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Abstract— The Controller Area Network (CAN) bus serves as a 

legacy protocol for in-vehicle data communication. Simplicity, 

robustness, and suitability for real-time systems are the salient 

features of the CAN bus protocol. However, it lacks the basic 

security features such as massage authentication, which makes it 

vulnerable to the spoofing attacks. In a CAN network, linking 

CAN packet to the sender node is a challenging task. This paper 

aims to address this issue by developing a framework to link each 

CAN packet to its source. Physical signal attributes of the 

received packet consisting of channel and node (or device) which 

contains specific unique artifacts are considered to achieve this 

goal. Material and design imperfections in the physical channel 

and digital device, which are the main contributing factors 

behind the device-channel specific unique artifacts, are leveraged 

to link the received electrical signal to the transmitter. Generally, 

the inimitable patterns of signals from each ECUs exist over the 

course of time that can manifest the stability of the proposed 

method.  Uniqueness of the channel-device specific attributes are 

also investigated for time- and frequency-domain. Feature vector 

is made up of both time and frequency domain physical 

attributes and then employed to train a neural network-based 

classifier. Performance of the proposed fingerprinting method is 

evaluated by using a dataset collected from 16 different channels 

and four identical ECUs transmitting same message. 

Experimental results indicate that the proposed method achieves 

correct detection rates of 95.2% and 98.3% for channel and ECU 

classification, respectively. 

Keywords— Controller Area Network (CAN) Bus, ECU 

Fingerprinting, In-vehicle Network Communication Security 

I. INTRODUCTION  

      The Controller Area Network (CAN) bus protocol is 

widely used for embedded systems networking. It finds a wide 

range of applications from automotive, aerospace, agriculture, 

medical devices, and even in some of the home and 

commercial appliances [1].  

 

A modern vehicle contains many different computing devices, 

known as Electronic Control Unit (ECU), which are 

responsible for sensing and controlling actuators [2].  

Virtually, all functionalities in the modern automobiles 

ranging from engine control to braking, lighting, driver safety, 

antilock brake systems (ABS) and the parking assist systems 

are achieved through these ECUs [3]. These ECUs 

communicate with each other through different networks. If 

the communication on these networks is not secured, it can 

pose a serious threat to the safety of the passengers.  

      The CAN-bus has been a de-facto standard for 

communication as an in-vehicle network for over 30 years. By 

design, the CAN-bus lacks basic security features such as 

message authentication option which makes it vulnerable to a 

variety of spoofing attacks [4].  For example, in the absence of 

effective message authentication, a single compromised ECU 

allows the attacker to take full control of the vehicle by 

injecting spoofed messages [2,5,6]. Since CAN packets 

contain no authenticator field, any ECU on the network can 

impersonate the other ECUs in the network. This provides a 

broad range of internal as well as external attack surfaces [7]. 

An adversary can leverage the CAN-Bus protocol 

vulnerabilities to launch various attacks leading to 

malfunctioning of the vehicle.  Data encryption-based 

solutions are proven to be inefficient for the CAN-Bus 

protocol [7]. Lack of the channel encryption provides the 

adversary an opportunity to sniff the network traffic by simply 

plugging in a low-price hardware leading to the replay attacks 

[8]. 

Attack surfaces are growing by the course of time which 

gives rise to develop the effective protection of CAN-bus 

communication from malicious attackers as a challenging task. 

The automakers are aiming for a fully-connected intelligent 

vehicle which makes secure in-vehicle communication 

problem even more complicated. Recently, researchers have 

proposed many solutions for in-vehicle networks security at 

different layers e.g. physical layer [14,23] and data link layer 

by using various types of message authentication methods 

[7,15,16,22]. 

In this paper, we propose a method to link the received 

packet to its transmitter based on the unique physical 

properties of the signal. The proposed physical-fingerprinting-

based method exploit unique artifacts both at the digital device 

(ECU) level and in the physical channel (e.g., CAN-bus). 

Material and design imperfections in the channel and the 

transmitter are the main contributing factors behind these 
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unique artifacts. The physical channel unique artifacts, which 

are used to link received electrical signal to the source (or 

transmitting) ECU, are considered in this study. More 

specifically, the proposed method exploits physical channel 

dependent attributes for linking received signals (message) to 

the transmitting device. The proposed method can be 

leveraged as an identification method in such a way that if an 

adversary tries to send a malicious message either from an 

external ECU or by changing the cables, it can be 

distinguished as a malicious activity and based on the defined 

safety specifications proper actions can be performed.  Even if 

an adversary uses the legitimate message identifier (e.g. shut 

down engine), since he/she is sending that message from an 

external ECU, the proposed method can detect that signal has 

not originated from the legitimate one because the signal will 

not pair with the ECU that should have generated that 

message. It has been observed that uniqueness of the physical 

attributes exists both in time and frequency domain. In this 

paper, a feature vector consisting of 11 time and frequency 

domain statistical signal attributes including higher-order 

moments, spectral flatness measure, minimum, maximum, and 

irregularity K are considered to capture the channel and the 

transmitter dependent uniqueness. A multi-layer neural 

network based classifier is trained and tested for source ECU 

and the source channel. Experimental results indicate that the 

proposed attributes can be used to classify different channels 

and ECUs. Performance of the proposed fingerprinting 

method is evaluated on a dataset collected from 16 different 

channels and four identical ECUs transmitting the same 

message. Experimental results demonstrate that the proposed 

method achieves correct detection rates of 95.2% and 98.3% 

for channel and ECU classification, respectively. 

     The rest of this paper is organized as follows: Section II 

presents an overview of CAN-bus protocol. Section III 

provides a brief overview of the related work in the area of 

CAN-Bus security and authentication techniques.  Details of 

the proposed method are outlined in Section IV and 

experimental results and analysis are explained in Section V 

then conclusion and future directions are discussed in Section 

VI. 

II. CAN-BUS PROTOCOL: AN OVERVIEW 

    The CAN-Bus is the broadcasting based communication 

topology where each node receives the transmitted messages. 

However, each node accepts the messages with a particular ID 

and discards the others. Depending on the node configuration 

and its functionalities, the communication of the network is 

filtered which means that each node only accepts particular 

message not all the incoming messages. Message transmission 

on the network is event-driven [11].  The CAN messages are 

identified based upon the identifier field, denoted as ID.  The 

ID is used for prioritizing the messages as well to avoid the 

collision in case of contention between nodes to transmit at the 

same time. The message with the lower ID has higher priority 

for winning the contention. For example, if two different 

nodes tend to transmit the messages with the identifier value 

of 0x12 and 0xF4 at the same time, the message with ID 0x12 

is sent first due to the lower value. There are two formats for 

CAN-bus namely standard format which has 11-bit identifier 

and extended format with 29-bit identifier [12].             

 In automotive industry, differential signal voltage is mostly 

used for the physical layer signaling using two communication 

wires e.g. CAN-High and CAN-Low [7]. Shown in Figure 1 is 

the bit transition and signal voltages of CAN bus 

communication which includes series of dominant and 

recessive bits. When a recessive bit (logical 1) is transmitting 

both CAN-High and CAN-low are driven to the 2.5 volts 

which indicates that the voltage difference is zero during the 

transmission of recessive bit and when a dominant bit (logical 

0) is transmitted, CAN-High goes to 3.5 volts and CAN-Low 

goes down to the 1.5 that means the voltage difference in the 

dominant bit is 2 volts [13]. As a result, if two nodes are trying 

to publish on the bus simultaneously then dominant bit will 

win the arbitration. Therefore, it can be concluded that: “the 

lower the value of identifier is, the higher will be the priority 

to win the arbitration and publish data on the bus”.  

 

 

 

 

 

 

 

 

 

 

 

 
 Fig. 1. CAN-bus differential signal representations 

III. RELATED WORK 

      Recently, the research community has shown a growing 
interest and attention on CAN-Bus security.  For example, Cho 
and Shin [14] proposed a clock skew based framework for 
ECU fingerprinting and use it for the development of Clock 
based Intrusion Detection System (IDS).  The proposed clock 
based fingerprinting method [14] exploited clock characteristic 
which exists in all digital systems, that is, “tiny timing error 
known as clock skew”. The clock skew identification exploits 
uniqueness of the clock skew and clock offset which is used to 
identify a given ECU based on clock attributes of the sending 
ECU. Cho and Shin [14] also developed a prototype of the 
proposed IDS and demonstrated effectiveness of the proposed 
CIDS on three different vehicles e.g. Honda Accord, Toyota 
Camry, and a Dodge Ram.                 
 Wang et al. [7] developed a practical security framework 
for vehicular systems (VeCure) in which they implemented the 
message authentication code (MAC) for the CAN-bus. The 
VeCure method realized by developing a proof-of-concept 
testbed on Freescale automotive evaluation board.   In their 
method, each node which sends message should also send 
another 8-byte message for authentication. High computational 
cost is one of the limitation of the proposed method. For 
example, it requires 2000 additional clock cycles. 
 Hiroshi et al. [15] proposed a security authentication 

 



monitoring system for CAN-Bus which uses MAC for 
protecting CAN bus against spoofing attacks. The role of 
monitoring node in their proposed method is to authenticate 
each ECU and verified the authentication code which is 
defined for each CAN message. The modified CAN controller 
is required to install for their monitoring node to implement the 
message authentication which transmits an error frame to 
overwrite spoofed message. Additionally, if the monitoring 
node is compromised or removed from the bus, the entire 
network is compromised.    
  Hazem et al. [16] proposed a Lightweight CAN 
Authentication Protocol LCAP. The proposed method requires 
to append a “magic number” which can be generated on the 
one-way hash function employed in TESLA protocol [21] for 
the message to be verified from the receiver side. Handshake 
technique is used for node synchronization and channel 
security. It requires 2 bytes of the data field for the 
authentication code which only creates small overhead for 
message authentication code exchange among the nodes. 
However, since the LCAP introduces the new IDs in the 
network configuration, it requires large address space.   

IV. PROPSED METHOD: CHANNEL RESPONSE BASED ECU 

IDENTIFICATION  

     The proposed transmitted identification method relies on 

the fact that each electronic device (e.g. ECU) and channel 

impulse response of the physical channel (e.g., CAN-Bus) 

exhibit unique artifacts which can be used for linking received 

signal to the sending ECU. More specifically, by extracting 

the distinguishable statistical features of transmitting signals, 

the source of the coming message is identified.  

  Let Si(t) be the output of the ith ECU and hj(t) be the 

impulse response of the jth physical channel between ith ECU 

and the physical fingerprinting (PhyFin) unit. The physical 

signal at the input of the PhyFin unit,y
ij
(t), can be expressed as 

Equation 1 and Figure 2, respectively. 

y
ij

(t)= hj(t)* Si(t) 

where, * denotes convolution operator. 



 

 
 

Fig. 2. Physical input signal and channel response  

 

      Physical signal at the input of PhyFin unit, 𝑦𝑖𝑗(𝑡) is used 

for linking 𝑦𝑖𝑗(𝑡) to its source. Shown in Figure 3 are plots of 

four waveforms at the output of four different channels when 

identical message is applied at the input of these channels. It 

can be observed from Figure 3 that channel impulse response 

is different for all four channels, which validates our claim of 

channel specific uniqueness.  
 

 

 

 

 

 

 

 

 

Fig. 3. Waveforms of the received signals from four different CAN-bus 
channels with identical channel input message. 

Various feature extraction methods, both in time and 

spectral domain are evaluated here. To validate effectiveness 

of the proposed method here, feature extraction method 

presented in [17] is considered. To this end, 40-dimensioanl 

scalar features both in time and spectral domain are extracted 

using LibXtract - a library for feature extraction [18]. The 

extracted feature set is then analyzed further to select relevant 

features. FEAST Toolbox is applied [19,] which utilizes the 

joint mutual information criterion, for ranking the features. 

Details of the selected time- and frequency-domain features 

are shown in Table I and Table II, respectively. The feature 

selection process resulted in an 11-D feature vector for 

channel and ECU identification.   

TABLE I.  TIME DOMAIN FEATURE SET 

Feature name Equation 

Maximum mij = (Min(y
ij
(i)) | i=1…N) 

Minimum Mij=(Max(y
ij
(i)) | i=1…N) 

Mean 

μ
ij
= 

1

N
 ∑ y

ij
(i)

N

i=1

 

Variance 
σij

2=√
1

N-1
 ∑ y

ij
(i)-μ

ij
N
i=1  

Skewness 

ρ
ij
= 

1

N
 ∑ (

y
ij
(i)-μ

ij

σij

)

3N

i=1

 

Kurtosis 

κij= 
1

N
 ∑ (

y
ij
(i)-μ

ij

σij

)

4

-3

N

i=1

 

 

TABLE II.  FREQUENCY DOMAIN FEATURE SET 

Feature Name Equation 

Spectral 

Std-Dev σs=√( ∑  (y
f
(i))

2
*(y

m
(i))) / ∑ (y

m
(i))N

i=1
N
i=1  

Spectral 

Skewness  ρ
s
= ( ∑  y

f
(i)(y

m
(i)) /

N

i=1

σs
3 

Spectral 

Kurtosis  κs=( ∑  (y
m

(i)-Cs)
4
*y

m
(i)) /

N

i=1

σs
4-3 

Spectrum 
Centroid  Cs=( ∑  y

f
(i)y

m
(i)) /( ∑ y

m
(i))

N

i=1

N

i=1

 

Irregularity-K 

IKs= ∑ | y
m

(i)

N-1

i=2

-
y

m
(i-1)+y

m
(i)+y

m
(i+1)

3
 | 

ym and yf are the magnitude and the frequency vectors respectively 

 

 



A. Experimental Setup 

Three different type of channels, GXL, TXL, SAE J1939-

15, are used for CAN-Bus. These channels are being used 

actively in real vehicles. Details of the channel types and 

channel lengths are outlined as follows:  

 GXL primary automotive cable is used for engine 

compartment where high resistance is required according 

to SAE J1128. [20] 

 TXL is also primary automotive cable used for 

applications requiring smaller diameters and minimal 

weight. 

 CAN-bus data cables SAE J1939-15 which is used for 

connecting different ECUs to network.  

The technical specification of each channel is provided in 

Table III.  Six (6) channel lengths are considered to realize 

CAN-Bus with pairs of twisted wires from same manufacturer 

and gauge. Overall, the experimental setup contains following 

hardware and software components:  

 Four (4) Arduino Uno R2 microcontroller kits  

 Four (4) CAN-Bus shield board with MCP2515 CAN-bus 

controller and MPC2551 CAN transceiver.  

 Three (3) different types of Cables (GXL, TXL, and 

CAN-bus data cable) with multiple lengths: 0.5 meter, 1 

meter, 2 meter, 3 meter, 4 meter, and 5 meter.  

 Oscilloscope DSO1012A for the voltage samples 

recording with Sampling Rate of 2GSa/s, 100MHz 

bandwidth, and 8-bit vertical resolution. 

 Script for sending an identical message continuously from 

different channels and ECUs to observe the unique 

patterns of signals from each channel and ECU. 

 MATLAB R2016a software for statistical data analysis of 

sampled signals. 

B. Dataset description  

Performance of the proposed algorithm is evaluated for 

both CAN-Bus channel and ECU classification. To this end, 

physical signal is captured at the output of three different cable 

families with multiple lengths (0.5 meter, 1 meter, 2 meters, 3 

meters, 4 meters, and 5 meters) and four identical ECUs with 

same input CAN-bus message. To this end, a dataset for the 18 

channels and four identical ECUs is collected. For each data 

collection setting, 144000 (3600*40) samples are collected. 

For performance evaluation, random partitioning is performed 

to divide the dataset into the training and test set (Training set: 

65%, Test set: 35%). The dataset used here is collected in the 

same environment i.e. under the same temperature and using 

an identical message to observe the minute and unique 

variation of the digital signals. 

 

                                                                                     TABLE  III. TECHNICAL SPECIFICATION OF THREE  DIFFERENT CABLE FAMILIES 

Type AWG Conductor Insulation No. of 

Strands 

Temperature Compliances 

GXL 18 Bare copper Cross-linked Polyethylene 

(XLP) 

16x30 -40°C -125°C Ford ESB-(M1L85-A), Chrysler (MS8900), SAE-J-

1128. 

 

TXL 18 Bare copper Cross-linked Polyethylene 

(XLP) 

19x30 -40°C -125°C Ford (M1L-123A), Chrysler (MS-8288), SAE-J-1560 

 

CAN-bus 

Data cable 

18 Bare copper Cross-Linked Polyolefin 

(XLPO),  Thermoplastic 

Polyurethane (TPU) 

19x31 -45°C -125°C SA J1939-11 Physical Media, RoHS, SAE J1128 

performance (fluid, flame propagation) 

 

V. EXPERIMENTAL RESULTS AND ANALYSIS 

       Performance of the proposed method is evaluated through 

a series of experiments for channel as well as ECU 

identification. To achieve this goal, a multilayer neural 

network based classifier is trained on randomly selected 65% 

data for each channel and ECU. The trained classifier is then 

employed to test performance of the proposed methods on 

remaining 35% data. Classification accuracy is used to 

measure performance of the proposed method.   

A. Experiment 1: Channel Identification 

The main objective of this experiment is to validate 

uniqueness of channel specific features. Material and design 

imperfections for each specific physical channel is the leading 

factors behind the channel specific unique artifacts. To 

validate this claim, data is recorded for each cable family and 

each channel length with identical channel input, transmitted 

using the same ECU. Specifically, for this experiment ‘cable 

type’ and ‘length’ are the only variables. During the training  

 

 

phase, the neural network is trained for classifying three 

different cable family and six corresponding channel lengths 

(e.g., GXL: 0.5 meter, GXL: 1 meter, GXL: 2 meter, GXL: 3 

meter, GXL: 4 meter, and GXL: 5 meter and so on). A 

multilayer neural network is trained with “scaled conjugate 

gradient back propagation” training algorithm, 11 inputs 

variables (time and frequency domain), 6 outputs which 

corresponds to different lengths of GXL cable, stopping 

criteria of Epochs = 2000, gradient = 1e-7, and three hidden 

layers with 50,40, and 40 hidden nodes respectively. Shown in 

Figure 4 is the architecture of the multilayer neural network 

trained for channel classification.  

 

 

 
 

Fig. 4.  Neural Network architecture of channel classifier 

 



      Shown in Table IV.A and IV.B are the confusion matrices 

of the channel (C) classification averaged over all cable types 

for the training and test phase. It can be observed from Table 

IV that that the proposed method for channel classification 

achieves overall correct detection rate of 97.6% and 95.2% for 

the training and test phase, respectively.  It can also be noticed 

that 0.5 meter and 1 meter channels exhibit relatively higher 

false rates for both training and testing, these false rates can be 

attributed to the fact that both channel lengths are not very 

different. The signal characteristics uniqueness exists for each 

family type cable and the corresponding lengths.              

             TABLE IV.A. TRAINING CONFUSION MATRIX FOR CHANNEL CLASSIFIER 

  
  
  
  
  
  
P

re
d
ic

te
d
 C

la
ss

 

C1 365 
15.6% 

4 
0.2% 

0 
0.0% 

0 
0.0% 

0 
0.0% 

0 
0.0% 

98.9% 
1.1% 

C2 30 
1.3% 

378 
16.2% 

0 
0.0% 

0 
0.0% 

0 
0.0% 

0 
0.0% 

92.6% 
7.4% 

C3 2 
0.1% 

0 
0.0% 

376 
16.1% 

12 
0.5% 

0 
0.0% 

0 
0.0% 

96.4% 
3.6% 

C4 1 
0.0% 

0 
0.0% 

8 
0.3% 

382 
16.3% 

0 
0.0% 

0 
0.0% 

97.7% 
2.3% 

C5 0 
0.0% 

0 
0.0% 

0 
0.0% 

0 
0.0% 

388 
16.6% 

0 
0.0% 

100% 
0.0% 

C6 0 
0.0% 

0 
0.0% 

0 
0.0% 

0 
0.0% 

0 
0.0% 

394 
16.8% 

100% 
0.0% 

 91.7% 
8.3% 

99.0% 
1.0% 

97.9% 
2.1% 

97.0% 
3.0% 

100% 
0.0% 

100% 
0.0% 

97.6% 
2.4% 

C1 C2 C3 C4 C5 C6  

Target Class 

              TABLE IV.B. TEST CONFUSION MATRIX FOR CHANNEL CLASSIFIER 

  
  
  
  
  
  
  
  
  
  
 P

re
d
ic

te
d

 C
la

ss
 

C1 176 
14.0% 

10 
0.8% 

0 
0.0% 

0 
0.0% 

0 
0.0% 

0 
0.0% 

94.6% 
5.4% 

C2 22 
1.7% 

205 
16.3% 

0 
0.0% 

0 
0.0% 

0 
0.0% 

0 
0.0% 

90.3% 
9.7% 

C3 3 
0.2% 

3 
0.2% 

203 
16.3% 

9 
0.7% 

0 
0.0% 

0 
0.0% 

93.1% 
6.9% 

C4 1 
0.1% 

0 
0.0% 

13 
1.0% 

197 
15.6% 

0 
0.0% 

0 
0.0% 

93.4% 
6.6% 

C5 0 
0.0% 

0 
0.0% 

0 
0.0% 

0 
0.0% 

212 
16.8% 

0 
0.0% 

100% 
0.0% 

C6 0 
0.0% 

0 
0.0% 

0 
0.0% 

0 
0.0% 

0 
0.0% 

206 
16.3% 

100% 
0.0% 

 87.1% 
12.9% 

94.0% 
6.0% 

94.0% 
6.0% 

95.6% 
4.4% 

100% 
0.0% 

100% 
0.0% 

95.2% 
4.8% 

C1 C2 C3 C4 C5 C6  

Target Class 

B. Experiment 2: ECU Identification 

     The purpose of this experiment is to validate that different 

ECUs even from the same make and model introduce different 

artifacts while transmitting an identical message. To achieve 

this goal, dataset for all four ECUs transmitting same 

messages over the same channel is used. In this experiment, 

ECU is the only variable while other variables are kept 

constant. To this end, data for all four ECUs transmitting same 

messages over the 2-meter unshielded CAN-Bus data cable is 

used for training and testing. A multilayer neural network 

classifier is trained with “scaled conjugate gradient back 

propagation” training algorithm, 11 input variables (both time 

and frequency domain), 4 outputs which pertains to each 

ECU, stopping criteria of Epochs = 2000, gradient = 1e-7, and 

one hidden layer with 20 hidden nodes included. Shown in 

Figure 5 is the architecture of the multilayer NN trained for 

channel classification.  

 

 

 
 

 

Fig. 5.  Neural Network architecture of ECU classifier 

     Shown in Table V.A and V.B are the classification 

performance of the proposed system in terms of confusion 

matrices of the ECU (E) classification for the training and test 

phases, respectively. It can be observed from Table V that the 

proposed method for ECU classification achieves overall 

success detection rate of 99.6% and 98.3% during the training 

and test phase, respectively.  

TABLE V-A. TRAINING CONFUSION MATRIX FOR ECU CLASSIFIER 

  
  
  
  
  
  
  
  
  
  
 P

re
d
ic

te
d

 C
la

ss
 

E1 389 
24.9% 

0 
0.0% 

3 
0.2% 

0 
0.0% 

99.2% 
0.8% 

E2 0 
0.0% 

398 
25.5% 

0 
0.0% 

0 
0.0% 

100% 
0.0% 

E3 3 
0.2% 

0 
0.0% 

379 
24.3% 

0 
0.0% 

99.2% 
0.8% 

E4 0 
0.0% 

0 
0.0% 

0 
0.0% 

398 
24.9% 

100% 
0.0% 

 99.2% 
0.8% 

100.% 
0.0% 

99.2% 
0.8% 

100% 
0.0% 

99.6% 
0.4% 

E1 E2 E3 E4  

Target Class 

TABLE V-B. TEST CONFUSION MATRIX FOR ECU CLASSIFIER 

  
  
  
  
  
  
  
 P

re
d
ic

te
d
 C

la
ss

 

E1 200 
23.8% 

0 
0.0% 

6 
0.7% 

0 
0.0% 

97.1% 
2.9% 

E2 0 
0.0% 

202 
24.0% 

0 

0.0% 

0 
0.0% 

100% 
0.0% 

E3 7 
0.8% 

0 
0.0% 

212 
25.2% 

0 
0.0% 

96.8% 
3.2% 

E4 1 
0.1% 

0 
0.0% 

0 
0.0% 

212 
25.2% 

99.5% 
0.5% 

 96.2% 
3.8% 

100.% 
0.0% 

97.2% 
2.8% 

100% 
0.0% 

98.3% 
1.7% 

E1 E2 E3 E4  

Target Class 

 

 



VI. CONCLUSION 

      In this study, we have demonstrated that for an identical 

CAN-Bus message, underlying physical channel leaves 

inimitable characteristic artifacts in the signals at the channel 

output. These artifacts are unique to different channel lengths 

and ECUs.  The received physical signal therefore can be used 

for linking received CAN packet to actual transmitter.  

Statistical attributes in time and frequency domain are utilized 

for channel and device identification. The performance of the 

classification method is evaluated by carrying out the 

experimental setup for three different CAN-Bus channels with 

six multiple lengths and four ECUs from the same 

manufacturer. The experimental results and analysis indicate 

that the proposed method achieves the satisfactory CAN-Bus 

channel and ECU identification performance with the overall 

correction rate of 95.2% and 98.3%, respectively. For the 

future work, development of an identification platform for 

security purposes will be investigated to determine whether 

the received message is from the compromised ECU or 

legitimate one by leveraging these unique signal 

characteristics. 
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