
26 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Near optimal detection of quantized signals and application to JPEG forensics / Bianchi, Tiziano; Piva, A.; Perez
Gonzalez, F.. - (2013), pp. 168-173. (Intervento presentato al  convegno 2013 IEEE International Workshop on
Information Forensics and Security (WIFS) tenutosi a Guangzhou, China nel November 18-21, 2013)
[10.1109/WIFS.2013.6707813].

Original

Near optimal detection of quantized signals and application to JPEG forensics

Publisher:

Published
DOI:10.1109/WIFS.2013.6707813

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2525113 since:

IEEE



Near Optimal Detection of Quantized Signals and
Application to JPEG Forensics
Tiziano Bianchi 1, Alessandro Piva 2, Fernando Pérez-González 3
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Abstract—In this paper, we investigate the problem of deciding
whether a multidimensional signal has been quantized according
to a given lattice or not. Under an infinite variance assumption,
we derive the expression of the optimal detector, together with
a practical approximation formula based on multidimensional
Fourier series. As a forensic case study, the proposed detector is
applied to the detection of nonaligned double JPEG compression.
Results on both synthetic signals and real JPEG images show in-
teresting properties of the proposed detector. Namely, the detector
outperforms existing state-of-art detectors for nonaligned double
JPEG compression. The application of the proposed scheme to
other forensic problems seems a natural extension of this work.

I. INTRODUCTION

Image forensics is a new research area aiming at detecting
clues regarding the history of a digital image, by looking
for distinctive patterns in statistical and geometrical features,
including JPEG quantization artifacts, interpolation, demosaic-
ing traces [1]. An advantage of this approach is that it is
passive, in the sense that it is not necessary to embed an
explicit fingerprint in the digital image after its acquisition, so
that forensics tools can be applied to generic digital images.

Since a vast amount of digital images are currently available
in JPEG format, several forensics tools have been developed
to detect the presence of specific features in this class of
images. A very distinctive feature in digital images is the
presence of artifacts due to a previous JPEG compression.
In [2], the authors propose a method to determine whether
a bitmap image has been previosly JPEG compressed and to
estimate the JPEG quantization steps.

Revealing the presence of a previous JPEG compression
after JPEG recompression is in general a more difficult task.
When the discrete cosine transform (DCT) grids of succes-
sive JPEG compressions are perfectly aligned, double JPEG
compression can be detected by recompressing the image at
different quality levels [3], or by analyzing the statistics of
DCT coefficients [4], [5]. In [6], the statistical distribution

WIFS‘2013, November 18-21, 2013, Guangzhou, China.
ISBN 978-1-4673-5593-3 c©2013 IEEE.

of first digits in quantized DCT coefficients is successfully
used for detecting double JPEG compression. Recent results
demonstrate that first digit features can be also used to detect
multiple JPEG recompressions [7]. When the discrete cosine
transform (DCT) grids of successive JPEG compressions are
not aligned, the above methods usually fail. In this case,
double JPEG compression can be revealed by considering
blocking artifacts [8], or by evaluating the integer periodicity
of DCT coefficients when different shifts are applied to the
examined image [9]. A very challenging case occurs when
some processing has been applied between the two JPEG
compressions: in [10], the authors propose a solution for the
case of image resizing applied before the second compression.

All of the above approaches consider specific features
arising in particular cases. Moreover, there is no guarantee
that the chosen features achieve some optimality regarding
the detection problem. In [9], [10], it is argued that a previous
JPEG compression can be detected by verifying whether DCT
coefficients are approximately distributed according to a given
quantization lattice, however no optimal detector was proposed
for this kind of signals. In this paper, we propose a near
optimal detector according to the Neyman-Pearson lemma for
signals quantized on a given lattice, where the detector is
indeed optimal under an infinite variance assumption. The
detection strategy is inspired by the work in [11] regarding
the performance of quantization based data hiding algorithms.
Since the optimal detector is expressed as an infinite series,
several approximate expressions for its practical evaluation are
derived and tested on synthetic signals. We also show how to
employ the proposed detector in a practical forensic problem,
i.e., the detection of double JPEG compression when the DCT
grids of the two JPEG compressions are not aligned.

II. MATHEMATICAL MODELING

We consider a multidimensional signal x ∈ RN , whose
probability density function (pdf) depends on the hypotheses
H0: signal is not quantized, and H1: signal is quantized on
a given lattice. We define the probability of detection as
the probability of accepting the hypothesis H1 when H1 is



true, and the probability of false alarm as the probability of
accepting H1 when H1 is false. The Neyman-Pearson (NP)
lemma states that, given a fixed probability of false alarm, the
probability of detection is maximized by the following binary
test:

p(x|H1)

p(x|H0)
≷ τ (1)

where p(x|H0) and p(x|H1) are the probability distributions
of the signal x under hypotheses H0 and H1, respectively.

We will assume that under hypothesis H1 the signal is
quantized to the points of a lattice defined by the generator
matrix Θ and perturbed by an additive Gaussian noise vector
with covariance matrix C. Its pdf can be derived as

p(x|H1) =
∑

k∈ZN

w(k)g(x−Θk;C) (2)

where g(x;C) , |2πC|− 1
2 e−

xT C−1x
2 and

∑
k∈ZN w(k) = 1.

The weights w(k) denote the probability of x falling within
the kth quantization bin. In the following, we will assume that
Θ is full rank and that det(Θ) > 0, so that the volume of the
fundamental parallelotope of the lattice is given by det(Θ) ,
|Θ|.

Moreover, we will assume that under H0 the signal x
is uniformly distributed within the fundamental parallelotope
of the lattice: this is usually referred to as the high SNR
assumption and is justified if we assume that Θ is reduced
so that the parallelotope is nearly orthogonal. The resulting
pdf can be expressed as

p(x|H0) ≈
∑

k∈ZN

w(k)
I(Θ−1x− k)

|Θ|
(3)

where I(x) = 1 if ||x||∞ ≤ 1
2 , otherwise I(x) = 0.

It is useful to define some quantities for measuring the
effect of lattice quantization on a generic signal. According
to the familiar concept of signal-to-noise ratio (SNR), we will
define the signal-to-lattice ratio (SLR) as the ratio between
the average signal power, denoted by σ2

x and the power of a
noise that is uniformly distributed on the lattice fundamental
parallelotope, i.e.,

SLR = 10 log10
Nσ2

x

Tr{ΘΘT }/12
. (4)

In a similar way, we can define the lattice-to-noise ratio (LNR)
as the ratio between the power of the lattice noise and the
average power of the additive Gaussian noise, i.e.,

LNR = 10 log10
Tr{ΘΘT }/12

Tr{C}
. (5)

It is easy to check that the standard SNR can be obtained as
SNR = SLR + LNR.

Let us find kx ∈ ZN so that I(Θ−1x− kx) = 1. Then we
have

p(x|H1)

p(x|H0)
=
|Θ|
w(kx)

∑
k∈ZN

w(k)g(x−Θk;C). (6)

Under the assumption that the variance of the content is much
larger than the power of both the quantization noise and the
additive Gaussian noise, i.e., we are both in a very high SLR
regime and in a very high SNR regime – sometimes this
is referred to as “infinite” variance assumption –, we can
approximate the above likelihood ratio as

p(x|H1)

p(x|H0)
≈ |Θ|

∑
k∈ZN

g(x−Θk;C) , L(x;Θ,C). (7)

The above equation is justified by the fact that for high SNR
only values of k close to kx will significantly contribute to
the shape of p(x|H1), since g(x;C) decays exponentially fast,
while for high SLR w(k) will be approximately constant on
those values. Hence, under the high SNR–high SLR assump-
tion the optimal NP test becomes:

L(x;Θ,C) ≷ τ. (8)

In order to get a manageable expression for L(x;Θ,C), we
can observe that it is a periodic function closely resembling
the multidimensional Fourier transform of a signal sampled
on lattice points [11]. By using multidimensional Fourier
expansion over the lattice Θ [12, Ch. 12], the likelihood ratio
can be expressed as

L(x;Θ,C) =
∑

n∈ZN

γ(n) cos(2πxTΘ−Tn) (9)

where γ(n) , exp(−2π2nTΨ−1n) and Ψ = ΘTC−1Θ. In
practice, in the evaluation of (9) we can neglect all terms such
that γ(n) < ε. For low LNR values, considering only a few
terms in (9) is expected to produce a good approximation of
L(x;Θ,C).

The evaluation of (9) is much more simple if Ψ is a diagonal
matrix, since we can get a separable expression. Let us define
z = Θ−1x. Then, we can rewrite (9) as

L(x;Θ,C) =

N∏
i=1

[
1 + 2

∞∑
ni=1

exp

(
−2π2n

2
i

ψi

)
cos(2πzini)

]
(10)

where ψi is the ith diagonal element of Ψ and ni, zi
denote the ith component of n, z, respectively. Again, for a
practical evaluation of (10) we can neglect all terms such that
exp(−2π2n2i /ψi) < ε. We will refer to the above detector as
the separable detector.

Finnaly, under the hypothesis that we have a small perturbed
lattice, i.e., we are in a high LNR regime, the following
approximation is also possible

L(x;Θ,C) ≈ |Θ|g(x−Θkx;C). (11)

By taking the logarithm, the resulting approximate NP test
can be expressed as

ex
TC−1ex

2
≷ τ ′ (12)

where ex = (x−Θkx) is the distance of x from the closest
lattice point and τ ′ = log τ − log |Θ| + 1

2 log |2πC|. The
detector based on the above test will be referred to as distance



detector. From (11), it is evident that the distance detector
tends to become optimal under a high LNR assumption.

III. APPLICATION TO DOUBLY COMPRESSED JPEG
IMAGES

In this section, we will show how to apply the model
described in the previous section for the detection of a
double JPEG compression when the DCT grids of the two
compressions are not aligned.

A. Evaluation of Θ and C

Let us assume that an original 8×8 image block y1 is JPEG
compressed with a quality factor QF2, and then decompressed.
A generic 8× 8 image block y2 can be modeled as follows:

y2 = D−1Q2(Dy1) + E2 = y1 + R2 (13)

where D models an 8 × 8 block DCT, Q2(·) models quan-
tization and dequantization processes with JPEG quantization
table corresponding to a quality factor QF2, and E2 is the
error introduced by rounding and truncating the output values
to eight bit integers. The last quantity R2 can be thought of as
the overall error introduced by JPEG compression with respect
to the original image.

Let us now suppose that the original image was previously
JPEG compressed, starting from an uncompressed image I0,
with a quality factor QF1 and with a grid shifted by (r, c) 6=
(0, 0), 0 ≤ r ≤ 7 and 0 ≤ c ≤ 7, with respect to the upper left
corner. This means that a generic 8×8 block chosen according
to a grid aligned with the upper left corner will depend of four
8× 8 blocks of the previously compressed image, i.e.,

y1 =

3∑
i=0

J(i)
rc y

(i)
1 (14)

where y
(i)
1 , i = 0, . . . , 3, denotes one of the four 8× 8 blocks

and J
(i)
rc models the shift between block y

(i)
1 and block y1.

Each block y(i)1 is singly compressed, so according to (13)
the image block y2 is doubly compressed and we can express
it as

y2 =

3∑
i=0

J(i)
rc

[
D−1Q1(DI0

(i)) + E
(i)
1

]
+ R2. (15)

Let us assume that a block DCT with grid alignment (r, c) is
applied to the doubly compressed image. In a similar way, we
can model each 8× 8 block as

y2,rc =

3∑
i=0

J̃(i)
rc y

(i)
2 (16)

where y
(i)
2 , i = 0, . . . , 3, denote four adjacent image blocks

modeled as in (15) and J̃
(i)
rc model the reverse shift with

respect to J
(i)
rc . Since shifts and reverse shifts cancel each

other, we can express the above image block as y2,rc =

D−1Q1(DI0
(0))+E

(0)
1 +

∑3
i=0 J̃

(i)
rc R

(i)
2 and the correspond-

ing DCT is given by

x = Dy2,rc = Q1(DI0
(0)) + D

(
E

(0)
1 +

3∑
i=0

J̃(i)
rc R

(i)
2

)
.

(17)
By looking at the above equation, we can see that x is equal

to a lattice point defined by the quantization Q1() applied
by the previous JPEG compression perturbed by a noise term
due to the second JPEG compression and rounding/truncation
errors. By invoking the central limit theorem, and neglecting
truncation effects, we can assume the noise term approxi-
mately Gaussian and zero mean, so that the distribution of x
can be modeled as in (2). Namely, the lattice generator matrix
is diagonal and defined by

[Θ]ii = Q1,i (18)

where Q1,i is the quantization step applied by the first JPEG
compression on the ith DCT coefficients. As to the covariance
matrix C, this can be derived as

C = D

C
E

(0)
1

+

3∑
i=0

3∑
j=0

J̃(i)
rc C

(ij)
R2

J̃(j),T
rc

DT (19)

where we assumed the independence of E
(0)
1 and R

(i)
2 . By

assuming the quantization errors independent and uniformly
distributed in (−0.5, 0.5), we have C

E
(0)
1

= 1
12I. As to C

(ij)
R2

,
from (13) we can express the approximation error as R2 =
D−1 (Q2(Dy1)−Dy1). If we assume the quantization errors
on DCT coefficients independent and uniformly distributed in
(−Q2/2, Q2/2), then we have C

(ij)
R2

= 0 when i 6= j and we
can express the covariance of R

(i)
2 as

C
(ii)
R2

= D−1ΛQ2D (20)

where ΛQ2
is diagonal and [ΛQ2

]ii = Q2
2,i/12. Hence, the

covariance matrix of the additive noise term is finally given
as

C = D

(
1

12
I +

3∑
i=0

J̃(i)
rc D−1ΛQ2DJ̃(i),T

rc

)
DT . (21)

In the case of high frequency DCT coefficients, the hypoth-
esis of uniformly distributed quantization errors usually does
not hold. A possible correction is to modify ΛQ2 by taking
into account the average energy of the DCT coefficients at the
different frequencies. In the following, we will use the approx-
imation [ΛQ2

]ii = max(Q2
2,i/12, σ

2
x,i), where σ2

x,i denotes the
variance of the ith DCT coefficient. It is worth noting that the
above model can not be applied when (r, c) = (0, 0), since
the Gaussian approximation of the noise term in (17) does not
hold.

B. Practical Detectors

The expressions derived in Section II, together with the Θ
and C estimated in the previous section, can be used to decide
whether a single 8 × 8 JPEG image block has been singly



compressed or it has been previously compressed with a given
quantization matrix Q1 and a given shift (r, c). However, in
practice two problems have to be solved: i) the decision should
be extended to the whole image; ii) both the quantization
matrix of the previous compression and the grid shift are
hidden parameters.

The optimal solution to the first problem would be to
consider the joint distribution of the DCT coefficients on the
whole image. Unfortunately, even for small images the above
solution would soon become inpractical. A more practical
solution is to assume that 8 × 8 blocks are independent, so
that we can derive the likelihood ratio test as

p(x|H1)

p(x|H0)
=

∏
k p(xk|H1)∏
k p(xk|H0)

(22)

where xk denotes the DCT coefficients of the kth 8×8 block.
In order to solve the second problem, we can observe that it

is a composite hypothesis testing problem where in the case of
hypothesisH1 we have a collection of possible models indexed
by parameters Θ and C. In this case, a possible solution is to
use a generalized likelihood ratio test (GRLT), defined as

max
Θ,C

p(x|H1;Θ,C)

p(x|H0)
≷ τ. (23)

Since the denominator in (23) does not depend on the hidden
parameters, the GRLT can be expressed equivalently as

max
Θ,C
L(x;Θ,C) ≷ τ. (24)

IV. EXPERIMENTAL RESULTS

A. Synthetic Signals

The proposed detectors have been first tested on synthet-
ically generated signals. The signal x has been simulated
as a vector of i.i.d. Gaussian variables with zero mean and
variance σ2

x = 1000. Corresponding quantized versions have
been obtained by quantizing the components of x according to
the lattice defined as [Θ]ii = 2i/(N + 1), [Θ]ij = 0, i 6= j.
The quantized versions have been perturbed by a Gaussian
noise with AR(1) covariance structure, i.e., the covariance
matrix can be expressed as

[C]ij =
10−LNR/10

12
ρ|i−j| (25)

where ρ is the correlation coefficient between adjacent com-
ponents of x. We considered ρ values ranging from 0 to 0.9,
with step 0.1.

Tests have been performed on 10000 independently gener-
ated signals, with a number of dimensions N ranging from 2
to 20. Both the optimal and the separable detectors have been
implemented by considering only the terms γ(n) ≥ ε in the
expansion of (9) or exp(−2π2n2i /ψi) < ε in the expansion of
(10), where ε ranges from 1 to 10−3.

In Fig. 1, we show the maximum accuracy achieved by the
different detectors for different LNR values, for N = 6 and
for ρ = 0.2 and ρ = 0.7. While for ρ = 0.2 all detectors
achieve similar results, for ρ = 0.7 the optimal detector is
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Fig. 1. Accuracy of the different detectors for N = 6: (a) ρ = 0.2; (b)
ρ = 0.7.

clearly better than the others, whereas the distance detector
appears greatly impaired.

In Fig. 2, we show the maximum accuracy achieved by the
different detectors for different N and different ρ, for LNR
= 0 dB. The optimal and separable detectors were computed
using ε = 0.01. We can observe that the optimal detector
outperforms the other detectors for high ρ values. However,
the performance of the optimal detector decreases with N .
Preliminary results seem to show that in this configuration
ε = 0.01 is not enough to achieve a good approximation
of L(x;Θ,C). It is worth noting that it was not possible to
compute the optimal detector for ρ = 0.8 and N > 15, due
to the very large number of points in the Fourier expansion.
Interestingly, in this scenario the separable detector does not
appear very useful, since for low values of ρ and N all
detectors have similar performance, whereas for high values
of ρ and N the separable detector is definitely worse than the
others.
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Fig. 2. Accuracy of the different detectors for LNR = 0 dB (ε = 0.01).

B. JPEG Images

For the experimental validation on real images we used
an image dataset composed by 1000 non-compressed TIFF
images, having heterogeneous contents, coming from three
different digital cameras and each acquired at its highest
resolution; each test was performed by cropping the central
portion using three different image sizes.

For simulating double JPEG compression, each original
image was JPEG compressed with a quality factor QF1,
decompressed, cropped by a random shift (r, c) 6= (0, 0), with
0 ≤ r ≤ 7, 0 ≤ c ≤ 7, and JPEG compressed with another
quality factor QF2. The absence of double compression was
simulated by simply compressing the original image with a
quality factor QF2. The quality factor of both compressions
was chosen so that the quantization step of the DC coefficients
(Q1) ranges from 1 to 16 with step 1.

The performance of the detector in (24) has been investi-
gated by estimating the ROC curves for different combinations
of (QF1, QF2), using a 5-fold cross validation strategy. Dif-
ferent optimal thresholds are chosen according to QF2 and
the image size. In a first experiment, the likelihood ratio in
(24) is evaluated by taking the maximum over all the possible
shifts (r, c) 6= (0, 0) and all the possible QF1. In a second
experiment, the likelihood ratio in (24) is evaluated by taking
the maximum over all the possible shifts (r, c) 6= (0, 0) and
all the possible QF1 6= QF2. In all the above experiments,
the detectors consider only the DC DCT coefficients for each
8× 8 block, i.e., N = 1.

In Fig. 3, we show the maximum accuracy of the different
detectors achieved in the first experiment for different values
of QF2 and different image sizes. The maximum accuracy
is defined as the point on the ROC curve corresponding to
the maximum number of correctly classified images and is
averaged over all possible QF1 values. For making compar-
isons, we report also the results obtained with the method of
[9] based on integer periodicity maps (IPM). Surprisingly, in
this scenario both the optimal and the distance detectors are
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Fig. 3. Accuracy of the detectors for different JPEG qualities QF2 and
different image sizes.
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Fig. 4. Accuracy of the detectors for different JPEG qualities QF2 and
different image sizes, QF1 6= QF2.

inferior to the IPM detector, which suggests that the model
used in Section II has some problems with the non-aligned
double JPEG scenario.

In Fig. 4, we show the maximum accuracy of the optimal
and distance detectors achieved in the second experiment for
different values of QF2 and different image sizes. In this case,
performances are evaluated for each configuration of QF1,
QF2 such that QF1 6= QF2. For making comparisons, we
also report the results obtained with the method of [9] by
excluding the case QF1 6= QF2. Interestingly, in this case the
performance of the optimal detector is better than that of the
detector in [9], especially in the case of smaller images.

In Tables I and II we show the maximum accuracy of
the optimal and distance detectors, respectively, for different
combinations of QF1 and QF2, when the image size is
256× 256. For a comparison, the accuracy of the detector in
[9] is shown in Table III. In all tables, results are averaged only
for configurations of QF1, QF2 such that QF1 6= QF2. In this



TABLE I
ACCURACY OF THE OPTIMAL DETECTOR (%) FOR IMAGE SIZE 256× 256,

QF1 6= QF2 .

QF2
PPPPQF1 50-57 58-67 68-76 77-85 86-95 96

50-57 75.3 89.6 94.9 98.1 98.0 99.6
58-67 64.9 84.0 94.4 97.9 98.2 96.8
68-76 52.8 61.3 82.2 97.9 98.5 99.6
77-85 52.0 50.5 52.9 76.8 98.5 98.8
86-95 52.2 50.9 50.1 50.1 74.9 99.8

TABLE II
ACCURACY OF THE DISTANCE DETECTOR (%) FOR IMAGE SIZE

256× 256, QF1 6= QF2 .

QF2
PPPPQF1 50-57 58-67 68-76 77-85 86-95 96

50-57 78.1 90.4 95.5 98.5 98.5 99.6
58-67 60.8 82.5 95.2 98.5 98.6 96.8
68-76 51.0 56.1 79.0 98.5 98.9 99.6
77-85 51.2 50.3 50.6 74.7 98.8 98.8
86-95 51.2 50.3 50.0 50.2 74.8 99.8

scenario, the optimal detector outperforms the detector in [9]
for almost every configuration of QF1, QF2. It is interesting
to note that the optimal detector has better performance when
QF1 and QF2 are similar, whereas the distance detector has
a slightly better performance when QF1 < QF2. This can be
explained by noting that the latter case corresponds to a high
LNR scenario, in which the distance detector is expected to
achieve near optimal performance.

V. CONCLUSIONS

In this paper, we have derived an optimal detector for
signals quantized on a given lattice under an infinite variance
assumption and we have provided approximate expressions
for its practical evaluation. Namely, for a low lattice-to-noise
ratio (LNR) the optimal detector can be approximated by using
a multidimensional Fourier expansion, whereas for a high
LNR the optimal detector is almost equivalent to computing
the distance from a lattice point. The proposed detector has
been then applied to a practical image forensic problem, the
detection of nonaligned double JPEG compression.

Results on synthetic signals show that the optimal detector
achieves a significant advantage in the presence of correlated
noise. However, this detector is not practical for a high
number of dimensions, or for high LNR values, since the
number of significant terms in the multidimensional Fourier

TABLE III
ACCURACY OF THE DETECTOR IN [9] (%) FOR IMAGE SIZE 256× 256,

QF1 6= QF2 .

QF2
PPPPQF1 50-57 58-67 68-76 77-85 86-95 96

50-57 69.9 92.0 94.4 95.1 95.8 95.6
58-67 63.3 71.4 94.4 96.0 96.8 96.7
68-76 51.4 57.9 69.9 96.0 97.3 97.7
77-85 50.5 50.4 52.3 66.5 98.1 98.7
86-95 50.8 50.4 50.0 49.9 66.2 98.9

expansion becomes very large. A simplified detector based
on a separable Fourier expansion does not seem to provide
significant advantages in the uncorrelated noise case, whereas
it is clearly suboptimal in the correlated noise case.

As to the detection of nonaligned double JPEG compres-
sion, the proposed model appears well suited as long as
QF1 6= QF2, in which case the optimal detector outperforms
existing state-of-the art detectors. As to QF1 = QF2, a
possible problem is that in this case DCT coefficients of
singly compressed images are not uniformly distributed in a
quantization bin, since the effects of the second quantization
are visible also in the shifted DCT domain.

There are several avenues for further research. First of all,
the proposed detector is optimal only when both Θ and C
are known. An interesting problem is whether the generalized
likelihood ratio test may still have some optimality when such
parameters are unknown, or alternative optimal tests exist.
Then, there are some practical problems deserving further
investigation, like how to cope with the case QF1 = QF2.
Finally, the proposed approach can be applied also to solve
different forensic problems, like the detection of a previous
compression after geometric image manipulations.
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