First Steps Toward Image Phylogeny

Zanoni Dias, Anderson Rocha, Siome Goldenstein

Institute of Computing — University of Campinas (UNICAMP)
Av. Albert Einstein, 1251, Cidade Universitdria
13083-852, Campinas, SP — Brazil

{zanoni, anderson.rocha, siome}@ic.unicamp.br

Abstract—In this paper, we introduce and formally define a
new problem, Image Phylogeny Tree (IPT): to find the structure
of transformations, and their parameters, that generate a given
set of near duplicate images. This problem has direct applications
in security, forensics, and copyright enforcement. We devise a
method for calculating an asymmetric dissimilarity matrix from
a set of near duplicate images. We also describe a new algorithm
to build an IPT. We also analyze our algorithm’s computational
complexity. Finally, we perform experiments that show near-
perfect reconstructed IPT results when using an appropriate
dissimilarity function.

I. INTRODUCTION

Nowadays, digital content is easily redistributable, either
through lawful or unlawful means. There are situations where
each replication can cause slight modifications of the media,
such as gamma-correction or resampling on images and codec
re-encoding on videos. There are situations when we need
to detect all the copies and/or versions of a given document
cohabiting in the wild.

The literature has named this family of problems as near
duplicate detection & recognition (NDDR) of a document. The
problem of detection verifies if two documents are near copies
of each other. The problem of recognition finds, in a large
collection of documents, all member documents that are near
copies of a given query.

There are several applications for NDDR techniques: (1)
reducing the number of versions of a document — for storage
and management purposes; (2) tracking the legal distribution
and spread of a document on the Internet; (3) copyright
and intellectual property protection; and (4) illegal material
detection and apprehension. According to Maret [1], the more
documents we have, the higher the need for efficient duplicate
detection and recognition techniques.

While the detection of exact duplicates is relatively easy,
this is not the case for slightly modified duplicates, or near-
duplicates [1]-[4].

A far a more challenging task arises when we want to
identify, among a set of near duplications, which document
is the original, and the structure of generation of each near

WIFS’2010, December 12-15, 2010, Seattle, WA, USA. 97§-
1-4244-9080-6/10/$26.00 (©2010 IEEE.

duplication. We would like to be able to tell the history of the
transformations that gave rise to the duplications.

In this paper, we present the first steps toward the solution
of this problem applied to the particular case of images. This
rises several immediate applications.

o Security: the modification graph of a set of documents
provides information of suspects’ behavior, and points out
the directions of content distribution.

o Forensics: better results if the analysis is performed in
the original document instead of in a near duplicate [5].

¢ Copyright enforcement: traitor tracing without the
requirement of source control techniques such as
watermarking or fingerprinting.

We peek into biology to get an inspiration on how to
identify the document’s generating structure of modifications.
In Biology, we can look at the process of evolution as a
branching process, whereby populations change over time and
may speciate into separate branches. We can visualize the
branching process as a phylogenetic tree [6].

Just as organisms evolve in Biology, a document can change
over time to slightly different versions of itself where each
of these versions can generate other versions. Sometimes,
the changes are unintentional such as those resulting from
copying errors inserted during the process of preservation
or duplication of manuscripts, such as the famous case of
the Book of Sogya [7]. In other situations, the changes are
intentional such as when a forger modifies a document with
the intent of deceiving the viewer [8].

Given a set of near duplicate documents, we would like
to identify their causal relationships and the transformations
that lead from one to the other. This structure tells the
evolving history of the document, even when some pieces,
or connections, are missing.

Under proper assumptions, we could approach this problem
with watermarking and fingerprinting techniques. We would
be able to the document’s markings to recover its history in
case the document leaks into the internet, potentially having
multiple variations. This is known in the literature as traitor
tracing.

However, traitor tracing and watermarking solutions are not
always possible: (1) some transformations on the document
can destroy its markings; (2) an operator aware of the presence
of the marking and its mechanisms can take measures to re-
move it or change it; (3) watermarks only work for documents
reproduced after their adoption, leaving all copies before its
adoption unidentifiable; (4) in some cases, it is not possible to
assume we have knowledge about the ownership of the source.

In this paper, we present a first solution to the problem
of finding, from a set of image duplicates, the structure and
parameters of a group of duplications. To accomplish such
an objective, we propose and validate, an algorithm as a first
step to construct what we call an Image Phylogeny Tree (IPT)
based on a modified Minimum Spanning Tree algorithm.

Section II presents some related work in the literature of
near duplicate detection and recognition, they all stop after
finding the near duplicate set, and do not find the structure
of connections. Section III defines the problem of image
phylogeny and its properties. Section IV introduces our first
solution toward image phylogeny, and Section V presents the
experiments we performed and the methodology we used to
validate our method. Finally, Section VI wraps up our paper
and discusses possible future work.

II. RELATED WORK

A near duplicate is a transformed version of a document
that remains recognizable. Joly et al. [4] formally proposes a
definition of what a duplicate is, based on the notion of rol-
erated transformations. According to the authors, a document
D, is a near duplicate of a document D, if Dy = T(D),
T € T, where T is is a set of tolerated transformations. D is
called the original document, patient zero or the root of the
document evolution tree.

A family of transformations 7~ can contain several combi-
nations of transformations such as D3 = T3 0 T3 o T1(D),
Ts=1,2,3 € T. Given an original document D, we can construct
a tree of all its near duplications as we show in Figure 1.

A duplicate is a pairwise equivalence relationship. It links
the original document to any of its variations through a
transformation (e.g., compression, brightness & contrast ad-
justment, and cropping) [1]. If a document D has a direct
duplicate D; and D; has a direct duplicate D5, then document
Dy is in turn a duplicate of document D.

Roughly speaking, there exists two different near dupli-
cate detection philosophies: watermarking- and fingerprinting-
based and content-based approaches. Watermarking and fin-
gerprinting methods rely on the embedding of a signature
within the original document before its dissemination. With
such methods, we can detect the original artwork by checking
the signature’s presence and modifications patterns within
documents. In contrast, content-based methods rely on the
analysis of the document’s content in order to extract relevant
visual features. These methods identify when a set of features
are close to those of the original document.

Content-Based Copy
D Detection & Recognition

Referenced copy

Watermarking & Fingerprinting Enabled

Fig. 1. Near duplicates tree of a document D and its transformations accord-
ing to Joly et al [4]. If we can embed a marking on a given document, we
can track its transformations easily. On the other hand, when no markings are
available or possible, we can use content-based copy detection & recognition
methods.

The term near duplicate or copy refers to any document of
the tree. Figure 1 shows that watermarking and fingerprinting
methods for the detection of copyright infringement only
allows the detection of the copies of the referenced object. On
the other hand, content-based approaches enable the detection
of all the copies of the original object.

Regardless the general philosophy, several near-duplicates
detection and retrieval methods (NDDR) have been introduced
in the last years for a variety of applications. NDDR methods
have been used for consumer photograph collections organiza-
tion [9], [10], multimedia linking [11], copyright infringement
detection in images or videos [12]-[16], and forged image
detection [8], [17], [18].

Work in the literature is focused in the identification of near
duplicates, and no one has yet targeted the identification of the
structure of the modifications, or which transformations were
used.

In this paper, we solve a a far a more challenging task
than NDDR: from a set of near of images known to be near
duplications, we identify structure of generation of each near
duplication, as well as their transformations — the tree in
Figure 1, and the parameters in its edges. We want to be
able to tell the history of the duplications, pointing out which
document generated the other and so on without making use
of any watermarking or fingerprinting method.

III. IMAGE PHYLOGENY

An Image Phylogeny Tree describes the structure of trans-
formations and the evolution of near duplicate images. That
requires the prior knowledge of the set of near duplicates, and
also a dissimilarity function d(-,-) that yields small values
for similar images, and large values for distinct images,
those that have suffered more significant transformations. The
dissimilarity generalizes the concept of distance, but does not
constitute a metric space in the image space [19].

Let Tz be an image transformation from a family 7. We
define a dissimilarity function between two images Z4 and Zp
by estimating (3 such that

dIA,IB = IB - TE(IA)) (l)

image metric

has a minimum value. The value of dz, 7, is a metric of the
residual of the transformation that best approximates Z4 into
T according to the family of operations described by 7.

The dissimilarity function dz, 7, is not a distance, and does
not form a metric space along the images — it does not satisfy
the symmetry property. For example, if the family of trans-
formations 7 represents only the spatial rescaling operation
in images, reducing the spatial resolution (downsampling) is
different than increasing the spatial resolution (upsampling).
When 74 and Zp have different dimensions, dz, 7, would
calculate the image metric of the residual on Zp’s image
dimensions, while dz, 7, would calculate the image metric
of the residual on Z4’s image dimensions.

Since d does not represent a metric, our problem is different
than the biological phylogenetic tree formulation [6], where
the strength of the metric [6], [20] is what eventually defines
the quality of the final results.

The input of our problem is a directed graph, and we want to
construct a directed tree that satisfies a series of conditions (see
Section IV). We are not only interested in finding the structure
of transformations — the topology of the tree — but, if
possible, to recover the set of parameters E that generated
a child Zp from its parent Z4 through Zgp = TE(I A)-

IV. ORIENTED KRUSKAL ALGORITHM FOR IMAGE
PHYLOGENY

In this paper, we propose a solution for the construction
of the Image Phylogeny Tree based on a modified Kruskal’s
Minimum Spanning Tree algorithm [21], summarized on Al-
gorithm 1 which we call Oriented Kruskal Algorithm.

The algorithm requires as input a dissimilarity matrix M
with respect to a set of n near duplicate images. Data
manipulation is different for several reasons, and requires
special care. Although our interpretation of the tree is that the
transformation goes from the parent to its child representing
the changes of the images, in the Oriented Kruskal the data
structure keeps the opposite relationship, pointing the edges
from child to parent.

A. Algorithm

Given a dissimilarity matrix M built upon a set of n near
duplicate images, Lines 1-3 of Algorithm 1 initialize the parent
vector (which represents the tree) and create n initial trees,
each one containing a vertex representing an image. Each
position Parent [1] identifies the parent of a node with
id = 1i. The for loop in lines 6-16 examines matrix positions
in order of dissimilarity, from lowest to highest. The for loop
checks, for each position (i, j), if the endpoints ¢ and j do not

belong to the same tree (Test I) and if j is the root of a tree
(Test II). If so, we can add the oriented edge (j — %) to the
forest. Otherwise, we discard such a position.

In the end, all the nodes are connected by negges = n—1
edges forming a tree representing the structure of modifi-
cations of the original document with respect to its near
duplications.

Algorithm 1 Oriented Kruskal

Require: a dissimilarity matrix M

1: for i € [1..n] do > Initialization
2: Parentli] < 1

3: end for

4: Sorted < sort positions (4,5) of M into nondecreasing order

5! Nedges <+ 0 > Controls stopping criterium
6: for each position (¢, j) € Sorted do

7: if (Root (i) # Root(j)) then > Test I: joins different trees
8: if (Root(j) = j) then > Test II: endpoint must be a root
9: Parent[j] + i

10: Nedges < Nedges T 1

11: end if

12: end if

13: if (Negges = n — 1) then > The IPT has already n-1 edges
14: return Parent > Returning the final IPT
15: end if

16: end for

The running time depends on how we implement the Root
function. If we use a disjoint-set-forest with the union-by-rank
and path-compression heuristics, we can implement such a
function very efficiently [22].

Lines 1-3 take O(n) time to initialize the parent vector.
Line 4 takes O(n%logn) to sort the matrix positions since
we have (n? — n) relevant positions when analyzing n near
duplicate images. Lines 6-16 take O(n%a(n)) to check any
position, where a(n) is the inverse of Ackermann function.
The amortized cost for finding the root using an implemen-
tation with union-by-rank and path-compression heuristic is
a(n) [22]. Finally, since (n) = O(logn), the total running
time of our algorithm is O(n? log n), similar to the well-known
minimum spanning tree algorithm proposed by Kruskal [21].

B. Simulation of the Algorithm for one IPT

Figure 2 shows the execution of the proposed algorithm for
a toy example of n = 6 image duplicates. The algorithm
initially receives a dissimilarity matrix M that captures the
dissimilarities between each pair of duplicates.

The first step of the algorithm initializes a forest with
n = 6 roots, one for each duplicate and sorts all the
positions (7,7) in the dissimilarity matrix M according to
their dissimilarity value. Thereafter, the algorithm starts the
construction of the Image Phylogeny Tree taking each position
(,7) at a time and performing the required tests to ensure it
can safely insert the tested position as an oriented edge (j — ¢)
in the final tree. The algorithm first selects the position (6,1)
with the lowest dissimilarity value M[6,1] = 12. Since this
position connects two disjoint trees (Test I) and the endpoint 1

Dissimilarity Matrix

ReconstructedTree [6, 5, 6, 4, 4, 4]

Algorithm Steps

M 1 2 3 4 5 6 v | M[6,11=]12 |Select Edge (| —>6)

1| - |31|57]37]45]|40 v 2 |M[45]=|15 |Select Edge (5—>4)

2 (31| - [33]23]20]32 c X 3 |M@11=]16 |Test Il Root(l) = 6

3 51 | 41 - 42 | 37 | 38 v 4 M[5,2] =|18 Select Edge (2 —5)

4 |16 |36 |28 - | 15| 27 m o E X 5 |M[65]=|19 |Test Ii:Root(5) = 4

5 35 18 | 54 | 30 - 54 v 6 M[6,3] =|22 Select Edge (3 —6)

6 12140 | 22| 60| 19 - 0 ° X 7 M[2,4] =|23 Test I: Root(2) = Root(4)
v 8 M[4,6] =|27 Select Edge (6 > 4)

Fig. 2. Simulation of the algorithm to construct an Image Phylogeny Tree from a Dissimilarity Matrix.

is a root (Test II), it is selected. The same happens with the
position (4,5).

The algorithm then tests position (4,1) with dissimilarity
16. Since the endpoint 1 is not a root (it belongs to a tree
with root 6), it is discarded. The algorithm proceeds with
the selection of the position (5,2) as an oriented edge and
discarding the position (6,5) because the endpoint 5 is not a
root of any tree. After discarding position (6,5), the algorithm
selects the position (6,3) with dissimilarity 22 as an oriented
edge and discards the position (2,4) because it joins two nodes
belonging to the same tree. Finally, the algorithm selects the
last oriented edge to form the final tree in Step 8 when testing
the position (4,6) with dissimilarity 27.

C. The Importance of the Dissimilarity Matrix

There are two important and independent factors in the
process of reconstructing the IPT: the algorithm and the
dissimilarity function necessary to create the dissimilarity
matrix.

An exceptional dissimilarity function can make a mediocre
method shine, while not even the best technique will be able
to properly work with an inadequate dissimilarity function.

In this paper, we present a new algorithm, the Oriented
Kruskal, for the reconstruction of the IPT. For its proper
methodological evaluation, we need an appropriate dissimi-
larity function, so we can discard it as a potential source of
errors during the reconstruction experiments. In Section V,
we carefully design a good dissimilarity function for the set
of experiments that we use to evaluate our algorithm.

There is a strong parallel between the dissimilarity function
of the Oriented Kruskal and the metric for phylogenetic trees
and their algorithms, where properties on the metric can
guarantee better results [6]. Metric spaces and distances are
also important in clustering [20], and on kernel methods, such
as SVMs [23].

V. EXPERIMENTS AND METHODOLOGY

A. Evaluation of Results

In this section, we describe four quantitative metrics we
devised to evaluate a reconstructed tree namely Root Eval-

uation, Edges Evaluation, Leaves Evaluation, and Ancestry
Evaluation.

Root: R(IPTy,IPT,) :{ (1) gttrl{frowtis(eIPTl) = Root (IPTg)
Edges: E(IPTy,IPT;) = %

Leaves: L(IPT,IPTs) = }ngi{

Ancestry: A(IPTq, IPT,) = %

Each of these metrics evaluates a different set of properties
of the results, and together allow the practitioner to have a
picture of the overall behavior of reconstruction algorithm. As
in any designed experiment, we can only calculate them if
we do have the real Ground Truth to compare our estimated
result. In the next section, we report the methodological
approach we used in this paper for obtaining this set of
controlled experiments and show the results for several images,
transformations, and parameters.

In order to describe the above evaluation metrics, we use
the illustrative example of Figure 3 of an original tree and its
reconstructed version. Suppose an original image phylogeny
tree IPT;, and the resulting tree of the Oriented Kruskal
Algorithm, IPTs.

Considering the Root Evaluation metric, the recon-
structed tree has the correct root node. According to
the Edges Evaluation metric, the reconstructed tree has

E = w = 2 = 40% correct edges. In addi-
tion, the reconstructed tree has L —= % = i = 25%
of correct leaves. Finally, the algorithm has found A = 16—1 =~

55% correct ancestors, where common ancestry are {(4,2),
(6,1), (4,1), (6,3), (4,3), (4,6)}.

B. Experiments

We study the potential of our tree construction algorithm
in a limited scenario containing only two possible image
transformations: scaling and JPEG compression. Therefore,
each image is subject to a transformation of scaling, re-
compression or both each time.

IPT (Original)

of

IPT2 (Reconstructed)

[6,4, 1, 4,2, 4] [6, 5,6, 4,4,4]

Trees (node points to its parent)
IPT; = [6,4,1,4,2,4] IPT, = [6,5, 6,4, 4, 4]
Root

Root(IPTs) = 4

Root(IPT;) = 4

Edges (oriented edges of children to parents)

Leaves

Ll = {573} L2 = {17273}

Ancestry
Al = {(27 5)’ (47 5)7 (47 2)7 (]‘7 3)7 (67 3)7 (47 3)7 (67 1)7 (47 1)7 (47 6)}
Az ={(5,2),(4,2),(4,5), (6,1),(4,1),(6,3), (4,3), (4,6)}

Fig. 3. On the left, an example of an original tree encompassing an original
image and its transformations to create near duplicates. On the right, the
reconstructed phylogeny tree of transformations and near duplications. On
the bottom, a table detailing the data structures necessary to run and evaluate
the Oriented Kruskal Algorithm.

We ran experiments for trees with 10 and 20 nodes. In other
words, a tree with 10 nodes represents an original image with
its nine near duplicates.

In each of these cases, we have randomly generated 10
different tree topologies, and for each topology we have
created five different set of parameters also randomly selected.
The range selection for scaling was 90% to 110% with respect
to the input image. The range selection for re-compression was
50% to 100% in image quality. The experiment has a total of
100 test trees (50 trees of size 10, and 50 trees of size 20).

We evaluated the method on the Uncompressed Color Iimage
Database (UCID) [24]' which contains a wide variety of
images with 512 x 384-pixel resolution, without compression
artifacts.

We tested all trees on 50 images of the UCID data set. For
reproducibility, we used the images with id = ¢ x 25 where
i € [1..50]. Our experiments showed that the reconstruction
algorithm, most of the times, is not sensitive to the choice of
the image.

After performing all the transformations, as pointed out by
the trees used as Ground Truth, we calculate the dissimilarity
matrix according to Equation 1 with the standard Minimum

'http://wuw.staff.lboro.ac.uk/~cogs/datasets/UCID/
ucid.html

TABLE I
SUMMARY OF THE RESULTS FOR EXPERIMENTS WITH 20 NEAR
DUPLICATES. EACH ROW REPRESENTS THE AVERAGE RESULT ON 250
TESTS COMPRISING 50 DIFFERENT IMAGES AND FIVE DIFFERENT SETS OF
TRANSFORMATION PARAMETERS.

Evaluation Metrics (Average Results)
Topology Root Edges Leafs | Ancestry
1 100 % 100 % 100 % 100 %
2 100 % 99 % | 95.56 % | 96.10 %
3 100 % 100 % 100 % 100 %
4 100 % 100 % 100 % 100 %
5 100 % | 99.40 % | 95.55 % | 99.83 %
6 100 % 100 % 100 % 100 %
7 100 % | 99.96 % | 99.95 % | 99.88 %
8 99.20 % | 99.74 % | 99.87 % | 99.45 %
9 100 % | 99.96 % | 99.89 % | 99.99 %
10 100 % 100 % 100 % 100 %
[Total [99.92% [99.81% [99.48% [99.53%]

Squared Error (MSE) technique as the image metric. Later,
as a fully independent process, we feed our Oriented Kruskal
algorithm using the dissimilarity matrix as input to obtain a
reconstructed tree.

In the experiments, all the trees with 10 nodes had perfect
reconstruction. Table I shows the near-perfect experiment
results on trees with 20 nodes. Each table row represents
a different topology with 250 tests comprising 50 different
images and five different sets of transformation parameters.

We implemented our algorithms using python scripts and
ImageMagick library?, both for transformation and JPEG
encoding as well as the all tree-related operations (construction
and evaluation).

The full experiment took approximately 168 computer-
hours on current 2.4GHz 64-bit Intel processors with 8GB of
memory. As in many similar applications, most of this time is
spent calculating the dissimilarity matrix M.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented, for the first time, the prob-
lem of image phylogeny reconstruction. Differently than state-
of-the-art near duplicate detection and recognition solutions,
we were interested in finding the causal relationships and the
transformations that lead one image to the other in a set of
near duplicates rather than just finding such near duplicates.

Once we have defined this problem, we have presented
a solution to calculate a dissimilarity matrix that estimates
possible transformations an image from a set of near dupli-
cates might have undergone and reconstruct its phylogeny
tree. Our reconstruction technique is based on a modified
Kruskal minimum spanning tree algorithm. In addition, we
have devised four evaluation metrics to assess the quality of
the reconstructed phylogeny trees with respect to their Ground
Truth trees.

2http://www.imagemagick.org/

Our new solution have yielded near-perfect results when
using an appropriate dissimilarity function, and has a lot of
potential for a first approach to the image phylogeny recon-
struction problem. We intend to pursue further investigations
regarding different dissimilarity functions.

Future work includes exploring optimizations in the calcu-
lations of the dissimilarity matrix and extending the family of
transformations 7. Finally, we are also interested in investi-
gating the behavior of our solution when we have a scenario
with missing links.

ACKNOWLEDGMENTS

The authors thank the financial support of CNPq
(Grants 483177/2009-1, 200815/2010-5, 309254/2007-8,
551007/2007-9, 551623/2009-8, and 200717/2010-3) and
FAPESP (Grant 2009/18438-7).

REFERENCES

[1] Y. Maret, “Efficient Duplicate Detection Based on Image Analysis,”
PhD Thesis, Ecole Polytechnique Fédérale de Lausanne, Lausanne,
Switzerland, 2007.

[2] E. Valle, “Local-descriptor matching for image identification systems,”
PhD Thesis, Universit de Cergy-Pontoise, Cergy-Pontoise, France, 2008.

[3] E. Valle, M. Cord, and S. Philipp-Foliguet, “High-dimensional descrip-
tor indexing for large multimedia databases,” in Intl. Conference on
Information and Knowledge Management (CIKM), 2008, pp. 739-748.

[4] A. Joly, O. Buisson, and C. Frlicot, “Content-Based Copy Retrieval
Using Distortion-Based Probabilistic Similarity Search,” IEEE Trans.
on Multimedia (TMM), vol. 9, no. 2, pp. 293-306, 2007.

[5]1 S. Goldenstein and A. Rocha, “High-Profile Forensic Analysis of Im-
ages,” in Intl. Conference on Crime Detection and Prevention (ICDP),
2009, pp. 1-6.

[6] B. Lewin, Genes VI, 6th ed. Oxford University Press, 1997.

[7]1 J. Reeds, John Dee: Interdisciplinary studies in English Renaissance
Thought, 1st ed. Springer, 2006, ch. John Dee and the Magic Tables
in the Book of Soyga.

[8] A. Rocha, W. Scheirer, T. E. Boult, and S. Goldenstein, “Vision of the
Unseen: Current Trends and Challenges in Digital Image and Video
Forensics,” ACM Computing Surveys (CSUR), In Press 2011.

[9]

[10]

(11]

[12]

[13]

(14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

(23]
[24]

A. Jaimes, S. fu Chang, and A. Loui, “Duplicate detection in consumer
photography and news video,” in ACM Multimedia (ACMMM), 2002,
pp. 423-424.

F. Schaffalitzky and A. Zisserman, “Multi-view matching for un-ordered
image sets, or “how do I organize my holiday snaps?”,” in European
Conference on Computer Vision (ECCV), 2002, pp. 414-431.

D.-Q. Zhang and S. fu Chang, “Detecting image near-duplicate by
stochastic attributed relational graph matching with learning,” in ACM
Multimedia (ACMMM), 2004, pp. 877-884.

S.-A. B. L. Amsaleg and P. Gros, “Robust content-based image searches
for copyright protection,” in ACM Intl. Workshop on Multimedia
Databases (MMDB), 2003, pp. 70-77.

C.-S. Lu and C.-Y. Hsu, “Geometric distortion-resilient image hashing
scheme and its applications on copy detection and authentication,”
Multimedia Systems, vol. 11, no. 2, pp. 159-173, December 2005.

Z. Liu, T. Liu, D. Gibbon, and B. Shahraray, “Effective and Scalable
Video Copy Detection,” in ACM Intl. Conference on Multimedia Infor-
mation Retrieval (ICMR), 2010, pp. 119-128.

X. Cheng and L.-T. Chia, “Stratification-based Keyframe Cliques for
Removal of Near-Duplicates in Video Search Results,” in ACM Intl.
Conference on Multimedia Information Retrieval (ICMR), 2010, pp.
313-322.

Z. X. H. Ling, F. Zou, Z. Lu, and P. Li, “Robust Image Copy
Detection Using Multi-resolution Histogram,” in ACM Intl. Conference

on Multimedia Information Retrieval (ICMR), 2010, pp. 129-136.
Y. Ke, R. Sukthankar, and L. Huston, “Efficient near-duplicate detection

and sub-image retrieval,” in ACM Multimedia (ACMMM), 2004, pp.
869-876.

J. Fridrich, D. Soukal, and J. Lukas, “Detection of Copy-Move Forgery
in Digital Images,” in Digital Forensics Research Conference (DFRWS),
2003.

M. O’Searcoid, Metric Spaces. Springer, 2006.

R. Duda, P. Hart, and D. Stork, Pattern Classification, 2nd ed. Wiley-
Interscience, 2000.

J. B. Kruskal, “On the shortest spanning subtree of a graph and
the traveling salesman problem,” Proc. of the American Mathematical
Society (AMS), vol. 7, no. 1, pp. 48-50, 1956.

R. E. Tarjan, “Efficiency of a good but not linear set union algorithm,”
Journal of the ACM, vol. 22, no. 2, pp. 215-225, 1975.

B. Schlkopf and A. Smola, Learning with Kernels. MIT Press, 2002.
G. Schaefer and M. Stich, “UCID — An Uncompressed Colour Image
Database,” in SPIE Storage and Retrieval Methods and Applications for
Multimedia, 2004, pp. 472-480.

