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Abstract—In many problems such as biometrics, multimedia
search, retrieval, recommendation systems requiring privacy-
preserving similarity computations and identification, some bi-
nary features are stored in the public domain or outsourced to
third parties that might raise certain privacy concerns about the
original data. To avoid this privacy leak, privacy amplification
is used. In the most cases, the privacy amplification is uniformly
applied to all binary features resulting in the data degradation
and corresponding loss of performance. To avoid this undesirable
effect we propose a new privacy amplification technique that
benefits from side information about bit reliability. In this paper,
we investigate the identification rate-privacy leak trade-off. The
analysis is performed for the case of perfect match between the
side information shared between the encoder and decoder as well
as for the case of imperfect side information.

I. INTRODUCTION

Content identification systems are widely used in various
emerging applications ranging from identification of physi-
cal objects and humans to multimedia management (content
filtering, content tagging) and security (copyright protection,
broadcast monitoring, etc.). Most identification techniques are
based on binary digital fingerprinting. A digital fingerprint
represents a short, robust and distinctive content description
allowing fast and privacy-preserving operations. In this case,
all operations are performed on the fingerprint instead of on
the original large and privacy-sensitive data thus enabling
to introduce crypto-based security into the analog or noisy
digital world [1]. These new techniques are able to overcome
the fundamental sensitivity issue of classical cryptographic
encryption and one-way functions to small noise in input data
by trade-offing the security and robustness to noise.

During last years, certain important practical and theoretical
achievements were reported. The main efforts on the side of
practical algorithms have been concentrated on robust feature
selection and fast indexing techniques mostly borrowed from
content-based retrieval applications [2], [3]. The information-
theoretic limits of content identification under infinite length
and ergodic assumptions and noisy enrollment have been
investigated by Willems et. al. [4] using the jointly typical
decoder. The impact of additional constraints on the fingerprint
storage rate that can be also considered as a sort of enrollment
distortions under the same asymptotic assumptions have been
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studied by Westover and O’Sullivan [5] and Tuncel et. al. [6].
The detection-theoretic limits have been first studied in [7]
under geometrical desynchronization distortions and a further
extension of this framework was proposed in [8] for the case
of finite-length fingerprinting and null hypothesis. The used
decision rule is based on minimum Hamming distance decoder
with a fidelity constraint under Binary Symmetric Channel
(BSC) model. Since this decision rule requires the computation
of likelihoods/distances between the query and all database
entries, the complexity of the considered identification is
exponential with the input length. Due to the additional fact
that identification services are often outsourced to third parties
and state authorities, the privacy of data owners is an important
issue and remains largely unexplored.

For the completeness of state-of-the-art analysis it is worth
mentioning that privacy issues have been mainly studied in the
authentication applications due to the public sharing of helper
data and extended to various practical implementations based
on Slepian-Wolf and Wyner-Ziv distributed coding [1], [9],
[10]. At the same time, since the helper data is somehow
input dependent, it raises natural concerns that it should
provide little information about the secret extracted from the
noisy data (secrecy leak) and input itself (privacy leak). The
secrecy leak needs to be small to prevent system abuse by
the impersonation attack, when the attacker tries to construct
artificial biometrics or PUFs that can pass the authentication
based on the disclosed templates. A small privacy leak is
required to protect some sensitive information that can be
extracted from the inputs.

Due to the essential difference in the formulation of privacy
leaks in the authentication and identification problems, there
is a necessity to protect not only the helper data as in
the authentication problem but also the entire fingerprint.
In our previous work [11] we have considered the rate-
privacy-complexity trade-off for identification applications.
This approach is based on global privacy amplification, where
all bits of stored fingerprint are randomized with the same
probability disregarding their reliabilities. This approach is
similar in spirit to the compression based approaches [5],
[6]. However, contrary to the previous approach a concept
of bit reliability was introduced to reduce the identification
complexity based on a bounded distance decoder (BDD).
Obviously, such a construction does not fully benefit from
the fact that the information about the reliable bits can be



present at the encoder and decoder that can be used not only
for the efficient decoding but also for the enhanced privacy
amplification.

Therefore, in this paper we introduce an information-
theoretic framework for the analysis of private content identifi-
cation based on finite length fingerprinting with bit reliability
side information. Contrary to previous works, we propose a
privacy amplification mechanism, which is adaptive to the
bit reliability, and demonstrate its advantages over the state-
of-the-art privacy amplification in the identification problem.
We present and analyze a privacy-preserving technique, which
asymptotically achieves the theoretical identification perfor-
mance limits in terms of identification rate. The proposed
technique is based on Forney’s type of erasure/list decoding
[12] implemented in the form of BDD. The analysis is
performed for the case of perfect match between the side
information shared between the encoder and decoder as well
as for the case of imperfect side information.

Notations. We use capital letters to denote scalar random
variables X , bold capital letters to denote vector random
variables X, corresponding small letters x and small bold
letters x to denote the realizations of scalar and vector random
variables, respectively, i.e., x = {x(1), x(2), ..., x(N)}. bx is
used to denote the binary version of x. We use X ∼ p(x) to
indicate that a random variable X follows pX(x).

II. IDENTIFICATION PROBLEM FORMULATION

We will assume that the data owner has M entries in
the database indexed by an index m, i.e., x(m) ∈ R

N ,
1 ≤ m ≤ M , where M = 2LR with R to be the identification
rate of (M,L)-fingerprinting code and L stands for the fin-
gerprint length. The index m is associated to all identification
information (ownership, time of creation, distribution channel,
etc.) and the data x(m) is some privacy sensitive part of
the database represented by image, video, audio, biometric,
PUFs, etc. At the same time, the data user has a query data
y ∈ R

N that can be in some relationship with x(m) via a
probabilistic model p(y|x) or can represent some irrelevant
input x′. The data user wishes to retrieve the identification
information of x(m) that is the closest to the query y or
reject the query, if no relevant database entry is found. For
complexity and privacy reasons, the above identification is
performed in the domain of digital fingerprints bx ∈ {0, 1}L
and by ∈ {0, 1}L that are short length, secure and robust
counterparts of x and y, respectively (Fig. 1). Moreover,
to ensure adequate privacy protection of digital fingerprints,
the data owner applies privacy amplification (PA) to produce
protected version bu(m) of bx(m). The resulting finger-
prints can be shared with third parties for various security
and management services. In particular, the storage of the
resulting codebook/database of protected fingerprints bu(m),
1 ≤ m ≤ M , and the content identification can be performed
on a remote server that can be honest in terms of claimed
functionalities but curious in terms of observing, analyzing
or leaking the stored data. The result of identification should
be an estimate of index m̂ of the corresponding closest

entry or the erasure, i.e., null hypothesis. If the query is
properly identified, the corresponding encrypted content x(m)
or associated identification information is delivered to the data
user using the predefined data exchange protocol.

In the scope of this paper, we will assume that the binary fin-
gerprints are obtained by a dimensionality reduction transform
W and binarization Q (Fig.1). The projected vectors of lower
dimensionality x̃(m) ∈ R

L and ỹ ∈ R
L are obtained from

x(m) and y based on the dimensionality reduction transform:

x̃(m) = Wx(m), (1)

ỹ = Wy, (2)

where W ∈ R
L×N with L ≤ N and W =

(w1,w2, · · · ,wL)
T consists of a set of projection basis vec-

tors wi ∈ R
N with 1 ≤ i ≤ L. The dimensionality reduction

transform is based on any randomized orthogonal matrix
W (random projection transform) whose elements wi,j are
generated from some specified distribution. An L×N random
matrix W whose entries wi,j are independent realizations
of Gaussian random variables Wi,j ∼ N (0, 1

N ) presents a
particular interest for our study. In this case, such a matrix
can be considered as an almost orthoprojector, for which
WWT ≈ IL

1. The selection of basis vectors with a Gaussian
distribution also guarantees the Gaussian distribution of the
projected coefficients. This will also be true for other statistics
of the projection coefficients for sufficiently large N according
to the Central Limit Theorem.

The binarization is performed as:

bxi = sign(wT
i x), (3)

where bxi ∈ {0, 1}, with 1 ≤ i ≤ L and sign(a) = 1, if
a ≥ 0 and 0, otherwise. Since all projections are independent,
it can be assumed that all bits in bx will be independent and
equiprobable for sufficiently large L.2

The mismatch between the data owner fingerprint bx and
data user query fingerprint by can be modeled based on
memoryless BSC model with a probability of bit error Pb.
It was shown that Pb = 1

π arccos(ρX̃Ỹ ), where ρX̃Ỹ is a
correlation coefficient between X̃ and Ỹ [11].

Therefore, the main issues are: (a) the accuracy of identifi-
cation defined in terms of probability of false acceptance of ir-
relevant entries and probability of wrong estimation of queries
corresponding to the existing entries; (b) the complexity of
identification; (c) the memory storage of resulting fingerprints;
(d) the maximum number of correctly identifiable entries under
the measures defined in (a) and length of fingerprints L; (e)

1Otherwise, one can apply special orthogonalization techniques to ensure
perfect orthogonality.

2This assumption is only possible for independent input data. Since
the transformed vectors will closely follow the Gaussian pdf but will not
necessarily be decorrelated, one can apply the principle component analysis
to decorrelate them, that, for the case of Gaussian data, will also provide their
independence.
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Fig. 1. Generalized block-diagram of private content identification based on
digital fingerprinting.

the identification capacity under infinite L and (f) the privacy
leak due to the fingerprint disclosure. 3

In [11], we formulated the identification problem with the
global privacy amplification as a composite hypothesis test:{

H0 : p(by|H0) = p(by|bx
′),

Hm : p(by|Hm) = p(by|bu(m)),m = 1, · · · ,M.
(4)

In the binary fingerprinting domain, the link between bx and
between by and bx and bu can be considered based on the
BSC models with corresponding bit error probabilities Pb and
λ. The parameter λ corresponds to the BSC serving as a
test channel for the compressed version bu considered as the
privacy amplification [13]. Under the above assumption, these
two BSCs bx → bu and bx → by can be considered as
an equivalent channel bu → by obtained by their concatena-
tion with the cross-probability Pbe equals to the convolution
Pbe = Pb∗λ = Pb(1−λ)+λ(1−Pb). Under these conditions,
the corresponding hypothesis (4) are:⎧⎨
⎩

H0 : p(by|bx
′) = 1

2L
,

Hm : p(by|bu(m)) =
(

Pbe

1−Pbe

)dH(by,bu(m))

(1− Pbe)
L,

(5)
where dH(., .) denotes the Hamming distance.

Let the decision rule based on the public version bu of bx

corresponds to the Forney’s erasure decoder [12]:

p(by|bu(m)) ≥ 2τL, (6)

where τ is the threshold. We will show that this threshold
should satisfy τ ≤ −H2(Pbe), where H2(.) denotes the binary
entropy, for the unique decoding of index m and rejection
hypothesis H0.

Under (5), the decision rule (6) can be rewritten as:

dH(by,bu(m)) ≤ Lγ, (7)

where γ =
−τ+log2(1−Pbe )

log2

1−Pbe
Pbe

. We will refer to this decision

rule as the BDD that produces a unique m̂. To minimize the

3In this paper, we do not analyze the identification from partial data such
as block of image or frame of video due to the straightforward extension of
our results to these cases under corresponding matching conditions.

overall identification error and to achieve the identification
capacity that coincides with the capacity of the corresponding
BSC, it was shown that the threshold should satisfy γopt =
1−R+log2(1−Pbe )−1/L

log2

(
1−Pbe
Pbe

) [11]. The efficient implementation of

identification search strategy based on the Hamming sphere-
based BDD interpretation was demonstrated in the same
paper along the conditions on Pbe under which this search
outperforms the exhaustive one.

For the case of asymptoticly large L, it was also shown that:
Proposition 1: For Pbe ≤ γ ≤ 1

2 and if H2(γ) ≤ 1 − R
there exist codes with rate R and error probability Pe such
that:

lim
L→∞

Pe = 0. (8)

As soon as γ is arbitrarily close to Pbe , the rate R =
1 − H2(Pbe) is achievable, and it is referred to as private
identification capacity:

Cid = 1−H2(Pbe ). (9)

The privacy leak Lp about Bx from the public Bu is defined
by the mutual information between them 4:

Lp = I(Bu;Bx) = 1−H2(λ). (10)

The trade-off between the identification rate and privacy
leak is achieved by the selection of parameter λ. This param-
eter is applied to all bits disregarding their actual bit reliability
shown to be equal to [11]:

Pb|x̃ = Q

( |x̃|
σZ̃

)
, (11)

which stands for the bit error probability for a given projection
coefficient x̃ under the assumption that p(x̃, ỹ) corresponds to
jointly Gaussian distribution in the random projection domain
and σZ̃ denotes a standard deviation of additive Gaussian
noise in the random projection domain. 5 Such a global
interpretation corresponds to the assumption that all bits pass
via the same channel and there is no any side information
about the probability to be randomly flipped. However, in
reality such kind of information is available and in the next
section we will investigate the possible benefits of its usage
based on the simplified model of subchannel consideration that
we will refer to as channel splitting.

III. CHANNEL SPLITTING MODEL

In the first part of this section we consider theoretical
limits of reliable identification with various types of side
information about bit reliability without privacy amplification,
i.e., Lp = 1, and then present the practical privacy-preserving
coding schemes in the second part.

The binary fingerprinting problem in the projected domain
can be represented according to sign-magnitude decomposition

4A more conservative definition of privacy leak would be I(Bu;X).
5The Gaussianity assumption about the statistics of projected coefficients

is due to the Gaussian basis vectors of W and consequence of central limit
theorem.



when x̃ = sign(x̃)|x̃| = bx|x̃|, where bx = sign(x̃). This
decomposition makes it possible to redefine the identification
channel by the equivalent model presented in Fig. 2 with Pb|x̃
defined by (11) and ỹ = x̃ + z̃, where z̃ represents the zero-
mean Gaussian noise with the variance σ2

Z̃
in the projected

domain.
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Fig. 2. Equivalent model of binary fingerprint identification based on sign-
magnitude decomposition.

The magnitude component |x̃| defines the bit reliability and
is considered as a random parameter of the binary identifi-
cation channel of interest. Depending on the availability of
information about |x̃| at the decoder one can distinguish 3
major cases6: (a) only distribution p(x̃) is known; (b) perfect
information about realization of magnitudes |x̃| and (c) noisy
(imperfect) bit reliabilities given by |ỹ|.

Remark 1: The identification rate under the absence of
information about the bit reliability (traditional binary finger-
printing or blind setup) is:

Rid|0 = (1−H2(Pb)) , (12)

where Pb = Ep(x̃)[Pb|x̃] is the average probability of bit error.
Remark 2: The identification rate under the perfect infor-

mation about the random parameter:

Rid|x = 2

∫ +∞

0

[
1−H2

(
Q

(
x̃

σZ̃

))]
p(x̃)dx̃. (13)

Remark 3: The identification rate under the imperfect
(noisy) information about the bit reliability is:

Rid|y = 2×
∫ +∞

0

[
1−H2

(∫ +∞

−∞
Q

(
x̃+ z̃

σZ̃

)
p(z̃)dz̃

)]
p(x̃)dx̃. (14)

The identification rates under the blind, perfect and imper-
fect (noisy) information about the bit reliability are shown in
Fig. 3. The observation model is considered in terms of the

signal-to-noise ratio (SNR) defined as SNR = 10 log10
σ2
X̃

σ2
Z̃

.

It is important to note that the presence of perfect information
about bit reliability at the decoder essentially enhances the
identification rate. The noisy side information provides also
certain enhancement in the region of positive SNRs with
respect to the blind identification setup. However, even this
enhancement is not so high in terms of achievable identifica-
tion rate, the privacy gain can be still essential.

6We do not consider here the compressed case as in [14].
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To present practical coding schemes enabling reliability de-
pendent privacy amplification, we introduce a channel splitting
model. We will assume that the random projections transform
produces J coefficients. Although all these coefficients can be
used to produce information bits and will be considered in
our theoretical analysis of binary fingerprint identification, it
is assumed that only L of them form the actual fingerprint that
will be used for the identification in practical schemes.

The channel splitting model assumes the encoding, storage
and privacy amplification of J bits depending on their reliabil-
ities, defined by the side information |x̃|, into S independent
channels. Each channel contains Sj components, 1 ≤ j ≤ S

such that J =
∑S

j=1 Sj , obtained based on the sorting of the
reliabilities of corresponding bits as shown in Fig 4.
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Fig. 4. Channel splitting model based on bit reliabilities.

Proposition 2 (channel splitting): Assume that the perfect
information about bit reliabilities defined by |x̃| is shared
between the encoder and decoder. Then, each BSC is char-
acterized by its own average probability of bit error Pbj

and corresponding achievable rates Rj = 1 − H2(Pbj ) with
the use probability to be pj . Therefore, the overall bit error
probability without any information about |x̃| is defined as
Pb =

∑S
j=1 Pbjpj and the identification rate is given by:

Rid =

S∑
j=1

(1−H2(Pbj ))pj , (15)

which asymptotically approaches (14) as the number of chan-
nels increases. This model is schematically shown in Fig. 5a.

Proposition 3 (2-channel splitting): Assuming the perfect
shared side information based on |x̃| with S = 2 and



choosing S1 = L to be the most reliable bits representing the
actual fingerprint communicated via the BSC with PbG (good
channel) and stored with the amplification factor λG in the
database, while assigning the remaining S2 = J−L bits to the
second BSC with PbB (bad channel) that are also stored with
the amplification factor λB , and denoting PbeG = PbG ∗ λG

and PbeB = PbB ∗λB , the identification rate-privacy leak pair
yields7:

Rid =
1

J
(L(1−H2(PbeG)) + (J − L)(1−H2(PbeB ))) ,

(16)

Lp = 1−H2(λ̄), (17)

with λ̄ = 1
J (LλG + (J − L)λB).

Remark 4: One possible strategy for trading-off identifica-
tion rate-privacy leak consists in the constraint optimization
similar to the distortion allocation in the rate-distortion theory
that consists in fixing the desired Lp resulting in λ̄ and
maximizing Rid by allocating different λG and λB distortions
to each channel.

Remark 5 (practical solution): Due to the fact that the
attacker has no access to the information defining the bit
reliabilities and corresponding randomization strategy one can
simply randomize all (J − L) bits with λB keeping λG = 0
for L good bits that yields:

Rid =
L

J
(1−H2(Pb

G
)), (18)

Lp = 1−H2

(
J − L

J
λB

)
. (19)

One can also hide the positions of the reliable bits by assigning
λB = 0.5 and leaving the attacker with the only option of
guessing strategy that would require:(

J

L

)
≤ 2JH2(L

J ), (20)

trails which results for example for J = 1024 and L = 32
into 2205 trials that makes this strategy unfeasible.
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7We assume here that PbG and PbB include the effect of misplacement
error due to the noisy ỹ.

IV. PRIVACY AMPLIFICATION BASED ON BUFFERING

In the previous analysis, we have assumed that the bit
reliability information |x̃| is shared between the encoder and
decoder. This assumption was used in early techniques such
as in [15], but it was shown that it is privacy revealing if
the information about the positions of reliable components is
available in the public domain [14] along with the proposal
how to minimize this leak based on distributed coding.

Therefore, to overcome this shortcoming, in this paper we
propose to extract this information directly from the noisy
observations |ỹ| thus avoiding any additional storage in the
public domain. Unfortunately, this leads to a certain inaccuracy
with respect to the case of available |x̃|, which can be resolved
based on buffering.

Proposition 4 (buffering): Assuming the encoder has access
to the side information based on |x̃| and the decoder to the
noisy counterpart |ỹ|, the buffering equivalent to the 3-channel
splitting suggests S = 3 and choosing S1 = L to be the most
reliable bits representing the actual fingerprint communicated
via the BSC with PbG (good channel) and stored with the
factor λG in the database, S2 = B − L to be the buffer with
B bits assigned to the buffer and reliable components; the
buffer bits are communicated via the BSC with PbBF (buffer
channel) and stored with the factor λBF in the database, while
assigning the remaining S3 = J − B bits to the third BSC
with PbB (bad channel) that are also stored with the factor
λB , and denoting PbeG = PbG ∗ λG, PbeBF = PbBF ∗ λBF

and PbeB = PbB ∗λB , the identification rate-privacy leak pair
yields:
Rid = 1

J (L(1−H2(PbeG)) + (B − L)(1−H2(PbeBF ))
+(J −B)(1 −H2(PbeB ))),

Lp = 1−H2(λ̄),
.

(21)
with λ̄ = 1

J (LλG + (B − L)λBF + (J − L)λB). This model
is schematically shown in Fig. 5,b.

Remark 6: One practical strategy to the selection of privacy
parameters consists in selection λG = λBF = 0 and λB = 0.5
that yields8:

Rid =
1

J
(L(1 −H2(PbbG)) + (B − L)(1−H2(Pb

BF
))),

(22)

Lp = 1−H2

(
J − L

J
λB

)
. (23)

The fast identification based on reliable bits and the maxi-
mum likelihood counterpart of the BDD was presented in our
previous work [16]. The reliable bits are selected from the
noisy observation and the BDD decoding is performed only
based on these bits.

V. RESULTS OF COMPUTER SIMULATION

In this section, we present the results of computer sim-
ulations for the considered identification rate-privacy leak

8The selection of λB = 0.5 aims at protecting all bits of fingerprint that
are the least reliable and not used for the further identification but whose
positions are very important for the correct identification.



formulation under the Gaussian observation and binarized
setup. All results are obtained for 10000 noise realizations
and 100 input vectors.

To demonstrate the relationship between different consid-
ered privacy preserving strategies, we have selected SNR = 10
dB that corresponds to Pb = 0.1 and performed the simulation
for the cases of traditional non-adaptive privacy amplification
(9)-(10), 2-channel splitting model (18) with the perfect side
information shared between the encoder and decoder and
mismatched side information about bit reliabilities, 3-channel
model (22) based on the mismatched side information and
buffer lengths of B = 128 and B = 256. The results of mod-
eling are shown in Fig. 6. The presence of side information
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Fig. 6. Identification rate-privacy leak trade-off for J = 1024 and L = 32
with Pb = 0.1 for different channel splitting models: no splitting (1-channel
model), 2-channel splitting and different side information and 3-channel
splitting based on buffering.

clearly enhances the identification rate-privacy trade-off for all
cases. The impact of side information mismatch in a simple 2-
channel splitting model degrades the performance with respect
to the perfect side information in the region of small privacy-
leak rates. The increase of the amount of channels in the
3-channel splitting model leads to better approximation of
real channel model (14). The results obtained even for the
imperfect side information clearly indicate the increase in
performance that is especially important for the region of small
privacy leak rates.

VI. CONCLUSIONS

We considered the privacy amplification mechanism based
on the bit reliability. Several techniques are analyzed for
the case of perfect and imperfect side information shared
between the encoder and decoder. In particular, we established
that one can achieve considerable privacy amplification using
even imperfect side information without the identification rate
loss. We demonstrated that the privacy amplification can be
solved without any publicly stored information about reliable
bits contrary to the state-of-the-art methods. The next stage

of our study will be dedicated to the solution of optimal
amplification parameter allocation based on the constraint
optimization problem.
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ized privacy amplification,” IEEE Transactions on Information Theory,
vol. 41, no. 6, pp. 1915–1923, Nov. 1995.

[14] S. Voloshynovskiy, O. Koval, T. Holotyak, and F. Beekhof, “Privacy
enhancement of common randomness based authentication: key rate
maximized case,” in Proceedings of IEEE International Workshop on
Information Forensics and Security, London, UK, December 6–9 2009.

[15] E. Verbitskiy, P. Tuyls, D. Denteneer, and J. P. Linnartz, “Reliable
biometric authentication with privacy protection,” in 24th Benelux Sym-
posium on Information Theory, 2003, pp. 125–132.

[16] T. Holotyak, S. Voloshynovskiy, F. Beekhof, and O. Koval, “Fast iden-
tification of highly distorted images,” in Proceedings of SPIE Photonics
West, Electronic Imaging 2010 / Media Forensics and Security XII, San
Jose, USA, January 21–24 2010.


