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Secure Compressed Sensing over Finite Fields
V. Bioglio, T. Bianchi, E. Magli

Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino

Abstract—In this paper, we analyze the security of compressed
sensing (CS) defined over finite fields. First, we prove that
acquiring signals using dense sensing matrices may provide
almost perfect secrecy. Then, we prove that using sparse sensing
matrices, which admit efficient recovery algorithms mutuated
by coding theory, reveals information only on the sparsity of
the sensed signal, and that such information is conveyed only
by the sparsity of the measurements. Finally, we introduce an
operational definition of security, based on the error probability
in estimating the signal sparsity, and show that there is a tradeoff
between the sparsity of the sensing matrix and the security of
the CS system.

Index Terms—Compressed Sensing, Security, Finite Fields

I. INTRODUCTION

Compressed Sensing (CS) has recently emerged as a novel
signal acquisition technique at a rate well below that predicted
by the classical Shannon-Nyquist theory [1], [2]. The key
intuition behind CS is that, under the hypothesis that the
signal admits a sparse representation under some basis, a small
number of linear measurements enables signal recovery with
high probability, as long as such measurements can be modeled
as linear projection over a second basis which is incoherent
with respect to the sparsity basis.

Most of the results in the CS literature deal with signals
represented over a real field. However, if the signal belongs
to a finite alphabet, the recovery problem can be addressed
exploiting finite fields operations. The study of CS over finite
fields is an emerging topic [3], [4], motivated by the fact that
it can provide some advantages with respect to classical CS.
Namely, while sensing and measurement quantization of a real
signal may cause loss of accuracy, performing operations over
finite fields avoids this issue. Moreover, techniques derived
from the decoding of linear codes can be exploited for efficient
signal recovery [4]–[6].

As to CS over a real field, researchers have hinted the
possibility that acquiring signals via random linear projection
may provide some notion of security. In [7], the authors
argue that CS does not provide information theoretic secrecy
[8], however it can be viewed as a cryptosystem offering
computational secrecy. The security of CS is also investigated
in [9], showing that CS is computationally secure against a
systematic search of the sensing matrix, even if the sparsity
is known. Low complexity encryption systems based on CS
have been recently proposed and analyzed in [10], [11].

In this paper, we analyze the security of CS over finite
fields as a cryptosystem. Even if the notion of secrecy emerges
in a natural way for CS over finite fields, to the best of
our knowledge there is no precise study in the literature

addressing the security of such systems. We consider the case
of dense as well as sparse sensing matrices. This second
case is particularly interesting, since it admits signal recovery
via efficient linear decoding algorithms [6]. While using a
dense sensing matrix over finite fields provides almost perfect
security, we will show that a sparse sensing matrix reveals
information only on the sparsity of the sensed signal, and
that such information is conveyed only by the sparsity of the
linear measurements. In order to characterize this information
leakage, we will introduce an operational security definition
based on the performance of practical estimators, showing that
there is a tradeoff between the sparsity of the sensing matrix
and the security of the system. Simulation results are included
to evaluate such a tradeoff in simple scenarios.

II. BACKGROUND

A. Compressed Sensing and Finite Fields

A signal x of length n is called k-sparse if there exists a
basis Φ such that x = Φθ and θ has exactly k nonzero entries,
denoted as ||θ||0 = k. According to the CS framework [1], [2],
a k-sparse signal can be exactly recovered from m < n linear
measurements y = Ax by solving the minimization problem

θ̂ = arg min
θ
||θ||0 subject to AΦθ = y, (1)

as long as m ≥ 2k and the sensing matrix A ∈ Rm×n satisfies
certain properties.

In the conventional CS framework, the signal is defined over
the real field R, but nothing prevents to employ signals defined
over a finite field F of size q. The authors in [3] prove that
if all the elements of the sensing matrix are randomly drawn
over a finite field, (1) admits a unique k-sparse solution with
high probability. However, even if the theoretical performance
of these dense random matrices over finite fields appears to be
promising, efficient algorithms for the recovery of the signal
in this scenario are not currently available.

Actually, solving (1) over a finite field can be seen as a
syndrome decoding of an error correcting code, where θ is
the channel error vector, y is the syndrome of the received
word and AΦ is the parity check matrix of the code [12].
When AΦ is a fully random matrix, syndrome decoding is
believed to be NP-hard [13]. However, the sensing matrix A
can be chosen such that AΦ is the parity check matrix of
a channel code for which an efficient decoding algorithm is
known. In this sense, an interesting class of codes are the so
called low-density parity check (LDPC) codes. LDPC codes
admit efficient recovery algorithms using belief propagation.



To simplify the notation, in the following we can consider
Φ = I , i.e., the signal is sparse in the sensing domain, without
loss of generality.

B. Security definitions, scenarios, and attack models
Let us define the set of possible plain texts P , the set of

cipher texts C and a key generation function providing a key
K. A private key cryptosystem is a pair of functions eK :
P → C, dK : C → P such that, given a plain text p ∈ P ,
dK(eK(p)) = p and such that, given a cipher text c ∈ C,
it is unfeasible to determine p such that eK(p) = c, without
knowing the key K.

A cryptosystem is perfectly secure [8] if the posterior prob-
ability of the cipher text given the plain text p is independent
of p. For a perfectly secure cryptosystem, any attack can not
be more successful than guessing the plain text at random.
Practical cryptosystems are usually computationally secure,
meaning that breaking the cryptosystem is equivalent to solve
a computationally hard problem, that is, a problem whose
solution can not be computed in polynomial time with respect
to the size of the key.

Given the CS model y = Ax over a finite field, we can
define the following equivalences between CS and a private
key cryptosystem: the signal x is the plain text, the sensing
matrix A is the secret key and the measurement vector y is the
cipher text. The encryption function is matrix multiplication,
whereas decryption is achieved by solving the problem in
(1). As a consequence, the notion of perfect security can be
extended to the cryptosystem defined by the CS framework:

Definition 1. A CS system provides perfect secrecy if
P(y |x) = P(y).

Definition 2. A CS system provides conditional perfect se-
crecy if P(y |x, a) = P(y | a), where a is a system parameter.

The last is equivalent to saying that observing y does not
reveal anything more about x than what can be inferred by
the knowledge of the parameter a.

The security of the CS-based cryptosystem will be affected
by the policies regarding the generation of the sensing matrix
in the case of multiple measurements. On the one hand, using
the same sensing matrix for multiple measurements limits the
overhead due to the transmission of the sensing matrix. On the
other hand, generating a different and possibly independent
sensing matrix for each measurement is somewhat analogous
to a one-time pad cryptosystem and may offer greater security.
In this paper, we will focus on the one-time sensing matrix
(OTS) scenario [11]. We will assume that each sensing matrix
is used only once, and that different sensing matrices are
statistically independent. Under this scenario, it is sufficient to
consider the security of y = Ax, since multiple measurements
will be statistically independent. Such a scenario can be
implemented by producing consecutive sensing matrices via
a secure random number generator (SRNG) [14] and using
the seed of the SRNG as a secret key.

The security of a cryptosystem depends also on the re-
sources of the adversary. In this paper, we will focus on a

ciphertext-only attack (COA) scenario where the adversary has
only knowledge of the measurements y.

C. Niederreiter’s Cryptosystem

CS-based cryptosystems defined over finite fields have a
close relationship with a public key cryptosystem proposed
by Niederreiter [15], which is a dual version of the popular
McEliece cryptosystem [16], [17]. Both cryptosystems rely
on the assumption that decoding a random code is a hard
problem and that it is computationally unfeasible to distinguish
a scrambled code from a random code. Namely, given a parity
check matrix H of an error correcting code that can correct
up to k errors, the Niederreiter’s cryptosystem is based on
the scrambled parity check matrix A = SHP , where S is
a random invertible matrix and P is a random permutation.
The public key is A, the secret key is (S,H, P ). A message
is first encoded as a k-sparse vector x and the corresponding
ciphertext is obtained as y = Ax. For the decryption, the
receiver applies syndrome decoding for the code H to the
vector y′ = S−1y and recovers x by inverting P .

The original version of Niederreiter’s cryptosystem based
on Reed-Solomon codes can be broken in polynomial time
[18]. However, when implemented with Goppa codes [19] the
cryptosystem is believed to be secure [20]. As to CS over
finite fields, a disadvantage of McEliece’s and Niederreter’s
cryptosystems is that the matrix A and the sparsity parameter
k must satisfy some constraints in order to be secure. For
example, the authors of [20] suggest using (2960, 2288) Goppa
codes and k = 56 in order to have 128-bit security.

In the following, we will consider a different scenario with
respect to Niederreiter’s cryptosystem. We will assume that
the choice of A is mainly dictated by the properties of the
sensed signal x and we will explore whether sensing matrices
with good recovery properties can also guarantee a security
layer if used as secret keys of a symmetric cryptosystem.

III. SECURITY OF DENSE SENSING MATRICES

In this section we will prove that, under some hypotheses,
when using randomly drawn dense sensing matrices, as pro-
posed in [3], the CS system is almost perfectly secure. First,
we need the following preliminary result:

Lemma 1. Given a vector r ∈ Fn, if the elements of r are
uniformly drawn over F and k ≥ 1, the scalar product r · x
does not depend on x and it is uniformly distributed over F,
i.e., P(r · x = a |x) = P(r · x = a) = 1

q .
Proof: Given x ∈ Fn, we call Qa(x) = {v ∈ Fn s.t. v ·

x = a}, where a ∈ F. For a = 0, Q0(x) is a (additive)
subgroup of Fn (and we write Q0(x) < Fn) since for all
v, w ∈ Q0(x) we have that v − w ∈ Q0(x). If k ≥ 1,
it is possible to prove that Qa(x) is a coset of Q0(x),
since for all v, w ∈ Qa(x) we have that v − w ∈ Q0(x).
Fn is an abelian group for the sum, so the right and left
cosets are equal. Through Lagrange’s theorem, we have that
qn = |Fn| = [Fn : Q0(x)] · |Q0(x)| = q |Q0(x)|, and hence
|Qa(x)| = |Q0(x)| = qn−1 for all a ∈ F. This implies that, if



r is randomly drawn, P(r ·x = a |x) = P(r ·x = a) = P(r ∈
Qa(x)), and the last probability is equal to 1

q .

Hence, we are ready to state the main result of this section:

Proposition 1. If k 6= 0 and the elements of A are uniformly
drawn over F, the CS system provides perfect secrecy.

Proof: If y is randomly drawn over Fm, P(y) = 1
qm . On

the contrary, if we call Ai the i-th row of A, for Lemma 1

P(y |x) = P(y = A · x |x) = (A i.i.d)

=

m∏
i=1

P(yi = Ai · x |x) = (Lemma 1)

=

m∏
i=1

P(yi = Ai · x) =
1

qm
.

Following Def. 1, the proposition is proved.

The previous proposition proves that the use of a random
sensing matrix provides a high level of security. However,
for this kind of matrices no efficient recovery algorithm is
known. To overcome this problem, the use of sparse matrices
is emerging as an alternative to the dense ones [5], [6]. In the
following section, we will study the security performance of
sparse sensing matrices.

IV. SECURITY OF SPARSE SENSING MATRICES

In this section we will prove two security properties of
sparse sensing matrices satisfying certain conditions. Firstly,
we prove that, under a known sparsity k, every signal x is
equiprobable given a measurement vector y, implying that
the CS system is conditionally perfectly secure. Secondly, we
consider that a sparse A implies a sparse y and we prove that,
if the sensing matrix has uniformly drawn nonzero elements,
all measurements vectors with a constant sparsity h = ||y||0
are equiprobable, implying that y does not reveal anything
more about x than what can be inferred by the knowledge of h.
Finally, these properties are used together to prove that, given
y, the only information we can leak is k, and this information
can be obtained through the observation of h.

A. Equiprobability of the signals

We suppose that the sensing matrix belongs to a subset
of the complete field, i.e., A ∈ F ⊆ Fm×n, closed under
the elementary matrix operations of column switching and
multiplication. This means that if A ∈ F , also the matrices
A′, obtained switching two columns of A, and A′′, obtained
multiplying a column of A by an element of F, belong to F .
Parity check matrices of linear codes are closed under these
operations.

We call A(x, y) ⊆ F the set of the admissible matrices
defined as A(x, y) = {A ∈ F s.t. A · x = y}. As a
consequence, P(y |x) = |A(x,y)|

|F| , and the system provides
perfect secrecy only if the sets of the admissible matrices
have the same size. Unfortunately, these sets have different
size; however, with Prop. 2 we will prove that the size of an
admissible set only depends on the sparsity of x, hence the
system provides conditional perfect security given k.

We call Sx the support of x, i.e., Sx ⊆ {1, . . . , n} such that
xi 6= 0 iff i ∈ Sx; obviously, |Sx| = k. The vector π(x) is
a permutation of x, applied by the permutation π ∈ Sn. In
particular, πa,b is the swap between the elements in position
a and b. Before proving the main statement, we need the
following preliminary results:

Lemma 2. |A(x, y)| = |A(πa,b(x), y)| for all a, b ∈
{1, . . . , n}.

Proof: We consider the map ϕ : A(x, y)→ A(πa,b(x), y)
defined as the function that swaps the a-th and the b-th
columns of A. If we prove that ϕ is bijective, the lemma holds.
To be bijective, a function must be well defined, injective and
surjective. The function is well defined because if A ∈ A(x, y)
then ϕ(A) ∈ A(πa,b(x), y) by definition. The function is
injective because only two identical matrices can be mapped
into the same matrix. Finally, the function is surjective because
if B ∈ A(πa,b(x), y) there exists a matrix A ∈ A(x, y) such
that ϕ(A) = B.

Corollary 1. |A(x, y)| = |A(π(x), y)| for all π ∈ Sn.
Proof: The corollary holds since every permutation ad-

mits a decomposition in swaps and Lemma 2 can be applied
for every swap.

Lemma 3. If Sx = Sx′ and ‖x− x′‖0 = 1 then |A(x, y)| =
|A(x′, y)|.

Proof: If Sx = Sx′ and ‖x − x′‖0 = 1 then x and x′

differ for one element in position a. We consider the map ϕα :
A(x, y)→ A(x′, y) defined as the function that multiplies by
α all the elements of the a-th column of A. If α = x′a · x−1a ,
the function is a bijection between the two sets.

Corollary 2. If Sx = Sx′ then |A(x, y)| = |A(x′, y)|.
Proof: We create a succession x =

x(0), x(1), . . . , x(k−1) = x′ where Sx(i) = Sx(i+1) and
‖x(i) − x(i+1)‖0 = 1. This succession is created by
substituting one by one the nonzero elements of x with the
corresponding nonzero elements of x′ in the same position.
Now, it is possible to exploit Lemma 3 at each step to prove
the corollary.

Proposition 2. If |Sx| = |Sx′ | then |A(x, y)| = |A(x′, y)|.
Proof: If |Sx| = |Sx′ | there exists a permutation π ∈ Sn

such that Sπ(x) = Sx′ , and hence |A(x, y)| = |A(π(x), y)| =
|A(x′, y)|, where the first and the second equalities are due to
Corollaries 1 and 2 respectively.

We are now ready to state the main result:

Proposition 3. If A is randomly drawn from a family F closed
under the operations of column switching and multiplication,
then the CS system provides conditional perfect secrecy, i.e.,
P(y |x, k) = P(y | k).

Proof: Under the hypothesis of the proposition,
P(y |x) = |A(x,y)|

|F| . Given a signal x′ such that |Sx| =

|Sx′ | = k, for Prop. 2 we have that P(y |x) = P(y |x′), hence
P(y |x) = P(y |x, k) = P(y | k).

This is equivalent to saying that observing y does not



reveal anything more about x than what can be inferred by
the knowledge of k. Moreover, since the set of the parity
check matrices of a nonbinary linear codes is a subset of F
closed under the matrix operations of column switching and
multiplication, Prop. 2 holds for these families of matrices.

B. Equiprobability of the measurements

We begin proving an extension of Lemma 1 for the nonzero
measurements calculated through sparse matrices.

Lemma 4. Given a sparse vector r ∈ Fn, if the nonzero
elements of r are uniformly drawn over F\{0} and b = r ·x 6=
0, then b does not depend on x and it is uniformly distributed
over F\{0}, i.e., P(r ·x = b | r ·x 6= 0, x) = P(r ·x = b | r ·x 6=
0) = 1

q−1 .
Proof: We call lj the d positions where both rlj and

xlj are nonzero. Since r · x 6= 0, we have d > 0 and
b =

∑n
j=1 rjxj =

∑d
j=1 rljxlj . If d = 1, b is the result

of the multiplication of a value uniformly drawn over F\{0}
and a generic element of F\{0}, hence it is distributed
uniformly over F\{0}. On the contrary, if d > 1 we have
that b =

∑d
j=1 rljxlj = rl1xl1 +

∑d
j=2 rljxlj = rl1(xl1 +∑d

j=2 r
−1
l1
rljxlj ) = rl1x

′. As before, b can be written as the
result of the multiplication of a value uniformly drawn over
F\{0} and a generic elements of F\{0}, hence it is distributed
uniformly over F\{0} also in this case.

Hence, we can prove the following statement:

Proposition 4. If the values of the nonzero elements of
A are drawn uniformly over F\{0} then the values of the
nonzero elements of y are drawn uniformly over F\{0}, and
P(x | y, h) = P(x |h).

Proof: Each element of y is the result of the scalar product
between the signal and a row of A. Each row of A is a vector
that matches the hypotheses of Lemma 4, hence the values of
the nonzero elements of y are drawn uniformly over F\{0}.
As a consequence, the values of the nonzero elements of y
do not give any information on x; the only usable information
carried by y is its sparsity h, hence P(x | y, h) = P(x |h).

The consequence of this Proposition is that the value of a
nonzero entry of y does not give any further information on
x than the information given by the knowledge of h = ||y||0.

C. Information leakage

Thanks to Propositions 3 and 4 above, the distribution of y
given k does not depend on the values of x, and conversely the
distribution of x given h does not depend on the values of y.
We can use this to calculate the mutual information between
x and y, proving the following statement:

Proposition 5. If the hypotheses of Prop. 3 and 4 hold, the
mutual information between x and y is equal to the mutual
information between k and h, i.e., I(x; y) = I(k;h).

Proof:

I(x; y) = I(x, k; y) = I(k; y) + I(x; y | k) =
= I(k; y) (Prop. 3)

I(k; y) = I(k; y, h) = I(k;h) + I(k; y |h) =
= I(k;h) (Prop. 4)

This means that the only feature of y that reveals some
information is its sparsity h, and the only information we can
leak is the sparsity of the signal k. We point out that the parity
check matrices of linear codes match the hypotheses of Prop.
5, hence the discussion above is valid for this class of matrices.

V. OPERATIONAL DEFINITION OF SECURITY

In this section, we want to characterize the information
leakage about the signal given by the knowledge of the mea-
surements in the case of sparse sensing matrices. Since, under
the hypothesis of Prop. 5, the sparsity of the measurements
h gives some information about the sparsity of the signal k,
we develop an operational definition of security based on the
error committed by attempting to estimate k from h. Let us
define the error probability (EP) as P(k̂(h) 6= k), where k̂(h)
is an estimator of k based on h.

Definition 3. A CS system is said η-EP secure if

η =
E[P(k̂(h) 6= k)]

1−maxk P(k)
.

It is easy to check that a perfectly secure system is 1-EP
secure. Conversely, a 0-EP secure system reveals everything
about k. In general, the security of a CS system can be assessed
by using the following lemma:

Lemma 5. A CS system is η∗-EP secure, where

η∗ =
E[1−maxk P(k |h)]

1−maxk P(k)
. (2)

Proof: According to Bayesian estimation theory, the EP
is minimized by the maximum a posteriori (MAP) estimator
of k, given by

k̂MAP (h) = arg max
k

P(k |h). (3)

Hence, for each h we have mink̂(h) P(k̂(h) 6= k) = 1 −
maxk P(k |h).

In order to evaluate the security of a given CS system
using lemma 5, we need to explicitly compute the probability
distribution P(k |h). Since P(k |h) = P(h | k)P(k), if we
assume that the prior distribution of k is known, the problem is
equivalent to determining the probability distribution P(h | k)
induced by a particular sensing matrix.

A. Distribution of P(h | k)

In the following, we explicitly calculate the distribution of
P(h | k) in the case of matrices with independent rows, i.e.,
if each row of A is generated independently from the others.
Moreover, the nonzero entries have to be drawn uniformly over
F\{0}. In this case, Prop. 5 holds. This leads to more restric-
tive hypotheses than those requested in Prop. 5, but allows one
to write P(h | k) as a function of known distributions.



We begin by calculating the probability P that an entry of
y is equal to zero. We call di the number of positions such
that an entry aij of the i-th row of the sensing matrix and xj
are both nonzero. In this case,

P =

k∑
j=0

P(yi = 0 | di = j)P(di = j) =

k∑
j=0

pjtj ,

where pj = P(di = j) and tj = P(yi = 0 | di = j). Row
independence implies that each measurement is independent
from the others, hence P(h | k) is distributed according to
a binomial distribution of parameter 1 − P , i.e., P(h | k) ∼
B(1 − P,m). We note that if q → ∞, P → p0t0 = p0.
In fact, h is a random variable that counts the number of
nonzero entries of y. Since the rows of A are independent,
each measurement is independent on the others, and it is
equal to zero with probability P . As a result, h is the sum
of m Bernoulli processes, hence it is distributed according to
a binomial distribution. The parameter P depends on the field
and on A. In the following, we separately study these factors
that determine P .
P(yi = 0 | di) depends on the size q of the finite field. Given
the arrangement of the nonzero elements in the matrix, we
naturally have that t0 = P(yi = 0 | di = 0) = 1 and
t1 = P(yi = 0 | di = 1) = 0. The general case tj = P(yi =
0 | di = j) can be recursively calculated as follows. If di = 2,
t2 can be seen as the probability for two nonzero elements
to be complementary, hence t2 = 1

q−1 . When di = 3, t3 can
be seen as the probability that, given three nonzero elements,
the sum of the first two is complementary to the third. They
are complementary if the sum is a nonzero (that happens with
probability 1 − t2) and they assume the same value, hence
t3 = (1−t2) 1

q−1 . This procedure can be generalized, obtaining
tj = P(yi = 0 | di = j) = (1− tj−1) 1

q−1 , for j ≥ 2.
The distribution of di depends on the arrangement of the
nonzero elements in the matrix. Since the rows are independent
by definition, di does not depend on i. In the following,
we calculate the distribution of di for some kind of sparse
matrices.

Rows with Constant Degree: Each row of A has exactly r
nonzero entries in positions randomly drawn. Each nonzero
entry is drawn uniformly over F\{0}. In this case, di is
distributed according to an hypergeometric distribution, i.e.,
di ∼ H(n, k, r). In fact, di counts the number of collisions
between the signal x and the i-th row of the sensing matrix.
These are two n-length vectors, where the first has k nonzero
elements while the second has r nonzero entries. A collision
occurs where both the row and the signal have a nonzero
value in the same entry. As a consequence, the random
variable that counts these collisions is distributed according
to a hypergeometric distribution.

Probabilistically Sparse Matrices: Each entry aij of A is
set to zero with probability 1 − α, where α is a tunable
parameter. With probability α the entry will be a nonzero,
and its the value is drawn uniformly over F\{0}. In this
case, di is distributed according to a binomial distribution,

i.e., di ∼ B(k, α). In fact, di counts the number of collisions
as in the previous case, but only depends on the values of
the entries of the i-th row in correspondence to the k nonzero
elements of x. Since each entry is independent and assumes a
nonzero value with probability α, di is the result of the sum
of k Bernoulli processes, hence it is distributed according to
a binomial distribution.

According to (4), we can use the distribution of P(h | k)
calculated above to find a MAP estimator for k as

k̂MAP (h) = arg max
k

((
m
h

)
(1− P (k))h(P (k))m−h · P(k)

P(h)

)
(4)

where P (k) = P since k is the only free parameter that
generated P . In the following section, we will exploit this
estimator in (2) to evaluate the accuracy of the proposed
security model.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the security of a CS system
defined over finite fields for different values of the involved
parameters. For each experiment, the average EP of the MAP
estimator in (4) is compared to the theoretical η-EP value
obtained through (2). In order to have a MAP estimate of k, we
need to assume an a priori distribution for k. We propose two
models for the signal x that naturally result in a distribution
of k. Both models provide a bound on the possible values of
k, i.e., kmin ≤ k ≤ kmax.

Uniform sparsity: k takes value uniformly between kmin
and kmax. Each value is picked with probability 1

kmax−kmin+1 .
Binomial sparsity: k = kmin + B, where B is distributed

according to the binomial distribution B ∼ B(kmax−kmin, β),
with β a tunable parameter.

In Fig. 1, the security behavior of probabilistically sparse
matrices is plotted as a function of the matrix sparsity
parameter α. The curves refer to the two distributions of
k just presented, where n = 200, m = 100, q = 256
and 2 ≤ k ≤ 20. The simulated EP values, obtained by
averaging over 10000 independent tests, prove the accuracy
of the theoretical model. As expected, in general a denser
sensing matrix provides a better security. The system appears
to have a high security even if the matrix is very sparse:
in this case, however, the matrix is so sparse that y = 0
with high probability, and the measurements do not carry
enough information for the recovery of x. In Fig. 2, the EP
is plotted as a function of the number of measurements m,
for α = 0.3, while all the other parameters are the same as
in the previous figure. This plot shows that the security of the
system decreases as the number of measurements increases.
This means that the more measurements we have, the better
will be the sparsity estimation. We can also note that a uniform
distribution of k is more secure than a binomial one, since in
the latter case the probability is more concentrated on few
values. The performance in the case of matrix having rows
with constant degree is similar, hence the plots are not shown.
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VII. CONCLUSIONS

In this paper, we have analyzed the security of a CS
system defined over a finite field. We have proved that an
important class of sparse sensing matrices, which includes the
parity check matrices of linear codes, provides conditional
perfect secrecy if the sparsity of the signal is known. In
other words, the measurements taken with such matrices leak
only the sparsity of the signal. Moreover, under additional
assumptions, only the sparsity of the measurements leaks
information about the sparsity of the signal. We have then
introduced an operational definition of security, based on the
probability of error of a MAP estimator, showing that there is a
tradeoff between the security of the CS system and the sparsity
of the sensing matrix. Since the signal may not be recoverable
in the case of very sparse sensing matrices, an interesting open

problem is determining for what sparsity parameters of the
sensing matrix the legitimate user has indeed an information
advantage with respect to the attacker. Beyond the security
aspects, it is worth noting that the above results also suggest
the possibility of using a sparse sensing matrix to estimate the
signal sparsity without recovering the signal, which could be
an interesting application in compressed sensing.
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