
The Flow Fingerprinting Game

Juan A. Elices
University of New Mexico

jelices@ece.unm.edu

Fernando Pérez-González
University of Vigo

fperez@gts.uvigo.es

Abstract—Linking two network flows that have the same
source is essential in intrusion detection or in tracing anonymous
connections. To improve the performance of this process, the flow
can be modified (fingerprinted) to make it more distinguishable.
However, an adversary located in the middle can modify the flow
to impair the correlation by delaying the packets or introducing
dummy traffic.

We introduce a game-theoretic framework for this problem,
that is used to derive the Nash Equilibrium. As obtaining
the optimal adversary delays distribution is intractable, some
approximations are done. We study the concrete example where
these delays follow a truncated Gaussian distribution. We also
compare the optimal strategies with other fingerprinting schemes.
The results are useful for understanding the limits of flow
correlation based on packet timings under an active attacker.

I. INTRODUCTION

Becoming anonymous is a goal for network attackers to
avoid prosecution but also a necessity for dissidents, hu-
man rights activists, etc. This anonymity can be achieved
by passing the traffic through a chain of relays. Network
attackers generally use compromised hosts called stepping
stones as relays [1], while the rest of the users voluntary hosts
that provide this service in low-latency anonymous networks.
Interestingly, deanonymizing connections of these two kinds is
essentially the same problem [2], which requires matching the
egress and ingress flows. In these applications, the traffic is
generally encrypted and sometimes divided into identical size
packets, making the correlation of packet timings the most
suitable solution.

Methods to find correlated flows can be classified in passive
analysis and active watermarks. They differ in whether the
flow is modified or not. Passive analysis needs slightly longer
sequences but it can be less effective when timing patterns
are very highly correlated, for instance two HTTP connections
to the same web page. Watermarking schemes can avoid this
problem but at the expense of being detectable [3], [4].

An adversary (AD), such as a stepping stone or an
anonymous network relay, may modify the flow to prevent
the correlation by introducing delays to packets or adding
dummy packets to the flow. The existence of the AD has been
considered in a passive analysis scenario by [5] and [6], where
the AD is limited to delaying packets, and [7] analyzes a more
complex AD model that, besides delaying packets, can also add
and remove packets from the flow.

In this paper we study the limits of flow fingerprinting in
an adversarial environment. Flow fingerprinting, which as flow
watermarking, slightly perturbs the communication patterns,
differs with the latter in that the modification is unique to

each flow, so that every source sequence can be indistinctively
identified. To the best of our knowledge, the only active flow
fingerprint method is Fancy [8].

To overcome the loop of proposing an attack and creating
an ad-hoc solution, we propose a game-theoretic framework
and look for the optimum strategies that the players, traffic
analyst (TA) and AD, should adopt. A similar game-theoretic
framework has been used in other contexts such as Information
Hiding [9], Source Identification [10] or in passive traffic
analysis [7].

The rest of the paper is organized as follows: in Section II
we introduce the notation, together with some basic concepts
of game theory. Section III presents a rigorous definition of
the flow fingerprinting game. In Section IV we derive the used
detector. Section V studies the case when the attack channel
is distributed as a truncated Gaussian. Section VI validates the
performance and each player decisions using a simulator, and
also presents a comparison of our scheme with Fancy in terms
of error probability. Conclusions are presented in Section VII.

II. NOTATION

We use the following notation. Random variables are
denoted by capital letters (e.g., X), and their individual real-
izations by lower case letters (e.g., x). The domains over which
random variables are defined are denoted by script letters (e.g.,
X). Sequences of n random variables are denoted with Xn if
they have random nature or by xn if they are deterministic. Xi

or xi indicate the ith element of Xn or xn, respectively. The
probability distribution function (pdf) of a random variable X
is denoted by fX(x), x ∈ X . We use the same notation to
refer to pdf of sequences, i.e. fXn(xn), xn ∈ Xn. When no
confusion is possible, we drop the subscript in order to simplify
the notation. We denote with ∆ the difference operation of a
sequence, i.e ∆xn = {x2 − x1, . . . , xn − xn−1} and with
∆xi = xi+1 − xi the ith element of this sequence.

A. Performance Metrics

To measure performance, we use two metrics: the proba-
bility of detection (PD) and the probability of false positive
(PF). Given two hypotheses: H0 and H1, PD is the probability
of deciding H1 when H1 holds, whereas PF is the probability
of deciding H1 when H0 holds.

Typically, performance is graphically represented using
the so-called ROC (Receiver Operating Characteristic) curves,
which represent PD vs. PF . In order to compare different
ROCs in a simple way, we use the AUC (area under the ROC
curve), a measure that takes a value of 1 in the case of perfect
detection and 0.5 in the case of random choice.

ar
X

iv
:1

30
7.

33
41

v1
 [

cs
.C

R
]

 1
2

Ju
l 2

01
3

AD

TA
Detector

TA
Fingerprinter

Fig. 1: Model of the FFG

B. Game Theory

Game theory is the mathematical study of interaction
among intelligent rational decision-makers. Formally, a two
player game is defined as a quadruple G(A1, A2, u1, u2),
where Ai = {ai,1, . . . ai,ni} are the actions available to the
i player, ui : A1 × A2 7→ R, i = 1, 2 is the utility function
or payoff of the game for player i. An action profile is the
double a ∈ A1 × A2. We are interested in zero-sum games,
where u1(a) + u2(a) = 0,∀a ∈ A1 × A2, which means that
the gain (or loss) of utility of player 1 is exactly balanced by
the losses (or gains) of the utility of player 2. In this case,
we can simplify the game notation to a triplet G(A1, A2, u),
where u = u1 = −u2.

We say that an action profile (a1,i∗ ; a2,j∗) represents a
Nash equilibrium (NE) if

u(a1,i∗ ; a2,j∗) ≥ u(a1,i; a2,j∗) ∀a1,i ∈ A1

u(a1,i∗ ; a2,j∗) ≤ u(a1,i∗ ; a2,j) ∀a2,j ∈ A2, (1)

intuitively this means that none of the players can improve
his utility by modifying his strategy assuming the other player
does not change his own.

Games can be classified in simultaneous games, where
both players move unaware of the other player action, and
sequential games, where later players have some knowledge
about earlier actions. In sequential games, an action profile is
a subgame perfect equilibrium (SPE) if it represents a NE of
every subgame of the original game. Therefore, a SPE is a
refinement of the NE that eliminates non-credible threats.

III. FLOW FINGERPRINTING GAME

The Flow Fingerprinting Game (FFG) is represented in
Figure 1. In this game, there are two players: the Traffic
Analyst (TA) and the Adversary (AD).

The task of the TA is to accept or reject the hypothesis
that a flow tn2 is indeed the same flow as a known one,
un. To improve the efficiency, the TA can modify the flow
by embedding a fingerprint wn. Due to the nature of the
problem the modification must be additive, i.e., xn = un+wn.
We constraint the fingerprint to delay any packet at most
WC seconds. This flow suffers a network delay of dn1 before
reaching the AD. We denote by rn the flow received by the
AD.

The goal of the AD is to modify the flow, producing zn2 ,
in such a way that the detector decide that this sequence is
not related with un. In order to do this, the AD can delay
any packet at most AC seconds and add up to PA · n dummy
packets, hence PA is the maximum ratio between chaff and
real traffic. We denote by an the sequence of delays inserted
by the AD to each packet, and by cnA the chaff packets timing
sequence, which consists of nA packets. The output flow of

the AD zn2 suffers an additional delay dn2
2 due to the network

between the AD and the detector.

We represent by D the delay suffered by a packet in the
whole path, i.e. D = D1 + D2. Note that ∆D is the packet
delay variation (PDV), also called jitter.

Let Y n2 represent flows without any relation to xn, but
from the same application, and we assume that f∆Y (∆y) is
known by both players and define the hypotheses:

H0 : tn2 is not a fingerprinted version of xn

H1 : tn2 is a fingerprinted version of xn.

We define the FFG as follows:

Definition 1. The FFG(ATA;AAD;u) is a simultaneous,
zero-sum game played by the TA and the AD, where

• The set of actions the TA can choose from, i.e. ATA,
is the duple of possible fingerprint sequences wn and
acceptance regions Λ1 for which PF is below a certain
threshold η:

ATA ={wn × Λ1 : 0 ≤ wi ≤WC ,∀i ∈ [1, n],

P r(Y m ∈ Λ1) < η} (2)

• The set of possible attacks that the AD can choose
from

AAD ={f(zn2 |rn) : ∃(an, cnA) | ∀i ∈ [1, n], 0 ≤ ai ≤ AC ;
nA
n
≤ PA; ∀j ∈ [1, nA], 0 ≤ cj ≤ rn +AC ;

zn2 = sort((rn + an)||cnA)}, (3)

where || represents the concatenation of sequences,
and sort(xn) is a function that returns a sorted version
of the input sequence.

• The utility function is PD, namely:

u(ATA, AAD) = Pr(Tn2 ∈ Λ1|H1) (4)

A. Subgame Perfect Equilibrium

As the players choose their actions in a given order, then
the SPE needs to assume that a given player knows which
actions have taken place before his own (otherwise the player
could improve its utility given this information). Hence the
solution to the game is:

u = max
wn

min
AAD

max
Λ1

u(ATA, AAD). (5)

.

As correlating directly timing sequences needs a precise
estimation of fD and in a real implementation this is difficult
to obtain, the use of the difference timing sequence, known
as inter-packet delays (IPDs), seems more reasonable and
has been widely adopted in the literature [8], [5], [7]. The
optimal detector, according to Neyman-Pearson Lemma, is the
likelihood ratio test:

Λ1(tn2 , xn, f̂(zn2 |rn)) =

∫
Rn

∫
Zn2

f∆D
n2
2

(∆(tn2 − zn2))

f∆Y n2 (∆tn2)

· f̂(zn2 |rn)f∆Dn
1

(∆(rn − xn))dzn2drn. (6)

where f̂(zn2 |rn) is the assumed distribution of f(zn2 |rn)
by the detector. The test chooses H1 whenever

Λ1(tn2 , xn, f̂Zn2 |Rn) ≥ ε, where ε is a threshold chosen to
achieve PF < η. At the SPE, f̂(zn2 |rn) = f(zn2 |rn) that
gives a utility of

u = max
wn

min
f(zn2 |rn)

Pr(Λ1(Tn2 , un + wn, f(zn2 |rn)) > ε).

(7)
Unfortunately, solving (7) is a computationally intractable
problem. In the following sections, we try to approximate the
SPE by simplifying the problem.

IV. DETECTOR

In this section we derive a detector that is implemented in
two steps: first, a matching process takes place that outputs
two sequences of the same size, and then a likelihood test
that needs a one-to-one correspondence between the flows is
constructed.

A. Matching Process

When dummy packets are added, i.e. PA > 0, there does
not exist a one-to-one relation between the flows xn and tn2 .
To deal with this problem, we match each packet of xn with
the most likely from tn2 , later removing those packets of tn2

that have no correspondence on xn. We denote this matching
process as tn = m(xn, tn2).

We represent the fact that the ith packet from xn is paired
with the jth packet from tn2 by p(i) = j. Let M be the
set of all injective functions from N = {1, . . . , n} to N2 =
{1, . . . , n2}, i.e ∀i1, i2 ∈ N , p(i1) = p(i2) =⇒ i1 = i2.
Then the matching function m(xn, tn2) is the function from
M that minimizes the mean square error between xn and a
shifted version of tn2 as follows:

m = arg min
M

n∑
i=1

(tp(i) − xi − ρ− E(ai))
2 (8)

where E(ai) is the expected value for the delay added by AD
to the ith packet, recall that f(an|xn) is assumed to be known
by the detector, and ρ is a synchronization constant equal to
the sample mean of the delays, i.e. ρ = 1

n

∑n
i=1 di. In a real

implementation, where the sample mean is unknown, ρ can
be obtained through an exhaustive search (self-synchronization
property).

B. Likelihood Test

Confining the detector to those based on first-order statis-
tics of the IPDs for feasibility reasons, the optimal likelihood
ratio test becomes:

Λ1(tn, xn, f(an|∆xn)) =

n−1∑
i=1

(∫∫
A2

f∆D(∆ti −∆âi)

f∆Y (∆wi)

· fAi,i+1|∆Xn(âi,i+1|∆xn)dâidâi+1

)
,

(9)

where

f(an|∆xn) =

∫
Rn

f(an|∆rn)f∆D1
(∆(rn − xn))drn. (10)

V. TRUNCATED-GAUSSIAN ATTACK CHANNEL

As finding the distribution f(an|∆rn) that minimizes
Pr(Λ1(tn, xn, f(an|∆rn)) > ε) may not be feasible for the
AD, we study the case when the distribution of the delays
introduced by the AD is constrained to a truncated Gaussian
in the interval [0, AC]. Hence, ai ∼ N(µi, σ

2|0 ≤ ai ≤ AC).
Note that this model includes as limits the deterministic attack
σ2 → 0, and a uniform attack σ2 � A2

C .

The AD selects the sequence of means µn and the variance
σ2, as well as the timing for the dummy packets, hence AAD =
{µn × σ2 × cnA}.

From (5), the SPE actions, denoted with the superscript *,
are

a∗TA = arg max
wn

min
AAD

Pr(Λ1(m(Tn2 , xn), xn, f(an|xn)) > ε)

(11)
a∗AD = arg min

AAD

Pr(Λ1(m(Tn2 , xn), xn, f(an|xn)) > ε),

(12)

where

Pr(

∫
Xn

Λ1(m(Y n+bPA·nc, xn), xn, f(an|xn))dxn ≤ ε) = η.

(13)
As the AD must decide its action in real time and (12)
is computationally expensive, we approximate each decision
individually, as explained next

1) Mean sequence (µn): a good approximation when ∆D2

has zero mean and its variance is much smaller than ∆Y (as
it is the case in practice) is

(µn)∗ ≈ arg min
µn

n−1∑
i=1

log f∆Y (∆ri + ∆µi). (14)

Note that under this approximation the AD is maximizing
the likelihood of rn + an coming from yn, i.e., making the
sequence as typical as possible.

2) Variance (σ2): The value of σ2 presents a trade-off:
small values of σ2 make an to be chosen so that the sequence
looks more similar to the typical sequence of Y n but with
the disadvantage that the uncertainty of an for the detec-
tor is smaller. Recall that the detector is assumed to know
f(an|∆xn).

We calculate the value of σ2 that minimizes (12) em-
pirically using the simulator and the scenarios presented in
next section. A graph of the variation of AUC with σ is
depicted in Figure 2. The constant region on each side cor-
responds to a deterministic (σ → 0) and to a uniform attack
(σ � AC). The minimum performance is obtained in the
interval [10−3, 10−2]·AC . This small variance makes the attack
virtually deterministic (σ → 0), implying that making the
sequence more typical is the prevailing factor. Figure 3 let us
see better the difference of performance for different values of
σ. In the following unless otherwise specified, the AD chooses
σ = 10−2 ·AC .

3) Chaff traffic (cnA): Assuming that f∆D(∆d) is sym-
metric around its mean and unimodal (as it is the case in
practice), then the matching process selects those packets that
give a higher value of Λ1(tn, xn, f(an|∆xn)). Therefore, the

10
−8

10
−6

10
−4

10
−2

10
0

10
2

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

σ/ AC

A
U

C

Scenario 1 (n=20)
Scenario 2 (n=30)

Fig. 2: Dependence of the performance with σ (AC = 250ms,
PA = 0, WC = 0ms).

10
−4

10
−3

10
−2

10
−1

10
0

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

P
F

P
D

σ=10−8A
C

σ=10−3A
C

σ=10−2A
C

σ=0.1A
C

σ=0.5A
C

Fig. 3: ROCs for different variances in Scenario A (n = 20,
AC = 250ms, PA = 0, WC = 0ms).

AD will choose cnA so that these dummy packets are removed
in the matching process. On the other hand, the AD will
need these packets to force the TA to consider longer possible
sequences for yn+nA . According to (13), longer sequences of
Y n2 will increase ε.

4) Fingerprint (wn): This is the converse problem as the
delays for the AD. The TA wants xn to be as distinguishable
as possible from the typical sequence of yn. Then,

(wn)∗ ≈ arg max
wn

n−1∑
i=1

log f∆Y (∆ui + ∆wi). (15)

VI. PERFORMANCE

In this section we present the two scenarios we use in the
remaining of the paper and construct a simulator. Afterwards,
we compare the performance modifying one action at a time:
the detector; the AD action, and the fingerprinting scheme.
This will show the impact of those actions on the utility.

A. Scenarios and Simulator

We present two scenarios, A and B, that we use in the
sequel to evaluate the performance. Scenario A represents a
stepping stone that forwards SSH traffic inside the Amazon
Web Services network. The TA-Fingerprinter, the AD and

the TA-Detector (cf. Figure 1) are EC2 instances located in
Virginia, Oregon and California, respectively. We use the IPDs
from 8746 replayed SSH connection captures with 64 million
packets from [11] and [12]. The simulated delays correspond
to Scenario 10 from [13].

Scenario B simulates a web page accessed from the Tor
network whose real origin is to be found. In it, the TA-
Fingerprinter corresponds to the web server, the AD to the Tor
entry relay, and the TA-Detector to the client. We use the IPDs
of 113690 replayed HTTP connections that sum around 139
million packets taken from the same repositories. The delays
correspond to the measurements of Scenario 11 from [13].

The calculation of Λ1 in (9) needs an estimation of f∆D

and f∆Y . To this end we apply kernel smoothing tech-
niques [14]. As it is customary, we separate the data gathered
for each scenario into two subsets: training, to estimate the
pdfs, and test, used in the simulator, assigning 50% of the
samples to each.

Simulations are carried out in the following way. First, we
generate a timing information from the measured IPDs (as
explained in the following paragraphs), un. Then we introduce
the fingerprint wn according to (15) obtaining xn. Afterwards,
dn1 is added to each packet of xn using the measured delays,
obtaining rn. Next, we generate an and cnA according to the
procedure discussed in Section V, obtaining zn2 . Subsequently,
we introduce another delay dn2 to generate sequence tn2

1 .

We generate a second timing sequence yn2 with n2 = n+
bPA · nc. This sequence has the purpose of evaluating the
performance under H0. Finally, we use the test from (9) to
obtain both Λ1(tn2

1 , xn, f(an|xn)) and Λ1(yn2 , xn, f(an|xn)).
This experiment is repeated 104 times when the simulation has
an AD or 105 when no AD is present. For different values of
ε we obtain PD as the rate of Λ1(tn2

1 , xn, f(an|xn)) > ε, and
PF as the rate of Λ1(yn2 , xn, f(an|xn)) > ε.

Sequences un and yn2 are generated in the following way:
we place all the IPDs from the test set on an order-preserving
list. The starting point is randomly selected from the list and
the generated IPDs are the following values.

The provided delays are sampled each 50ms. We select
one value randomly that we consider time 0 ms; the following
values represent the delay at times 50 ms, 100 ms and so
on. To obtain the delays at times where we do not have a
measurement, we use linear interpolation.

B. Detector comparison

We compare our detector with the one used in [7] that we
denote as LCNF (Linking Correlated Network Flows). This
detector is claimed to be the optimal among those that estimate
a value for an and compensate it. Results are depicted in
Figures 4a and 4b for Scenarios A and B, respectively. We see
that our detector outperforms LCNF in both scenarios. Note
that our detector is derived to be optimal among those which
use just first-order statistics. Hence, by using higher-order
statistics the performance could be improved at the expense
of a higher computational cost.

10
−4

10
−3

10
−2

10
−1

10
0

0.75

0.8

0.85

0.9

0.95

1

P
F

P
D

Proposed Decoder
LCNF

(a) Scenario A (n = 20, AC = 250ms, PA = 1, WC = 0ms).

10
−4

10
−3

10
−2

10
−1

10
0

0.4

0.5

0.6

0.7

0.8

0.9

1

P
F

P
D

Proposed Decoder
LCNF

(b) Scenario B (n = 30, AC = 250ms, PA = 1, WC = 0ms).

Fig. 4: Comparison of the proposed detector with LNCF.

C. AD actions

We compare the ROC under an optimal adversary with
those corresponding to three non-optimal adversaries: a) the
AD selects µi randomly according to a uniform distribution
between 0 and AC ; b) the AD chooses its delays from a uni-
form distribution; c) the AD chooses its delays an as explained
in Section V but the chaff traffic is selected randomly, i.e. cnA

is an i.i.d. sequence uniformly distributed between the timing
of the first packet and the last one. Results are depicted in
Figures 5a and 5b. The conditions used are AC = 250ms,
PA = 1, WC = 0ms, n = 20 in Scenario A, and n = 30
in Scenario B. We see that the delay distribution has a great
effect on both scenarios but the dummy packets have a more
significant influence on Scenario B. In any case, notice that the
AD attack derived in Section V impairs the flow correlation
in a much more severe way than the suboptimal strategies.

D. Fingerprint actions

We compare the optimal fingerprint with two other TA-
Fingerprinter strategies: a) the delays are chosen from a uni-
form distribution between [0,WC]; b) the Fancy algorithm, that
embeds its fingerprint as follows ∆x = ∆u+Wfancy ·wn−1,
where each wi ∈ ±1, for all i = 1, . . . , n − 1, and Wfancy

is Fancy’s fingerprint amplitude. We compare these strategies
under the same maximum IPD variation, therefore Wfancy =
WC . We study the performance under two conditions: 1) no

10
−4

10
−3

10
−2

10
−1

10
0

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

P
F

P
D

Optimal
Non−Optimal AD 1
Non−Optimal AD 2
Non−Optimal AD 3

(a) Scenario A (n = 20, AC = 250ms, PA = 1, WC = 0ms).

10
−4

10
−3

10
−2

10
−1

10
0

0.75

0.8

0.85

0.9

0.95

1

P
F

P
D

Optimal
Non−Optimal AD 1
Non−Optimal AD 2
Non−Optimal AD 3

(b) Scenario B (n = 30, AC = 250ms, PA = 1, WC = 0ms).

Fig. 5: Comparison of different AD strategies

AD is present (AC = 0ms, PA = 0); 2) the AD is present.
In the no AD situation we use n = 5, WC = 1 and 5ms in
Scenario A, and n = 20, WC = 50 and 100ms in Scenario
B. Results are depicted in Figures 6a and 6b respectively.
The Fancy detector outputs a sequence of bits which is error-
corrected; for this reason, the ROC shows a stepwise behavior.
We can see the significant difference between Fancy and the
other two mechanisms, that is due to the optimality of the
detector. The difference between choosing wn optimally or
randomly exists but is not so notable. In the AD environment
(AC = 250ms and PA = 1), shown in 7a and 7b for
Scenarios A and B, and again the optimal fingerprint improves
the performance of a uniform fingerprint, but this time the
difference is more noticeable in the plots than in no AD
situation. Fancy’s ROC is not depicted under the AD is present
conditions as it is not designed to withstand an active AD.

VII. CONCLUSION

We have analyzed the flow fingerprinting game, that con-
sists in deciding if two flows are linked or not, allowing a
slight perturbation at the fingerprinter and having an adversary
in the middle who tries to impair the correlation. Using this
framework, we obtain the optimal detector that uses first-order
statistics. Then we study the case where the adversaries’ delays
come from a truncated Gaussian, concluding that the adversary
has to act nearly deterministically even if the detector knows
the distribution. Finally, we validate the optimality of the user

10
−4

10
−3

10
−2

10
−1

10
0

0.4

0.5

0.6

0.7

0.8

0.9

1

P
F

P
D

Optimal fn (F
c
=1ms)

Random fn (F
c
=1ms)

FANCY (a=1ms)
Optimal fn (F

c
=5ms)

Random fn (F
c
=5ms)

FANCY (a=5ms)

(a) Scenario A (n = 5).

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0.4

0.5

0.6

0.7

0.8

0.9

1

P
F

P
D

Optimal wn (W
c
=50ms)

Random wn (W
c
=50ms)

FANCY (W
fancy

=50ms)

Optimal wn (W
c
=100ms)

Random wn (W
c
=100ms)

FANCY (W
fancy

=100ms)

(b) Scenario B (n = 20).

Fig. 6: Performance with no AD (AC = 0ms and PA = 0).

actions using a simulator. This simulator is also used to show
that the proposed scheme outperforms the state-of-the-art in
flow fingerprinting.

ACKNOWLEDGMENT

Research supported by Iberdrola Foundation through the
Prince of Asturias Endowed Chair in Information Science and
Related Technologies.

REFERENCES

[1] S. Staniford-Chen and L. Heberlein, “Holding intruders accountable on
the internet,” in Security and Privacy, 1995. Proceedings., 1995 IEEE
Symposium on, may 1995, pp. 39 –49.

[2] J. A. Elices and F. Perez-Gonzalez, “Fingerprinting a flow of messages
to an anonymous server,” in Information Forensics and Security (WIFS),
2012 IEEE International Workshop on. IEEE, 2012, pp. 97–102.

[3] X. Luo, P. Zhou, J. Zhang, R. Perdisci, W. Lee, and R. K. C. Chang,
“Exposing invisible timing-based traffic watermarks with BACKLIT,”
in Proceedings of the 27th Annual Computer Security Applications
Conference. ACM, 2011, pp. 197–206.

[4] Z. Lin and N. Hopper, “New attacks on timing-based network flow
watermarks,” Aug. 2012.

[5] D. L. Donoho, A. G. Flesia, U. Shankar, V. Paxson, J. Coit, and
S. Staniford, “Multiscale stepping-stone detection: detecting pairs of
jittered interactive streams by exploiting maximum tolerable delay,” in
Proceedings of the 5th international conference on Recent advances in
intrusion detection, ser. RAID’02. Berlin, Heidelberg: Springer-Verlag,
2002, pp. 17–35.

10
−4

10
−3

10
−2

10
−1

10
0

0.75

0.8

0.85

0.9

0.95

1

P
F

P
D

Proposed Fingerprint (W
C

=50ms)

Random Fingerprint (W
C

=50ms)

Proposed Fingerprint (W
C

=100ms)

Random Fingerprint (W
C

=100ms)

(a) Scenario A (n = 20).

10
−4

10
−3

10
−2

10
−1

10
0

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

P
F

P
D

Proposed Fingerprint (W
C

=100ms)

Random Fingerprint (W
C

=100ms)

Proposed Fingerprint (W
C

=200ms)

Random Fingerprint (W
C

=200ms)

(b) Scenario B (n = 30).

Fig. 7: Performance with AD (AC = 250ms and PA = 1).

[6] A. Blum, D. Song, and S. Venkataraman, “Detection of interactive step-
ping stones: Algorithms and confidence bounds,” in Recent Advances in
Intrusion Detection, ser. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2004, vol. 3224, pp. 258–277.

[7] J. A. Elices and F. Pérez-González, “Linking correlated network flows
through packet timing: a game-theoretic approach,” 2013, submitted.

[8] A. Houmansadr and N. Borisov, “The need for flow fingerprints to
link correlated network flows,” in Privacy Enhancing Technologies.
Springer, 2013, pp. 205–224.

[9] P. Moulin and J. O’Sullivan, “Information-theoretic analysis of informa-
tion hiding,” Information Theory, IEEE Transactions on, vol. 49, no. 3,
pp. 563–593, 2003.

[10] M. Barni and B. Tondi, “The source identification game: An
information-theoretic perspective,” IEEE Transactions on Information
Forensics and Security, vol. 8, no. 3, pp. 450–463, 2013.

[11] D. Kotz, T. Henderson, I. Abyzov, and J. Yeo, “CRAWDAD trace
set dartmouth/campus/tcpdump (v. 2004-11-09),” http://crawdad.cs.
dartmouth.edu/dartmouth/campus/tcpdump, Nov. 2004.

[12] R. R. R. Barbosa, R. Sadre, A. Pras, and R. van de Meent, “Sim-
pleweb/university of twente traffic traces data repository,” Centre for
Telematics and Information Technology University of Twente, En-
schede, Technical Report, 2010.

[13] J. A. Elices and F. Pérez-González, “Measures to model delays on
internet,” http://www.unm.edu/∼elices/captures.html, Jan. 2013.

[14] A. W. Bowman and A. Azzalini, Applied Smoothing Techniques for
Data Analysis: The Kernel Approach with S-Plus Illustrations (Oxford
Statistical Science Series). Oxford University Press, USA, Nov. 1997.

http://crawdad.cs.dartmouth.edu/dartmouth/campus/tcpdump
http://crawdad.cs.dartmouth.edu/dartmouth/campus/tcpdump
http://www.unm.edu/~elices/captures.html

	I Introduction
	II Notation
	II-A Performance Metrics
	II-B Game Theory

	III Flow Fingerprinting Game
	III-A Subgame Perfect Equilibrium

	IV Detector
	IV-A Matching Process
	IV-B Likelihood Test

	V Truncated-Gaussian Attack Channel
	V-1 Mean sequence (n)
	V-2 Variance (2)
	V-3 Chaff traffic (cnA)
	V-4 Fingerprint (wn)

	VI Performance
	VI-A Scenarios and Simulator
	VI-B Detector comparison
	VI-C AD actions
	VI-D Fingerprint actions

	VII Conclusion
	References

