of nodes that have dependencies are joined by
edges. We illustrate our model using a representative finger-
printing scheme that partitions each video frame into blocks
and extracts one bit from each block [1]. For example, such a
scheme could perform thresholding on the average luminance
of a block. Alternatively, the differences between the average
luminance of neighboring blocks could be quantized to one
bit accuracy. While we use a simple 2-D Ising model for ease
of illustration, the main principles behind our modeling can
be extended to 3-D and more complex models.

3.1. Model for a block-based Fingerprinting scheme

Suppose that each video frame of sizePH1 × QH2 is par-
titioned intoPQ blocks of sizeH1 × H2 each and one bit
of the fingerprint is extracted from each block. Due to un-
derlying correlations among the blocks of the frame, these
bits are likely to be correlated. We represent the bit extracted
from each block as a node in a graphG0 = (V0, E0), with the
nodeXi,j representing the bit from the(i, j)th block. Each
node may take one of two values±1, with bit ‘b’ represented
as(−1)b, and is connected to the four nearest neighbors, so
that the overall graph satisfies 4-connectivity as shown in
Fig. 1(a). For convenience, we use a vectorX to represent
the bits{Xi,j}, which could be obtained by any consistent
reordering, such as raster scanning.

As described in Section 2, the joint probability distribu-
tion of the fingerprint can be specified by defining an energy
function for the model. We use the energy function that has
been commonly used for modeling binary images [5]:

E0(x) = −h
∑

i

xi − η
∑

(j,k)∈E0

xjxk. (1)

This corresponds to the 2-D Ising model that has been widely
used in statistical physics. Here,η controls the correlation be-
tween nodes that are connected andh determines the marginal
distribution of the individual bits. A higher value forη would
increase the correlation among neighboring bits, and largeh

would bias the bits to be+1. The joint distribution can then
be written asp0(x) = 1

Z0

exp(−E0(x)).
While the above model suffices to describe the fingerprint

bits of the original video frame, in practice, fingerprints are
extracted from possibly modified versions of the video and
may be noisy. The noise components may be mutually cor-
related and depend on the fingerprint bits. To accommodate
such modifications, we propose a joint model for the noise
bits and the fingerprint bits of the original unmodified video,
which is shown in Fig. 1(b). The filled circles represent the
noise bits and the open circles represent the fingerprint bits.
The solid edges capture the dependencies among the finger-
print components, while the dashed and dotted edges repre-
sent the local correlations among the noise bits. The dashed
edges can be used to model the correlations between the noise
bits and the fingerprint bits, but such an undirected edge can-
not completely capture the causal nature of this dependance.

In this paper, we consider the case where the noise bits
may be mutually dependent, but are independent of the fin-
gerprint bits, implying that the dashed edges are absent. In
this case, the model for the noise bits{Ni,j} reduces to a 2-D
Ising modelG1 = (V1, E1) similar to that for the fingerprints.
The energy function for a configurationn can be defined as:

E1(n) = −α
∑

i

ni − γ
∑

(j,k)∈E1

njnk, (2)

and the distribution is specified asp1(n) = 1
Z1

exp(−E1(n)).
The parametersα andγ control the marginal distribution and
the pairwise correlation among the noise bits, respectively.

The above MRF can be used to model block based binary
video fingerprints computed on a frame by frame basis. For
other fingerprinting schemes, different graphs can be used to
capture the local dependencies among the fingerprint compo-
nents. Given such a model for the fingerprints and the noise,
we analyze the process of matching two fingerprints as a hy-
pothesis testing problem, as illustrated in the next section.
3.2. Hypothesis Testing
Given a query videoW and a reference videoV in its
database, the detector has to decide whetherW is derived
from V or whether the two videos are unrelated. To do so, the
detector computes the fingerprintsy andx from the videos
W andV , respectively. The detector then performs a binary
hypothesis test, with the null hypothesisH0 that the two



fingerprints are independent and the alternate hypothesisH1

that the fingerprinty is a noisy version ofx:

H0 : (x,y) ∼ p0(x)p0(y),

H1 : (x,y) ∼ p0(x)p1(n), (3)

wherep0(·) is the distribution of the fingerprints,p1(·) is the
distribution of the noise and the noise is the element-wise
product of the two fingerprintsn = x ⊗ y.

We consider a Neyman-Pearson setting, where the detec-
tor seeks to maximize the probability of detectionPd under
the constraint that the probability of false alarmPf ≤ δ. The
optimal decision rule is obtained by comparing the log likeli-
hood ratio (LLR) to a threshold:

LLR(x,y) = E0(y) − E1(n)
H1

≷
H0

τ, (4)

where the constants have been absorbed into the thresholdτ ,
which is chosen such thatPf = δ. In cases where the LLR
is discrete, it may be necessary to incorporate randomization
when the LLR equals the threshold.

For the frame-wise block-based binary fingerprinting
scheme model described in Section 3.1, the LLR is given by:

LLR(x,y) = −h
∑

i

yi − η
∑

E0

yjyk + α
∑

i

ni + γ
∑

E1

njnk.

If the fingerprint bits are i.i.d. and equally likely to be±1,
corresponding toη = h = 0, and the noise bits are indepen-
dent (γ = 0), the optimum decision rule reduces to a compar-
ison of the Hamming distance betweenx andy to a threshold,
as derived in [2]. However, when the bits are correlated, fin-
gerprint matching using the Hamming distance issuboptimal.

The probability of detectionPd = Pr(LLR(x,y) >

τ |H1) and the probability of false alarmPf = Pr(LLR(x,y) >

τ |H0). It is not possible to accurately estimate these tail prob-
abilities using traditional techniques such as Markov Chain
Monte Carlo (MCMC) simulations [6], since these events
have small probability of occurrence and are rarely observed
in a typical MCMC simulation. Instead, we take a different
approach inspired by statistical physics to first estimate the
so called density of states and then utilize this information to
estimate these probabilities.

3.3. ComputingPd and Pf

For ease of illustration, we again use the example of the bi-
nary fingerprint model described in Section 3.1. Suppose we
defineM(x) =

∑
i xi andEcorr(x) = −

∑
(j,k)∈E0

xjxk,
the LLR in Eqn. (4) can be written asLLR(x,y) = −hM(y)+
ηEcorr(y) + αM(n) − γEcorr(n), sinceE0 = E1 in this
model. Similarly, the energy for the fingerprint bits and the
noise ,E0(x) andE1(n), described in Eqns. (1) and (2) can
be rewritten in terms of these functions. Thus, the tuple
S(x,y) = (M(x), Ecorr(x), M(y), Ecorr(y), M(n), Ecorr(n)),

captures all necessary information regarding the configu-
ration (x,y). Define g(s) = g(mx, ex,my, ey,mn, en)
as the number of configurations(x,y) that haveM(x) =
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Fig. 2. Relative error in the estimation of density of states for
a 4x4 Ising model with periodic boundary conditions.

mx, Ecorr(x) = ex,M(y) = my, Ecorr(y) = ey,M(n) =
mn, andEcorr(n) = en. Note that this “density of states”g
depends only on the underlying graphical model and is inde-
pendent of the parameters(h, η, α, γ) of the distributions.

The probability of detectionPd can then be rewritten as:

Pd(τ) =
∑

(x,y)

1{LLR(x,y) > τ}p0(x)p1(n)

=
∑

s

g(s)1{LLR > τ}p0(x)p1(n), (5)

where the summation in the second equation is over all possi-
ble values ofs = (mx, ex,my, ey,mn, en). Similarly,

Pf (τ) =
∑

s

g(s)1{LLR > τ}p0(x)p0(y). (6)

As theLLR and the probabilitiesp1(n) andp0(x) depend
only on s, knowledge ofg(s) allows us to computePd and
Pf . Thus, the problem of computingPd and Pf has been
converted into one of estimating the density of statesg(s).
An algorithm to estimate the density of states by constructing
a Markov chain that has1

g(s) as its stationary distribution and
ensuring that all states are visited approximately equallyoften
was proposed in [7]. An advantage of this “Wang-Landau”
algorithm is that states with low probability of occurrenceare
also visited as often as high probability states, enabling us to
estimate their probabilities accurately. We first use this al-
gorithm [7] to estimate the density of statesg(s) and then
computePd andPf using Eqns. (5) and (6).

4. NUMERICAL RESULTS

We use the MRF model coupled with the technique for com-
putingPd andPf described in the previous section to study
the influence of correlation among the fingerprint components
on the overall detection performance. We focus on binary
fingerprinting schemes and provide numerical results for the
model described in Section 3.1. As most binary fingerprint
schemes generate equally likely (but not independent) bits,
we set the parameterh = 0 in our simulations. This also has
the effect of reducing the parameter space from a 6-D space
(mx, ex,my, ey,mn, en) to a 4-D space(ex, ey,mn, en), as
the expressions for theLLR and probability distributions will
not involvemx andmy.
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Fig. 3. Typical correlation structure among the various fingerprinting bits. Correlation coefficients for the (a)(1, 1)th bit, (b)
(2, 1)th bit, (c) (2, 2)th bit and the remaining bits. The ‘*’ denotes the bit under consideration.

4.1. Density of states estimation
We evaluate the accuracy of the estimation algorithm using
known exact results for the density of energy statesgI(E)
for the 2-D Ising model [8]. To enable comparison, periodic
boundary conditions are used - the nodesX1,j in the top row
are connected to the corresponding nodesXM,j in the bot-
tom row, and the nodes in the first column are similarly con-
nected to the nodes in the last column, so that every node is 4-
connected. 4-connectivity is similarly achieved for the noise
nodes{Ni,j}. We use the Wang-Landau algorithm to estimate
the density of statesg(s) = g(ex, ey,mn, en) by performing
a random walk in the 4-D parameter space and use the es-
timatedg(s) to estimategI(E). In our simulations, we use
the parameters suggested in [7] and the maximum number of
iterations is capped at1010.

We measure the accuracy of estimation by computing the
relative errorε(gI(E)) in the estimate of the density of states,
defined asε(x) = |x−xest|

x
. Fig. 2 shows the relative error in

the estimation of the density of states for a 2-D Ising model
of size4 × 4 with periodic boundary conditions. From the
figure, we observe that the maximum relative error is approx-
imately 0.37%, and the mean relative error is0.1%. These
results demonstrate that accurate estimates of the densityof
states can be obtained using the Wang-Landau algorithm. The
estimation accuracy can be improved by suitably altering pa-
rameters in the algorithm as necessary.

4.2. Performance of correlated fingerprints

To examine the performance of correlated fingerprints, we use
the model without periodic boundary conditions. The nodes
at the corners are only connected to their2 closest neighbors,
the remaining nodes at the borders are connected to their3
closest neighbors, and all the other nodes are 4-connected.

4.2.1. Correlation among Fingerprint bits

The correlation is estimated from108 MCMC iterations by
retaining only1 out of100 iterations. Fig. 3 shows the corre-
lation among the fingerprint bits for a4 × 4 model, obtained
by settingη = 0.3, α = 0.3, andγ = 0.1. Fig. 3(a) shows
the correlation between the(1, 1)th bit (top left corner) and
every other bit while Figs. 3(b) and (c) show the same for the
(2, 1)th bit and the(2, 2)th bit, respectively. By symmetry,
other bits in corresponding positions will have similar corre-
lations. We observe that each bit is correlated with its nearest

neighbor with a correlation coefficientρx ≈ 0.3 and the cor-
relation decays with distance. This is the typical correlation
behavior observed in our model and reflects the correlation
expected in practice, as bits extracted from adjacent blocks
are expected to be more correlated than bits extracted from
blocks far apart. We observe a similar correlation structure
among the noise bitsNi,j , as the noise and fingerprint models
are similar.

4.2.2. Detection Performance

Using the estimated density of states, the probabilitiesPd and
Pf are computed as described in Section 3.3 to obtain the Re-
ceiver Operating Characteristics (ROC) curves. We examine
the influence of different parameters on the detection perfor-
mance. At the outset, we note that errors in the estimation
of the density of states will also affect the accuracy of these
estimates. However, as shown in Section 4.1, these errors are
small, and the accuracy can be improved by obtaining a better
estimate of the density of states.

First, we examine the effect of the noise on the detection
accuracy. We characterize the noise by the probabilitypn of
a noise bit being ‘−1’ - the equivalent of a binary ‘1’ bit, and
the correlation among the noise bitsρn, which are estimated
from the MCMC trials. Fig. 4 shows the ROC curves for a
fingerprint of size4 × 4 bits with correlationρx = 0.2 under
two differentpn and fixedρn = 0.2, for a detector using the
Log Likelihood Ratio (LLR) statistic and a detector using the
Hamming distance statistic. As expected, the performance is
worse when there is a higher probability of the noise changing
the fingerprint bits. We also observe that for a given noise
level, the LLR statistic gives5−10% higherPd at a givenPf

compared to the Hamming distance detector.
Fig 5, shows the influence of the noise correlation on the

detection performance. From the figure, we infer that for a
fixed correlation among the fingerprint bitsρx = 0.2 and a
fixed marginal probability of the noise bitspn = 0.3, detec-
tion using the LLR statistic is not significantly affected by
the noise correlation. This is due to the fact that the LLR
takes into account the correlation among the noise bits. On
the other hand, using the Hamming distance leads to a slight
degradation in the performance as the correlation increases.
This can be explained by the fact that as the noise correlation
increases, noise vectors with large Hamming weights become
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more probable, leading to higher missed detections.
Next, we examine the influence of the correlation among

the fingerprint bits on the detection accuracy. Fig. 6 shows
the ROC curves for content identification using fingerprints
of size4 × 4 for different correlations, where the noise pa-
rameterspn = ρn = 0.2. From the figure, we again observe
that detection using the LLR statistic, which compensates for
the correlation among the fingerprint bits is not significantly
affected by the correlation. For the Hamming distance statis-
tic, there is an increase in false alarms at a givenPd as the
correlation among the fingerprints increases, as similar con-
figurations with smaller distances become more probable.

5. CONCLUSIONS

We have proposed a model for content fingerprints using
Markov Random Fields that capture local correlations among
individual fingerprint components. We examined the problem
of matching two fingerprints as a binary hypothesis testing
problem and derived the optimal decision rule. For the case
of independent and equally likely bits, the optimum rule re-
duces to the comparison of the Hamming distance between
the fingerprints to a threshold. In a general fingerprinting
scheme with correlated bits, however, comparing the Ham-
ming distance to a threshold is suboptimal.
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Fig. 6. Influence of correlation of the fingerprint bits on the
detection performance (pn = ρn = 0.2).

We have also described a technique to compute the proba-
bility of correct detection and the false alarm rate by estimat-
ing the density of states and have provided numerical results
for a model of a block-based fingerprinting scheme. Our re-
sults show that the Likelihood Ratio statistic can compensate
for correlations in the fingerprint or noise and provides a con-
sistent performance. Increasing the marginal probabilityof
the noise, however, lowers the detection performance. The
Likelihood Ratio test also consistently outperforms the Ham-
ming distance statistic, which was found to be sensitive to the
correlations among the fingerprint and noise bits.
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