
Video Phylogeny: Recovering
Near-Duplicate Video Relationships

Zanoni Dias, Anderson Rocha, and Siome Goldenstein
Institute of Computing, University of Campinas (UNICAMP)

Av. Albert Einstein, 1251, Cidade Universitária
13083-852, Campinas, SP – Brazil

{zanoni,rocha,siome}@ic.unicamp.br

Abstract—To keep pace with the increasing popularity of image
and video sharing services, several research groups have focused
on the development of systems to identify similar copies images
and videos on the internet. Although these techniques allow us
to identify the set of near-duplicates of a document, they do not
give any information about the structure of generation of the
near-duplicates. In this paper, we are interested in the history of
the transformations that generated a given a set of near-duplicate
videos. Given a set of near-duplicate videos, our objective is to
identify their causal/phylogenetic relationships. Solutions to this
problem have several applications such as in security, forensics,
copyright enforcement, and news tracking services.

I. INTRODUCTION

Images and video content can change as they spread out
and such changes are not always authorized. After one posts
a video on the internet, other users can copy, resize and/or
re-encode it and repost their versions. This process creates
similar, but not identical, copies. Video-sharing services, such
as Youtube, are interested in this problem due to its correlation
to copyright infringement and illegal content distribution.

With the increasing popularity of image and video sharing
services, several research groups have presented solutions
for the detection and recognition of near-duplicate (NDDR)
images [1], [2] and videos [3], [4] in the last decade. NDDR
techniques represent the first step for several applications
such as reducing document versions, and for copyright and
intellectual property protection.

Although NDDR techniques allow us to identify the set
of near-duplicates of a document, they do not give any
information about the dependency relationship or structure of
generation of the near-duplicates. This challenging task arises
when we want to identify which document is the original
within a set of near-duplicates, and also the structure of
generation of the near-duplicates.

Only recently there were initial attempts to identify the
structure of relationships within a set of near-duplicates [5]–
[7], however, limited to the context of images. In this paper,
we are interested in the history of the transformations that
generated a given set of near-duplicate videos. Solutions to
this problem have applications in: Security (hints about the

WIFS’2011, November 29th-December 2nd, 2011, Foz do
Iguaçu, Brazil.
978-1-4577-1019-3/11/$26.00 c©2011 IEEE.

directions of content distribution); Forensics (better analysis
when working with less-damaged documents); Copyright
enforcement (traitor tracing without watermarking or finger-
printing methods); and News tracking services (analysis of
the opinion forming process across time and space).

Given a set of near-duplicate videos, our objective is to
to identify their causal relationships and transformations. We
formerly dealt with this problem in the context of near-
duplicate images and formally defined it as an Image Phy-
logeny problem. In this paper, we extend our prior work to
deal with videos naming this problem ‘Video Phylogeny’. The
phylogeny tree tells the evolving history of the video. With
a Video Phylogeny Tree (VPT) our objective is to find the
structure of transformations, and possibly their parameters,
representing the phylogenetic relationships within a given set
of near-duplicate videos.

Watermarking and fingerprinting techniques [8] represent
one way to approach this problem. However, their use is
not always possible. Sometimes we can not assume any
knowledge about the ownership of the source. In other cases,
the transformations on the documents can destroy its markings.

To build a video phylogeny tree with respect to a set of
near-duplicate videos, we need to find a robust and informative
dissimilarity function to compare the video duplicates and also
devise a proper algorithm capable of creating such a tree from
the dissimilarities available to it. In this paper, we extend
the method for calculating an asymmetric dissimilarity matrix
from a set of near-duplicate images we introduced in [5] and
introduce five approaches to find the phylogenetic relationships
of the videos based on the calculated dissimilarities. The
first four approaches calculate the final video phylogeny tree
based on operations performed directly over the dissimilarity
matrices obtained with the video frames. The fifth approach
calculates the final video phylogeny tree through operations
performed over the trees obtained with the video frames. To
validate the approaches, we conduct experiments with Youtube
videos and use the evaluation methodology introduced in [5].

II. RELATED WORK

A duplicate is a pairwise equivalence relationship linking
the original document to its variations through a transforma-
tion (e.g., cropping, compression, color correction) [9].

The near-duplicate detection and recognition problem can be
approached by two different phylosophies: by watermarking-

and fingerprinting-based and by content-based approaches.
Watermarking and fingerprinting methods rely on the em-
bedding of a signature within the original document before
its dissemination [8] while content-based methods rely on
the analysis of the document’s content in order to extract
relevant visual features. Regardless of the general philosophy,
in the past decade we have seen some progress toward the
development of effective systems to identify the cohabiting
versions of images [1], [2] and videos [3], [4] in the wild.
However, only recently there were the first attempts to go
beyond NDDR with techniques to identify the structure of
relationships within a set of near-duplicates [5]–[7].

Kennedy et al. [7] addressed the problem of parent-child
relationships between images pairs. They proposed specialized
detectors (e.g., scaling, cropping, color processing) to detect
plausible parent-child relationships within a set of images. As
the method relies only on directional processing information
of image pairs, it is useful to point out possible candidates of
either highly-manipulated or original images, but not appro-
priate to infer the phylogeny of a given set of near-duplicates.

Different from the Kennedy et al.’s approach [7], recently
two research groups have concurrently focused on the discov-
ery of the structure of dependencies within a set of images and
on the underlying conditions of such dependencies [5], [6].

De Rosa et al. [6] aim at exploring image relationships
based on the conditional probability of dependency between
two images. For that, they use the images’ content and their
content-independent counterparts.

Since a real forensic case [10], our group have been in-
vestigating the use of graph theory approaches to identify the
images’ generating structure of modifications. In our previous
work [5], we devised a method for calculating an asymmetric
dissimilarity matrix from a set of near-duplicate images and
introduced an algorithm to find the phylogenetic relationships
of the images based on the calculated dissimilarities which
we called Oriented Kruskal. This approach has been extended
to deal with several other possible image transformations and
scenarios where some pieces, or connections, are missing1.
Different from all previous approaches, in this paper, we deal
with the context of videos, as we present in Section IV.

III. VIDEO PHYLOGENY

Extending the concepts presented in [5] to the context of
videos, a Video Phylogeny Tree describes the structure of
transformations and the evolution of near-duplicate videos.

Let T~β be a video transformation from a family T . We
define a dissimilarity function between two videos VA and
VB as the minimum

dVA,VB
=

∣∣∣VB − T~β(VA)∣∣∣comparison method L,
(1)

for all possible values of ~β that parameterizes T . Eq. 1 mea-
sures the amount of residual between the best transformation
of VA to VB , according to the family of operations T , and VB
itself. The comparison is made possible using a comparison
method L in the end which can be employed frame-wise.

1Such an extension is now under consideration of a journal.

IV. OUR APPROACH FOR VIDEO PHYLOGENY

To reconstruct the VPT from a set of near-duplicate videos,
we need to consider the tree-building algorithm and the
dissimilarity function.

A. Overview of the Dissimilarity Matrix Construction

Our first task to build a VPT of n near-duplicate videos, is to
calculate the dissimilarity between every pair of such videos.
We need to consider a good set of possible videos transforma-
tions, T , from which one video can generate a descendant. A
video can undergo countless possible transformations to create
a near-duplicate of itself. The family of video transformations
T that we consider in this paper consists of:

1) Resampling: the video can be re-sampled (up or down);
2) Cropping: the video can be cropped;
3) Brightness, Contrast, and Gamma: the video pixels

can be color-adjusted through brightness and contrast
operations;

The operations are equally performed across the video frames.
All the videos are compressed using the standard H.264
compression algorithm.

Given any pair of videos VA and VB , our first task consists
of estimating the possible values of ~β that parameterizes T
that best approximates VA onto VB through the dissimilarity
function |VB − T~β(VA)|L (Eq. 1), according to the chosen
comparison method L.

To estimate the ~β that approximates video VA onto VB , we:
1) Select f frames from both videos assuming they are

temporal coherent.
2) Calculate corresponding points between video frames
VA and VB using the SURF algorithm [11]. Each frame
f iA ∈ VA is directly compared to frame f iB ∈ VB .

3) Robustly estimate the affine warping transformation pa-
rameters which includes color correction, cropping, and
resampling operations for video VA with respect to VB
taking the corresponding points into consideration and
using Random Sampling Consensus (RANSAC) algo-
rithm [12] for each pair of frames. The color channels of
a frame f iA ∈ VA are normalized according to the mean
and variance of the corresponding frame f iB ∈ VB .

4) Calculate the dissimilarity between both videos consid-
ering frame point-wise dissimilarity using the standard
Minimum Squared Error (MSE) as the technique.

Step 1 gives candidate points to estimate the resampling and
cropping operations for frames f iA ∈ VA with respect to the
frames f iB ∈ VB . However, these points are likely unstable
and we need to robustly filter them in Step 2. At this point,
we are able to resample and crop frame f iA ∈ VA with an
affine warp robustly estimated with RANSAC and the local
feature descriptors calculated in Step 1. In Step 3, we perform
pixel intensity normalization of frame f iA ∈ VA according to
the f iB color channels’ mean and variance. Considering all
possible pairs of videos in a near-duplicate set, we end up
with f dissimilarity matrices where each entry represents the
dissimilarity of VA and VB for a given pair of frames f iA ∈ VA
and f iB ∈ VB . The dissimilarity calculation for each pair of

frames is the same as introduced in [5]. For the estimation of
the dissimilarity matrix, we use OpenCV2 algorithms.

Our task is to find the final VPT based on the f frame-wise
calculated dissimilarity matrices for n near-duplicate videos.

B. Approaches for Building the Final Video Phylogeny Tree
In Section IV-A, we explained how to create f dissimilarity

matrices with respect to the selected f frames of each of the
n near-duplicate videos taking into consideration a family of
transformations. Before introducing five approaches to produce
the final video phylogeny tree, we would like to recall how to
create a phylogeny tree for a single set of n images [5].

Given a dissimilarity matrix M built upon a set of n near-
duplicate frames (f ba where a ∈ [1 . . . f] is the a-th selected
frame of video Vb where b ∈ [1 . . . n]), the Oriented Kruskal
algorithm [5] starts with a forest in which each node (near-
duplicate frame) is the root of a tree with just one element.
Next, the algorithm sorts all positions (i, j) of M from
the lowest to the highest dissimilarity values. The algorithm
then analyzes each position (i, j) according to the sorted
order, joining different trees and checking whether or not the
endpoints of the analyzed position is a root. The algorithm
stops when there are n− 1 edges in the tree.

Fig. 1 depicts the execution of the algorithm introduced
in [5] for a toy example with n = 6 near-duplicate images.
The first step of the algorithm initializes a forest with n = 6
roots and sorts all the positions (i, j) in the dissimilarity matrix
M . The algorithm starts the construction of the IPT taking
each position (i, j) at a time and performing the required
tests to ensure it can safely insert the tested position as an
oriented edge (j → i) in the final answer. The algorithm first
selects the position (6, 1) with the lowest dissimilarity value
M [6, 1] = 12. Since this position connects two disjoint trees
(Test I) and the endpoint 1 is a root (Test II), it is selected.
The same happens with the position (4,5). The algorithm then
tests position (4,1) with dissimilarity 16. Since the endpoint
1 is not a root (it belongs to a tree with root 6), it is
discarded. The algorithm continues until Step 8, where it tests
the position (4,6) with dissimilarity 27.

Single-Frame Expectation. With f dissimilarity matrices
of n× n entries for a set of n near-duplicate videos, we won-
der what to expect about the video phylogeny reconstruction
process. To answer, we can calculate an image phylogeny
tree for each frame using Oriental Kruskal as explained above
and illustrated in Fig. 1. With f image phylogeny trees, we
calculate the evaluation metrics as devised in [5]. With this
approach we have some sort of expectation of the final video
phylogeny results but we do not have the actual final video
phylogeny tree. This measure also refers to what we would
expect to obtain when analyzing a single random frame from
the videos.

Minimum and Average VPT. Two initial approaches to
calculate the final video phylogeny tree from f dissimilarity
matrices consist on performing operations directly on the
matrices. The first approach, called min, consists of creating a
dissimilarity matrix M ′ where each entry mij is the minimum

2http://sourceforge.net/projects/opencvlibrary/

value across the corresponding entries in all f matrices. The
second approach, called avg, consists of creating a dissimi-
larity matrix M ′ where each entry mij is the average value
across the corresponding entries in all f matrices. Once we
create the derived dissimilarity matrix, we create the final VPT
using Oriented Kruskal as introduced in [5].

Normalized Minimum and Average VPT. Before calcu-
lating the final VPT using min or avg approach, we can
normalize all the matrices to the 0-1 interval and be more
robust to avoid the result of one dissimilarity matrix having
a high weight in the total computed value. For instance,
considering min without normalization, if we have one frame
with no content (e.g., black frame), its dissimilarity matrix will
have small entries which will be selected even if the majority
of the other dissimilarity matrices contain more compatible
entries. Considering avg without normalization, high values
on a matrix will highly impact the average calculations.

We can improve min and avg by first normalizing each
dissimilarity matrix with respect to its highest value. With all
dissimilarity matrices in the 0-1 interval, we can calculate min
and avg as before. We call these approaches min-norm and
avg-norm. With the derived dissimilarity matrix, we create
the final VPT using Oriented Kruskal as introduced in [5].

Tree Reconciliation VPT. Our final approach to construct
the video phylogeny tree for a set of n near-duplicate videos
consists of dealing with the f frame phylogeny trees di-
rectly instead of performing operations on the dissimilarity
matrices. For that, we introduce an algorithm called tree
reconciliation. The idea is to take the f trees and
reconcile them toward the final VPT. The algorithm builds
the final VPT by adding, at each step, the most used edges
across the f individual trees.

The first step consists of creating the f frame phylogeny
trees using Oriented Kruskal algorithm [5]. Then we create
a matrix upon which we will create the final VPT. In this
matrix, each entry represents the number of times a node i is
identified as a child of j across the f phylogeny trees.

Algorithm 1 presents the process for creating the parenthood
matrix P . The algorithm receives three parameters: the number
of near-duplicate videos n, the number of selected frames f ,
and a vector of trees, t, with the f phylogeny trees previously
calculated. Following [5], we represent a tree as in [1, 1,
2] which refers to a tree with n = 3 vertices such that vertex 1
is the root of the tree and also the parent of vertex 2, which
in turn, is the parent of vertex 3.

The position t[i] represents the tree for the i-th selected
frame, t[i][j] represents j’s parent in tree i. After initial-
ization (Lines 1–5), the algorithm computes the number of
times a node i is identified as a child of j across the f trees
(Lines 6–10). This algorithm has complexity O(n(n + f))
given the initialization costs O(n2) and the cost to fill matrix
P depends on traversing f trees of size n nodes or O(nf).

With the matrix P , we can create the final VPT using
Algorithm 2. The algorithm consists of starting with n dis-
connected nodes and incrementally connecting them until we
have the final VPT. However, we connect the nodes in order
of importance according to matrix P . The algorithm receives

[6 , 5 , 6 , 4 , 4 , 4]Reconstructed Tree

4

5

2

6

1 3

1

2

4

8

6

M 1 2 3 4 5 6

1 - 31 57 37 45 49

2 31 - 33 23 29 32

3 51 41 - 42 37 38

4 16 36 28 - 15 27

5 35 18 54 30 - 54

6 12 40 22 60 19 -

Dissimilarity Matrix Algorithm Steps

1 M[6,1] = 12 ✔ Select Edge (1, 6)

2 M[4,5] = 15 ✔ Select Edge (5, 4)

3 M[4,1] = 16 ✕ Test II: Root(1) = 6

4 M[5,2] = 18 ✔ Select Edge (2, 5)

5 M[6,5] = 19 ✕ Test II: Root(5) = 4

6 M[6,3] = 22 ✔ Select Edge (3, 6)

7 M[2,4] = 23 ✕ Test I: Root(2) = Root(4)

8 M[4,6] = 27 ✔ Select Edge (6, 4)

Figure 1. Simulation of the Oriented Kruskal algorithm to construct an Image Phylogeny Tree from a Dissimilarity Matrix as presented in [5].

Algorithm 1 Reconciliation Matrix.
Require: number of near-duplicate videos, n
Require: number of selected frames, f
Require: 2-d vector, t, with the f phylogeny trees previously calculated
1: for i ∈ [1..n] do . Initialization
2: for j ∈ [1..n] do
3: P [i, j]← 0
4: end for
5: end for
6: for i ∈ [1..f] do . Creating the matrix P
7: for j ∈ [1..n] do
8: P [j, t[i][j]] = P [j, t[i][j]] + 1
9: end for

10: end for
11: return P . Returning the parenthood matrix P

two parameters as input: the number of near-duplicate videos
n and the n× n matrix P computed using the Algorithm 1.

Lines 1–3 initialize the final VPT. Line 4 sorts the entries
(edges) in P from the most to the least common. Line 5–6
initialize the root and the number of edges counter. Lines 7–22
tests each edge (i, j) in order to insert it into the tree.

The running time depends on how we implement the Root
function whose role is to determine the root of a given tree or
sub-tree. If we use a disjoint-set-forest with the union-by-rank
and path-compression heuristics, we can implement such a
function efficiently [13]. Using such implementation, the final
complexity of the algorithm is O(n2 log n).

Running Example. The VPT algorithms min, avg,
min-norm, and avg-norm perform operations over the
n × n f dissimilarity matrices available for n near-duplicate
video and, in the end, construct the VPT using the Oriented
Kruskal algorithm as illustrated in Fig. 1. On the other hand,
the tree reconciliation algorithm constructs the final
VPT based on the f frame phylogeny trees.

Fig. 2 shows a toy example example for n = 6 near-
duplicate videos and f = 6 selected frames for each video.
Using Oriental Kruskal algorithm as introduced in [5] and
illustrated in Fig. 1, we create one tree per selected frame.
Using Algorithm 1, we create the parenthood matrix P for
the six trees. Recall that the entries in P represent the number
of times a node i appears as a child in all trees. For instance,
M [1, 1] = 4 because the node 1 appears four times as a child
of itself (root of the tree) in P . M [5, 3] = 2 because node 5
appears as a child of node 3 twice.

Using the parenthood matrix P , we use Algorithm 2 to
create the final VPT. The first step consists of sorting the edges

Algorithm 2 Tree Reconciliation.
Require: number of near-duplicate videos, n
Require: matrix, P , from Algorithm 1
1: for i ∈ [1..n] do . Tree initialization
2: tree[i]← i
3: end for
4: sorted← sort positions (i, j) of P into nonincreasing order

. List of edges sorted from the most to the least common
5: r ← 0 . Initially, the final root r is not defined
6: nedges ← 0
7: for each position (i, j) ∈ sorted do . Testing each edge in order
8: if r = 0 and i = j then . Defining the root of the tree
9: r ← i

10: end if
11: if i 6= r then . If i is not the root of the tree
12: if Root(i) 6= Root(j) then
13: if Root(j) = j then
14: tree[j]← i
15: nedges ← nedges + 1
16: if nedges = n− 1 then . If the tree is complete
17: return tree . Returning the final VPT
18: end if
19: end if
20: end if
21: end if
22: end for

in P in non-increasing order. Then the algorithm proceeds
selecting one edge at a time and testing whether or not it is
safe to put it into the final VPT. We first select entry P [1, 1]
as it is the one with the highest value. As this entry means
an edge of node 1 to itself, it is the root of the VPT. In the
second step, we select edge (2,1) which means node 2 is now
a child of node 1. The procedure continues until we select the
edge (1,4) which is discarded since it would create a loop in
the tree. The next edges (2,4), (3,2), (4,1), and (5,3) are reject
as well. Finally, we select the edge (6,1) which completes the
tree (n− 1 edges).

V. EXPERIMENTS AND METHODS

To validate the techniques we propose in this paper for
reconstructing the video phylogeny tree from n near-duplicate
videos, we create a data set comprising several transformations
that a video can undergo to generate a near-duplicate. We
analyze the results using several quantitative measures of
success as introduced to the image phylogeny case in [5].

A. Evaluation Metrics

We use four quantitative metrics (Root, Edges, Leaves, and
Ancestry) to evaluate a reconstructed tree in scenarios where

[1 , 1 , 1 , 1 , 3 , 4]

1

2 43

5 6

Frame 1

[4 , 2 , 2 , 2 , 2 , 5]

2

3 54

1 6

Frame 2

[1 , 1 , 1 , 2 , 2 , 3]

1

2 3

6

Frame 3

4 5

[4 , 4 , 2 , 4 , 1 , 2]

4

1

Frame 4

5

2

3 6

[1 , 1 , 6 , 2 , 2 , 1]

1

2 6

3

Frame 5

4 5

[1 , 4 , 1 , 1 , 3 , 1]

1

3 64

25

Frame 6

P 1 2 3 4 5 6

1 4 2

2 3 1 2

3 3 2 1

4 2 3 1

5 1 3 2

6 2 1 1 1 1

C
hi

ld

Parent
4 (1,1) ✔

3 (2,1) ✔

3 (3,1) ✔

3 (4,2) ✔

3 (5,2) ✔

2 (1,4) ✕

2 (2,4) ✕

2 (3,2) ✕

2 (4,1) ✕

2 (5,3) ✕

2 (6,1) ✔

Edges

[1 , 1 , 1 , 2 , 2 , 1]

1

2 63

Final Video Phylogeny Tree

54

Figure 2. Simulation of the Tree Reconciliation algorithm (TR) to construct a Video Phylogeny Tree from f = 6 image (or frame) phylogeny trees.

we have Ground Truth as introduced in [5]. In this case, we
want to compare a reconstructed VPT with its ground truth
tree. For this intent, we use the metrics from [5]:

Root: R(VPT1,VPT2) =

{
1, If Root(VPT1) = Root(VPT2)
0, Otherwise

Edges: E(VPT1,VPT2) =
|E1∩E2|

n−1

Leaves: L(VPT1,VPT2) =
|L1∩L2|
|L1∪L2|

Ancestry: A(VPT1,VPT2) =
|A1∩A2|
|A1∪A2|

The Root metric evaluates if we find the correct root of
the VPT while the Edges metric evaluates the amount of
correct connections (edges) we find in the VPT. The Leaves
metric accounts for the number of correct leaves we find and
the Ancestry metric accounts for the portion of correctly
identified ancestry information across the tree. Ei, Li, and
Ai mean the sets of edges, leaves, and ancestry in a tree i,
respectively.

Another form of evaluating the effectiveness of a VPT
reconstruction approach is to assess the average Depth of the
tree in which it finds the correct root (the lower the average
depth the better). If an algorithm finds the correct root at depth
zero, it means it correctly identified the root of the tree.

As in any designed experiment, we can only calculate the
metrics if we do have the real Ground Truth to compare
the estimated result. Section V-B shows the methodological
approach used for obtaining this set of controlled experiments.

B. Data Set

To generate a near-duplicate a video can undergo several
possible transformations. However, these transformation must
not destroy the overall meaning of the video otherwise it would
not be considered a near-duplicate. In this paper, we select
typical transformations a video can undergo such as: different
scales for horizontal and vertical axis resampling, contrast
and brightness adjustment, non-linear gamma correction, and
cropping. Here, we do not consider temporal cropping. Tab. I

shows the transformations and their operational ranges for
creating the data set.

Table I
TRANSFORMATIONS AND THEIR OPERATIONAL RANGES FOR CREATING

THE CONTROLLED DATA SET.

Transformation Oper. Range
(1) Global Resampling/Scaling (Up/Down) [90%, 110%]
(2) Scaling by axis [90%, 110%]
(3) Cropping [0%, 5%]
(4) Brightness Adjustment [−10%, 10%]
(5) Contrast Adjustment [−10%, 10%]
(6) Gamma Correction [0.9, 1.1]

The transformations can be combined in any form to create
a near-duplicate. In addition, the color transformations can be
performed either linearly or non-linearly across the color chan-
nels. All the near-duplicate generation process is performed
using the algorithms implemented in MEncoder library3.

To create the data set, we selected 16 of the most watched
video commercials for the 2011 Super Bowl4. All the videos
were originally in HD resolution and each video contains, at
least, 30 seconds of content.

For each video, we have created 16 near-duplicate trees of
size 10 (the original and nine near-duplicate videos). The final
data set contains 256 test cases. In all the experiments, we
selected one frame per second to create the VPT. We also
considered two and three frames per second but one frame per
second represents the best efficiency/effectiveness tradeoff.

C. Experiments

In this section, we show the experiments for the different
methods we introduce for reconstructing a video phylogeny
tree from n near-duplicate videos.

Tab. II first shows the results for the minimum expec-
tation we have when building the video phylogeny trees.

3http://www.mplayerhq.hu/
4http://www.ic.unicamp.br/∼rocha/pub/wifs-2011-super-bowl-videos.html

For that, we calculate an image phylogeny tree for each of
the f selected frames using Oriental Kruskal [5]. We then
compute the metrics as discussed in Section V-A. The table
also shows the results of the proposed methods based on
operations over dissimilarity matrices min, avg, min-norm,
and avg-norm. Finally, the table shows the results for the
tree reconciliation method which creates the final
VPT by reconciling f phylogeny trees.

At first, we notice the min-based methods are indeed
worse than the general expectation for the reconstruction. The
metrics show that single frame expectation results
generally are better than min and min-norm results. The
avg-based methods perform better than the single frame
expectation and finds the correct root of the tree in about 85%
of the cases and have an average root depth of 0.203. The
avg-based methods find 62-64% of the correct ancestry in-
formation. As expected, the normalization plays an important
role in the VPT reconstruction improving the quality of the
results for the min and avg methods.

The tree reconciliation algorithm obtains the best-
performing results. It finds the correct root in 91.0% of the test
cases which is an improvement of 18.9% over the single-frame
expectation or 5.9% over the avg-norm method. However,
the average root depth for the tree reconciliation
algorithm is only 0.098 or 74.3% more accurate than the
single frame expectation. This result means that if
the method does not correctly find the root it only misses it by
a small fraction. Creating the final VPT from reconciling the
actual phylogeny trees is more advantageous than performing
operations of the dissimilarity matrices.

Tab. III presents the breakdown results for the tree
reconciliation algorithm per video. Each row represents
the average result of 16 different trees over near-duplicate sets
with the considered video in that row. We see that some videos
are more difficult than others. However, the low standard
deviations suggest that the method is reasonably stable across
different videos.

Table II
AVERAGE RESULTS FOR THE 16× 16 TEST CASES UNDER CONSIDERATION

FOR THE PROPOSED VPT METHODS.

Method Root Depth Edges Leaves Ancestry
(E) Single Frame 76.5% 0.382 54.2% 67.7% 58.6%
(1) Min 59.0% 0.926 49.6% 64.1% 50.8%
(2) Min-Norm 68.0% 0.605 51.3% 66.4% 54.2%
(3) Avg 85.6% 0.215 56.6% 70.3% 62.0%
(4) Avg-Norm 85.9% 0.203 58.0% 72.4% 64.5%
(5) Reconc. Tree 91.0% 0.098 65.8% 77.7% 70.4%
(5)/(E) Boost 18.9% 74.3% 21.4% 14.7% 20.1%

VI. CONCLUSIONS

In this paper, we tackled the problem of identifying the
video relationships within a set of near-duplicate videos. The
solution extends our prior work for image phylogeny [5].

We presented five different ways of calculating final video
phylogeny from a set of selected frames for the n near-
duplicate videos of interest. The methods differ in their nature
of calculating the final VPT. Four of them are based on
operations on the available dissimilarity matrices while the
fifth and best-performing one builds the final VPT based on
reconciling the actual frame phylogeny trees available.

Table III
RESULTS FOR THE TREE RECONCILIATION APPROACH USING 16

DIFFERENT TREES.

Video Root Depth Edges Leaves Ancestry
V01 100.0% 0.000 68.1% 77.9% 73.4%
V02 87.5% 0.125 66.9% 76.0% 68.8%
V03 75.0% 0.312 56.9% 73.7% 57.8%
V04 81.2% 0.188 57.5% 68.2% 60.7%
V05 93.8% 0.062 69.4% 81.3% 73.9%
V06 93.8% 0.125 66.2% 77.7% 72.7%
V07 100.0% 0.000 73.1% 83.2% 79.5%
V08 93.8% 0.062 59.4% 75.0% 66.1%
V09 100.0% 0.000 70.6% 80.2% 73.1%
V10 100.0% 0.000 65.6% 75.9% 72.3%
V11 81.2% 0.188 64.4% 80.0% 69.8%
V12 100.0% 0.000 68.7% 80.2% 76.4%
V13 87.5% 0.125 75.0% 82.5% 77.7%
V14 100.0% 0.000 69.4% 78.1% 72.5%
V15 81.2% 0.188 56.9% 72.8% 64.2%
V16 81.2% 0.188 65.0% 80.2% 67.2%
Average 91.0% 0.098 65.8% 77.7% 70.4%
Std Dev 8.8% 0.097 5.6% 4.0% 6.0%

To create a realistic set of experiments, we accounted for
common transformations a video undergoes when generating
an offspring, namely resampling, cropping, and channel-wise
pixel normalization. We validated the approaches on a con-
trolled environment with 16 videos from the 2011 Super Bowl
commercials.

Our future work includes the research for approaches to deal
with temporal cropping, missing links [5] as well as multiple
trees in the set of n near-duplicate videos.

ACKNOWLEDGMENT

We thank FAPESP, CNPq, and Microsoft for the financial
support.

REFERENCES

[1] Y. Maret, “Efficient Duplicate Detection Based on Image Analysis,” PhD
Thesis, EPFL, Lausanne, Switzerland, 2007.

[2] H. Kim, H.-W. Chang, J. Lee, and D. Lee, “BASIL: Effective Near-
Duplicate Image Detection using Gene Sequence Alignment,” in ECIR.
Springer, 2010, pp. 229–240.

[3] A. Jaimes, S.-F. Chang, and A. Loui, “Duplicate detection in consumer
photography and news video,” in ACMMM, 2002, pp. 423–424.

[4] Z. Huang, H. T. Shen, J. Shao, B. Cui, and X. Zhou, “Practical online
near-duplicate subsequence detection for continuous video streams,”
IEEE TMM, vol. 12, no. 5, pp. 386–398, August 2010.

[5] Z. Dias, A. Rocha, and S. Goldenstein, “First Steps Toward Image
Phylogeny,” in IEEE WIFS. IEEE, 2010, pp. 1–6.

[6] A. D. Rosa, F. Uccheddua, A. Costanzo, A. Piva, and M. Barni,
“Exploring Image Dependencies: a New Challenge in Image Forensics,”
in Media Forensics and Security II. SPIE, 2010, pp. X1–X12.

[7] L. Kennedy and S.-F. Chang, “Internet Image Archaeology: Automati-
cally Tracing the Manipulation History of Photographs on the Web,” in
ACMMM. ACM, 2008, pp. 349–358.

[8] I. Cox, M. Miller, J. Bloom, J. Fridrich, and T. Kalker, Digital Water-
marking and Steganograph, 2nd ed. Morgan Kaufmann, 2007.

[9] A. Joly, O. Buisson, and C. Frélicot, “Content-Based Copy Retrieval
Using Distortion-Based Probabilistic Similarity Search,” IEEE TMM,
vol. 9, no. 2, pp. 293–306, 2007.

[10] S. Goldenstein and A. Rocha, “High-Profile Forensic Analysis of Im-
ages,” in ICDP, 2009, pp. 1–6.

[11] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust
features (SURF),” Elsevier CVIU, vol. 110, no. 3, pp. 346–359, 2008.

[12] M. Fischler and R. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,” in Comm. of the ACM, vol. 24(6), 1981, pp. 381–395.

[13] R. E. Tarjan, “Efficiency of a good but not linear set union algorithm,”
ACM JACM, vol. 22, no. 2, pp. 215–225, 1975.

