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FAST IDENTIFICATION ALGORITHMS FOR FORENSIC APPLICATIONS

Fokko Beekhof, Sviatoslav Voloshynovskiy, Oleksiy Koval and Taras Holotyak

University of Geneva
Department of Computer Science

7 route de Drize, CH 1227, Geneva, Switzerland

ABSTRACT

In this work a novel fast search algorithm is proposed that is
designed to offer improved performance in terms of identi-
fication accuracy whilst maintaining acceptable speed for
forensic applications involving biometrics and Physically
Unclonable Functions. A framework for forensic applica-
tions is presented, followed by a review of optimal and ex-
isting fast algorithms. We show why the new algorithm has
the power to outperform the other algorithms with a theo-
retic analysis and confirm this using simulations on a large
database.

1. INTRODUCTION

The present work targets fast identification systems based
on biometrics or Physically Unclonable Functions (PUFs).
Both biometrics and PUFs are well-known techniques in
forensic applications [1] because of their ability to serveas
a unique identifyer for many people and objects.

For reasons of computational complexity, privacy and
security, it is undesirable for an identification system to re-
tain the biometrics or PUFs in their full form, yet the perfor-
mance in terms of successful identification should be mini-
mally reduced, moreover, the reduction in performance should
be predictable which requires a thorough understanding and
analysis.

The theoretical framework in which the identification
can be analysed has been reported in previous work [2], but
a quick overview is given here for reference, see Figure 1. A
codebook is generated by recording biometrics or PUFs of
each person or item to be identified during the enrollment
stage, the source of the data is modelled by a continuous
memoryless sourceX with some distributionp(x). One of
the differences with classical communication setups is that
the distributionp(x) is given rather than chosen. The re-
ceiver observes a noisy version of the biometric or PUFs
of a given person or item, whereY is the observation and
the probabilistic mismatch betweenX andY is modelled
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Fig. 1. A schematic overview of a framework for privacy-
preserving identification.

by the channelp(y|x). In a classic communication setup,
the receiver has access to the codebook and attempts to find
the entry corresponding to the channel output. The iden-
tification capacityCid is I(X;Y) whereI(.; .) is the mu-
tual information [3]. The second step of the enrollment is
to reduce the dimensionality fromN to L to extract a so-
calledtemplate. The reduction is accomplished by applying
random projections [4]; we use an approximation of a so-
calledorthoprojector Ψ, where eachΨi,j ∼ N (0, 1

N
). The

dimensionality reduction step transformsX into X̃ andY

into Ỹ; as a consequence, the achievable rate at this stage is
denoted as̃Rid and is equal toI(X̃; Ỹ) [5].

For reasons discussed earlier, the original codewords
have not been preserved, but onlyL-length binary templates
are derived from the projected data by taking the sign, pro-
ducingBx andBy. The equivalent channel between these
binary vectors follows the Binary Symmetric Channel (BSC)
model, resulting in an achievable ratẽRBSC

id = I(Bx;By)
[6].

Once enrolled, a typical codebook size can be of the
order of millions or even billions, which is why fast and
reliable identification based on binary data is emerging as
an important open problem.

Once the data has been enrolled, the question is how to



query the resulting database in such a way that the perfor-
mance in terms of the probability of error and complexity
is optimized. Unfortunately, the problem of decoding using
unstructured codebooks is known to be NP-hard, and thus
fast approximative methods are required to create practical
systems.

The proposed design can be analyzed within the frame-
work of Locality Sensitive Hashing (LSH) [7, 8], which has
at least one form similar to our proposed setup. In that par-
ticular case, each hash function is the sign of the projection
of the data onto a normal unit vector, which satisfies the re-
quirements of an orthoprojector as in our work. In another
variant, the projection is quantized and the index of the bin
is the basic hash. Peculiarly, nothing is mentioned about the
possible use of Gray codes instead of regular indices, which
might reduce the number of bit-errors. A particular case is
where quantization yields only one bit, for example by tak-
ing the sign, an approach taken in our proposed design as
well.

Another scheme that can be analyzed within the frame-
work of LSH is due to Kalker and Haitsma [9]. A key
difference is that in LSH a number of complete hashesg

are created each by concatenating the outputs ofk basic
hash-functions, whereas in the original work of Kalker and
Haitsma only one complete hash is calculated from audio-
data first, which is then divided into blocks. In this work,
the hash is created by taking the sign from projections onto
Gaussian basis vectors. Under these conditions, each re-
sulting bit can be considered as the output of a single basic
hash function, and each block ofk bits as one hash func-
tion g. In that case, this variant of the Kalker and Haitsma
Scheme (KHS) can be considered equivalent to LSH, where
the number of functionsg is equal to the number of blocks.
As in [7], a set of candidates is selected by consulting hash
tables corresponding to each block or functiong, and from
these candidates a final answer is derived.

Practical systems following the framework have access
only to a codebook of templatesbx and the channel output
y. The contribution of this paper consists in the evaluation
of different fast decoders that perform this identificationand
the introduction of a new decoder. The new decoder lever-
ages knowledge about the probability of a change of sign
in the projected channel output resulting in several advan-
tages: first, the accuracy can be enhanced; second, the time-
complexity can be more carefully managed.

The paper is organized as follows: Section 2 reviews dif-
ferent known decoders that achieve optimal performance for
the considered channel model and existing fast approxima-
tive decoders; additionally it introduces a novel fast approx-
imate decoder. Section 3 contains the result of computer
simulations and finally Section 4 concludes the paper.

2. DECODERS

In this paper, we will focus on the Additive White Gaus-
sian Noise (AWGN) channelp(y|x) whereY = X + Z

andZ ∼ N (0, σ2
ZIN ). We assume that allM codewords

are equiprobable and independent, generated fromX(m) ∼
N (0, σ2

XIN ) where1 ≤ m ≤ M . All vectors in the direct
domain are of lengthN , in the projected and binary domain
the length isL whereL < N .

2.1. Minimum Euclidean Distance Decoder

Under these assumptions, the optimal maximum likelihood
decoder reduces to a minimum Euclidean distance decoder:

m̂ = arg min
1≤m≤M

||x(m) − y||,

where||.|| denotes the Euclidean distance. This kind of de-
coding requiresO(MN) operations, which is too much for
most practical applications.

To introduce the best achievable bound for all approxi-
mative decoders, we will use the average probability of error
for a Euclidean distance decoder [10]:

pe = 1 −

∫ ∞

−∞

(

1 − Q

(

t + 1
2 ||x||

2

√

σ2
Z ||x||

2

))M−1

× exp

[

−
1

2σ2
Z ||x||

2
(t −

1

2
||x||2)2

]

dt. (1)

2.2. Minimum Projected Euclidean Distance Decoder

To reduce the complexity as well as to cope with the curse of
dimensionality, many practical fast decoders map the origi-
nal data of lengthN into a space of a lower dimensionality
L. In the scope of this dimensionality reduction, the input
datax is mapped into:

x̃ = Ψx,

wherex ∈ R
N , x̃ ∈ R

L, Ψ ∈ R
L×N whereL ≤ N . Due

to the assumed Gaussian distribution of the basis vectors
Ψ(i) wherei ∈ {1, . . . , L}, the resulting vectors will also
be Gaussian, i.e.,̃X ∼ N (0, σ2

XIL) andZ̃ ∼ N (0, σ2
ZIL).

The optimal decoder is therefore still the minimum Euclidean
distance decoder, to which we will refer as the Minimum
Projected Euclidean Distance or “Proj Euclid” decoder. It
simply finds the codeword whose projection has the small-
est Euclidian distance to the projected channel output by
exhaustive search:

m̂ = arg min
1≤m≤M

||x̃(m) − ỹ|| (2)

= arg min
1≤m≤M

x̃T (m)x̃(m) − 2x̃T (m)ỹ + ỹT ỹ.



Under condition that̃xT (m)x̃(m) is equal for allm, the
“Proj Euclid” decoder is equal to the maximization of the
empirical correlationρX̃(m),Ỹ = x̃T (m)ỹ.

The complexity of this decoder isO(ML) and the achiev-
able rate isI(X̃; Ỹ). The performance of this decoder is
also defined by Equation (1) with the replacement of||x||
by ||x̃||.

2.3. Minimum Hamming Distance Decoder

Biometric or PUF templates can be obtained from the pro-
jected vectors by binarization by taking the sign:

bx,i(m) = sign(Ψ(i)T x(m)), ∀i ∈ {1, . . . , L}.

Any noisy channel outputy derived from a givenx(m) will
also be converted into the binary domain, the result being a
BSC betweenBx andBy with a crossover probability:

p̄b =
1

π
arccos ρX,Y , (3)

whereρX,Y = ±

√

σ2

X

σ2

X
+σ2

Z

is the cross-correlation coeffi-

cient betweenX andY.
The optimal maximum-likelihood decoder for the BSC

reduces to a minimum Hamming distance decoder. LetdH(., .)
denote the Hamming distance between two binary sequences,
then the minimum Hamming distance decoder is:

m̂ = arg min
1≤m≤M

dH(bx(m),by).

Like the previous exhaustive search decoder, its complexity
isO(ML), but in contrast to the Euclidean distance decoder
it operates on binary data, which is significantly faster in
practice. The achievable rate isI(Bx;By).

2.4. Locality Sensitive Hashing

A KHS-decoder has been included as a representative of the
LSH family of hash functions. TheL-length vector is par-
titioned in several blocks of sizek. The idea is that there is
a significant chance that in a short block no bit has flipped,
which implies that with large probability, it points to the
right entry in a corresponding hash table. There are hash ta-
bles for each different block rather than one combined table
as in the original design by Kalker and Haitsma. The hash
tables are consulted for each block to find codewords that
have a matching sequence of bits in the same position as the
hashed channel output. The codewords that have the high-
est number of matching blocks form the set of candidates.
From these candidates, the winning indexm̂ is chosen as
the one that has the smallest Hamming distance to the bi-
nary template of the channel output.

The decoder tries to minimize the Hamming distance,
but unlike the reference implementation by exhaustive search,

there is a risk that the appropriate codeword does not show
in the lookup tables more frequently than all others. The
output is thus an approximation of the minimum Hamming
distance:

m̂ ≈ arg min
1≤m≤M

dH(bx(m),by).

The achievable rate is upper bounded byI(Bx;By).
The complexity of the decoder isO(L

k
M
2k ) and the chance

of a block of lengthk to be error-free ispC
b = (1 − p̄b)

k,
which shows the tradeoff between performance in terms of
accuracy and runtime: both change exponentially as a func-
tion of the block size.

2.5. NP soft Decoder

The LSH-decoder operates purely on binary data, hence its
rate is limited byI(Bx;By), even though a decoder has
access to the full channel outputY. The logical result is
that the performance is degraded with respect to the “Proj
Euclid” decoder.

In order to move closer to the accuracy of the “Proj Eu-
clid” decoder whilst maintaining acceptable complexity, we
propose the “NP soft” decoder, that uses the real-valued
(soft) informationỹ.

The “NP soft” decoder is a heuristic-guided backtrack-
ing algorithm designed to find the most likely match in the
binary codebook by flipping a fraction of theL bits start-
ing with the least reliable ones, inspired by DPLL-solvers
for the Satisfiability problem [11, 12]. This covers the most
likely original codewords and is therefore an approximation
of an ML-decoder. The depth of the tree that is expanded
during the recursive search is limited to a numberD ≤ L.

If a binary alphabet{−1, 1} is used to represent the
codebook, the following metric is used to assign a score to
different items that are found in the codebook during the
search:

ρ̂X̃(m),Ỹ =

L
∑

i=1

bx,i(m)by,iỹ
2
i . (4)

This metric is an estimate of the correlation; note thatx̃(m)
can be decomposed asx̃i(m) = sign(x̃i(m)) |x̃i(m)|where
|x̃i(m)| denotes the magnitude.̃y can be decomposed sim-
ilarly, then the correlation can be computed as:

ρX̃(m),Ỹ =

L
∑

i=1

x̃i(m)ỹi,

=
L

∑

i=1

sign(x̃i(m))|x̃i(m)|sign(ỹi)|ỹi|,

=

L
∑

i=1

−(bx,i(m) ⊕ by,i)|x̃i(m)||ỹi|. (5)



Becausẽx is not available at the decoder, it is estimated as
ỹ, applying this estimation in (5) leads to (4), showing that
ρ̂X̃(m),Ỹ is an estimator forρX̃(m),Ỹ. This demonstrates the
relation with the “Min Proj” decoder introducted in Section
2.2.

It should be noted that if the depth of the search is prop-
erly chosen, only one entry should be encountered whilst
flipping bits, assuming that the Hamming distance between
the entries is sufficient to guarantee that the hash of the
channel output is practically always closest to the hash of
the original codeword. The fact that the depth of the search
is limited implies that the algorithm produces only an ap-
proximation of the estimated value, hence the decoding met-
ric is:

m̂ ≈ arg max
1≤m≤M

ρ̂X̃,Ỹ (x̃(m), ỹ)).

Instead of searching over allbx(m), the algorithm flips
bits inby and tests for the existence of the resulting bitstring
in the codebook. If a codewordbx(m) is found, the score
can be computed knowing that each flipped bitby,i corre-
sponds to a mismatch withbx,i(m). As the existence of an
entry in the codebook is sufficient, the security and privacy
could be enhanced by storing hashes of the templates rather
than the templates themselves, provided that the resulting
codebook remains sufficiently sparse to avoid collisions.

The achievable rate is upper bounded byI(Bx; Ỹ), the
complexity isO(2D log2 M), whereD is the fixed limit on
the depth of the search. To search through the full code-
book, one should setD = L, but this is unnecessary for the
following reason: using the BSC as a model after binariza-
tion, a parameter̄pb can be determined, and then the number
of bit flips that occur follows a Binomial distribution with
parametersL andp̄b. For any arbitrarily chosen large prob-
ability 1 − ǫ, the maximum number of bit-flips can be de-
termined through the inverse of the cumulative distribution
function.

3. SIMULATION RESULTS

The different decoders were tested using a database of syn-
thetic data that is independently and identically normally
distributed, i.e.X ∼ N (0, IN ); a total ofM = 220 samples
of lengthN = 1024 were produced to form the codebook,
the dimensionality is reduced toL = 32. The Signal-to-

Noise Ratio is defined as SNR= 10 log10
σ2

X

σ2

Z

.

For the “NP soft” decoder, the value of D is given by:

D = min

(

12,
3

2
F−1(1 − 10−6, L, p̄b)

)

,

whereF−1(., ., .) is the inverse cumulative distribution func-
tion of the Binomial distribution with parametersL andp̄b.
In case of such a Gaussian setup, the probability of a bit
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Fig. 2. The probability of error as a function of the SNR for
the tested data forM = 220.

flipping can be computed by developing Equation (3):

p̄b =
1

π
arccos

√

√

√

√

1

1 +
σ2

Z

σ2

X

. (6)

The tests have been run with two versions of the KHS de-
coder, one usingk = 8 (KHS8) and one wherek = 16
(KHS16). See Table 1 for a list of the used limits on the
search depths.

SNR 0 5 10 15 20 25 30
D 12 12 12 12 9 7 6

Table 1. Search depth of the “NP soft” decoder per SNR.

The probability of error is defined as

pe =
1

M

M
∑

m=1

Pr[m̂ 6= m|m] (7)

and has been plotted in Figure 2 as a function of the SNR.
The data for the minimum Euclidean distance in the pro-
jected domain proved too computationally intensive, so Equa-
tion (1) has been used to determine the results for that de-
coder. The “NP soft” decoder outperforms all binary de-
coders.

Regarding the complexity, the runtime depends very much
on the particular platform, which limits our ability to make
sensible comparisons to the big-O notations. A plot of the
complexity is displayed in Figure 3 for the values used in
the simulations. The difference between the complexity of
exhaustive search over a codebook ofN -length data such
as the minimum Euclidean distance or cross-correlations in
the direct domain (ExhaustiveN ) and the complexity of
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Fig. 3. The order of the time-complexity as a function of
the SNR for the tested data.

algorithms usingL-length data such as exhaustive search
over the minimum Euclidean distance in the projected do-
main or the Hamming distance in the binary domain (both
ExhaustiveL) shows the benificial effect of dimensionality
reduction. The effectiveness of the fast search algorithms
is clearly visible as a significant drop in complexity when
compared to both forms of exhaustive search. The “NP-
soft” decoder has a complexity comparable to the “KHS”
decoders for higher SNRs, but its accuracy is much higher.

4. CONCLUSIONS

We have reviewed a framework for identification based on
noisy data such as biometrics and Physically Unclonable
Functions. In light of this framework, we have investigated
different decoders and introduced an advanced decoder that
offers superior performance by approximating the optimal
decoder without excessive computational requirements.

Using computer simulations on a large database, the pro-
posed decoder proved to be able to outperform several exist-
ing decoders in terms of accuracy, whilst maintaining com-
parable complexity for SNRs that can realistically be ex-
pected in forensic applications.
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