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Abstract

We introduce a new fixed-length representation of fingerprint
minutiae, for use in template protection. It is similar to the
‘spectral minutiae’ representation of Xu et al. but is based on
coordinate differences between pairs of minutiae. Our tech-
nique has the advantage that it does not discard the phase
information of the spectral functions. We show that the fin-
gerprint matching performance (Equal Error Rate) is compa-
rable to that of the original spectral minutiae representation,
while the speed is improved.

1 Introduction

1.1 Privacy-preserving storage of biometric
data

Biometrics-based authentication has become popular because
of its great convenience. Biometrics cannot be forgotten or
accidentally left at home. While biometric data is not strictly
speaking secret (we are after all leaving a trail of fingerprints,
DNA etc. behind us), it is important to protect biomet-
ric data for various reasons, the most important of which
is privacy. Unprotected storage of biometric data would re-
veal medical conditions and would allow for cross-matching
entries in different databases. Furthermore, large-scale avail-
ability of biometric data would make it easier for malevolent
parties to leave misleading traces at at crime scene. (E.g.
artificial fingerprints [10], synthesized DNA [7].)
One of the easiest ways to properly protect a biometric
database against breaches and insider attacks is to store bio-
metrics in hashed form, just like passwords, but with the
addition of an error-correction step to get rid of the mea-
surement noise. To prevent critical leakage from the error
correction redundancy data, one uses a Helper Data System
(HDS) [9, 5, 12], for instance a Fuzzy Extractor or a Secure
Sketch [8, 6, 4].
A HDS typically makes use of an error-correcting code and
hence needs a fixed-length representation of the biometric.
Such a representation is not straightforward when the mea-
surement noise can cause features of the biometric to appear
or disappear, due to e.g. occlusion of iris areas or fuzziness
of fingerprint minutiae. A very useful fixed-length represen-
tation called spectral minutiae was introduced by Xu et al.
[17, 14, 15, 16]. A Fourier-like spectral function is built up
on a fixed discrete grid, in such a way that each detected fin-
gerprint minutia adds a contribution to the function. Com-

parison of spectral functions is robust against changes in the
number of available biometric features.

1.2 Contributions and outline

We have the following results regarding spectral representa-
tions of fingerprint minutiae.

• We introduce spectral functions based on pairs of minu-
tiae. By working with coordinate differences we im-
mediately obtain a translation-invariant representation.
Whereas Xu et al.’s spectral functions have to discard
phase information in order to achieve translation invari-
ance, our method retains phase information.

• We test our pair-based spectral minutiae matching tech-
nique on two fingerprint databases. The achieved Equal
Error Rate is comparable to Xu et al.

• Our fingerprint matching is faster even though we have
to sum over minutia pairs instead of individual minutiae.
The speedup is due to the fact that we need fewer grid
points on which to compute the spectral function.

• A further speedup can be obtained by skipping one la-
borious step in the verification procedure: rotating the
fingerprint so as to obtain optimal alignment with the
enrolled fingerprint. Skipping this step leads only to a
minimal penalty in terms of False Acceptance Rate and
False Rejection Rate.

In Section 2 we briefly review Helper Data Systems and spec-
tral minutiae functions. In Section 3 we discuss the draw-
backs of Xu et al.’s spectral minutiae technique. We intro-
duce our minutia pair approach in Section 4, and we study
its fingerprint matching performance in Section 5. Section 6
discusses the computational efficiency of the verification pro-
cedure.

2 Preliminaries

2.1 Notation and terminology

We denote the number of minutiae found in a fingerprint
by Z. The coordinates of the j’th minutia are xj , yj and
its orientation is θj . Let f be a function of two real-valued

arguments. The two-dimensional Fourier transform f̃ =
Ff is defined as f̃(kx, ky) =

∫∞
−∞f(x, y)e−ikxx−ikyydxdy.
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The inverse relation f = F−1f̃ is given by f(x, y) =
( 1

2π )2
∫∞
−∞f̃(kx, ky)eikxx+ikyydkxdky.

The complex conjugate of z ∈ C is written as z∗. The her-
mitean conjugate M† of a matrix M is given by (M†)ij =
M∗ji. The inner product of two complex vectors u, v is

〈u, v〉 = u†v. The Pearson correlation coefficient of two
length-n vectors is defined as ρ(u, v) = 1

n 〈
u−uav

σu
, v−vavσv

〉,
where uav = 1

n

∑
i ui and σ2

u = 1
n

∑
i |ui − uav|2.

We will use the abbreviations FR = False Reject, FRR =
False Reject Rate, FA = False Accept, FAR = False Accept
Rate, EER = Equal Error Rate, ROC = Receiver Operating
Characteristic.

2.2 Helper Data Systems

A Helper Data System (HDS) for a (possibly non-discrete)
source consists of two functions, Gen and Rec. Given an
enrollment measurement X of the source, Gen produces re-
dundancy data W ∈ {0, 1}∗ called helper data and a secret
string S. The helper data is stored. The storage is considered
insecure, i.e. attackers learn W . At some later time, a verifi-
cation measurement is performed, yielding outcome X ′ ≈ X
which is a noisy version of X. The Rec function takes as in-
put X ′ and W . It outputs an estimator Ŝ which should equal
S if the noise was not excessive. In a general HDS, there is
no constraint on the distribution of S. A desirable property
is that S has high entropy given W .
A HDS is the perfect primitive for privacy protection of bio-
metric databases against inside attackers and intruders, who
typically obtain access not only to stored data but also to
decryption keys. The HDS creates a noiseless secret and
thus makes it possible to protect biometric secrets in the
same way as passwords: by hashing. For every enrolled user,
the database contains W and a hash χ(S). In the verifi-
cation phase, the hash of the reconstructed Ŝ is compared
against the stored χ(S). Ideally, W contains just enough in-
formation to allow for the error correction, and does not leak
any privacy-sensitive information about the raw biometric X.
Furthermore, if χ is a properly chosen one-way function and
S has enough entropy given W , the hash value χ(S) does not
reveal S.
HDSs for discrete sources [2, 8, 3, 6, 4] and continuum sources
[9, 13, 5, 12] are a well studied topic. Typically a HDS uses
an error correcting code, which requires that the biometric
measurement is turned into a discrete fixed-length represen-
tation.

2.3 Spectral representation of minutiae

Subsequent measurements of the same finger may not always
result in the same set of observed minutiae. This is problem-
atic if one needs a fixed-length representation of a fingerprint,
e.g. when a HDS is used. The technique of spectral minutiae
was introduced by Xu et al. [17, 14, 15] as a way to obtain
a fixed-length representation. The set of enrolled minutiae
is turned into a function fσ(x, y) on the xy-plane by sum-
ming narrow Gaussian peaks (with width σ) centered on the

minutia locations; then a translation-invariant expression gσ
is obtained by taking the absolute value of the Fourier trans-
form,

gσ(kx, ky) = |f̃σ(kx, ky)| = e−
σ2

2 (k2x+k2y)

∣∣∣∣∣∣
Z∑
j=1

e−ikxxj−ikyyj

∣∣∣∣∣∣ .
(1)

In order to get an expression with simple behaviour under
rotation and scaling, they sampled gσ on a log-polar grid.
Let kx(α, β) = eα cosβ and ky(α, β) = eα sinβ where α, β
are sampled with equal spacing. A matrix Gσ is constructed
as Gσαβ = gσ(kx(α, β), ky(α, β)). Under the combination of

scaling and rotation,
(
xj
yj

)
7→
(

cosϕ sinϕ
− sinϕ cosϕ

)(
λxj
λyj

)
for all j,

the Gσ transforms as Gσαβ 7→ G
σ/λ
α+lnλ,β+ϕ. For small σ it

holds that σ/λ ≈ σ and hence the transform is almost equal
to a shift on the αβ-grid.1 Xu et al. investigated fingerprint
matching in the spectral minutiae domain by looking at the
Pearson correlation between a freshly obtained Gσ and the
enrolled Gσ. Their procedure included a search to find values
λ, ϕ that maximise the correlation. It turned out that in
practice one can fix λ = 1 and that the ϕ-search can be
restricted to the interval from −10◦ to +10◦, in steps of 2◦.
In order to extract more information from a fingerprint Xu
et al introduced a variant of the gσ function which contains
information about the minutia orientations θj . They inserted
a factor (kx cos θj + ky sin θj) or eiθj into the summation in
gσ (1). Unsurprisingly, using information from both the ordi-
nary Gσ representation and the orientation-containing vari-
ant yielded better results (in terms of e.g. ROC curves and
EER) than using only a single representation.
Xu et al also investigated a minutiae representation that is
fully invariant under translation, rotation and scaling. Let
Hσ = FGσ be the discrete Fourier transform of Gσαβ with
respect to α and β; then scalings and rotations have the
effect of merely producing a phase factor multiplying Hσ;
the absolute value |Hσ| is fully invariant. However, it turned
out that fingerprint matching in the |Hσ|-domain does not
perform well.

3 Motivation

The spectral minutiae technique as developed by Xu et al
[17, 14, 15] has a number of unsatisfactory aspects.

1. Translation invariance is obtained by taking the absolute
value of a Fourier transform. This step discards a lot of
information.

2. Xu et al conclude that the scaling factor λ does not have
to be taken into account, since it is always close to 1. But
in their best fingerprint matching implementation they
still apply logarithmic sampling in the radial k-direction,

1 The effect on σ was not explicitly mentioned in the work of Xu et
al.
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Figure 1: Distance Rab and angle ϕab for a minutia pair.

√
k2
x + k2

y = eα. Such sampling does not match the

radial information density in the fingerprint and hence
makes it necessary to take many many samples than in
the case of linear sampling.

3. In combination with a HDS, the ϕ-search is time
consuming. This is caused not by the repeated re-
computation of the score, but by the fact that in a full
HDS every ϕ-attempt needs an evaluation of the Rec

function and the computation of a hash.

We address the first issue by introducing a spectral represen-
tation that is based on coordinate differences xa − xb only.
The advantage is immediate translation invariance without
information loss, enabling us to work with fewer samples.
The drawback is that each summation over Z minutiae is
replaced by a summation over

(
Z
2

)
pairs. The overall effect

on the computation time during reconstruction is a tradeoff
between these two. In Section 6 we show that the tradeoff
works in our advantage.

We address the second issue by performing a Fourier trans-
form only in the angular direction. In the radial direction our
sampling occurs in the spatial domain and is linear.

The third issue could be addressed by developing a method
to quickly determine the global orientation of a captured fin-
gerprint image. (Knowledge of the global orientation, even
if inaccurate, reduces the search space. Furthermore, storing
the global orientation during enrolment as helper data does
not leak sensitive information.) However, with our pair-based
spectral representation it turns out that executing the ϕ-
search yields only a very modest performance improvement;
the search may as well be omitted. In Section 5.3 we show
the difference in performance.

4 The minutia-pair approach

4.1 Definitions and properties

Let Rab = |xa − xb| and let tanϕab = (ya − yb)/(xa − xb)
for minutiae a, b ∈ {1, . . . , Z}. See Fig. 1. We define two

translation-invariant spectral functions as follows

Lx(q, w)
def
=

∑
a,b∈{1,...,Z}

a6=b

eiqϕabeiw lnRab (2)

Lxθ(q, w)
def
=

∑
a,b∈{1,...,Z}

a6=b

eiqϕabeiw lnRabei(θa−θb). (3)

Here the subscript x denotes the set of minutia locations,
and likewise θ stands for the set of minutia orientations. We
call the functions Lx, Lxθ ‘spectral’ because (2) is the Fourier
transform (with respect to the radial coordinate lnR and the
angle ϕ) of a sum of delta functions centered on the values
xa − xb in the plane.

Let Φ =

(
cosϕ − sinϕ
sinϕ cosϕ

)
be a rotation matrix. Our spectral

functions (2),(3) have simple behaviour under the combined
scaling and rotation xj 7→ λΦxj , θj 7→ θj + ϕ,

LλΦx(q, w) = eiqϕeiw lnλLx(q, w) (4)

LλΦx,θ+ϕ(q, w) = eiqϕeiw lnλLxθ(q, w). (5)

Note that the absolute values |Lx(q, w)|, |Lxθ(q, w)| are in-
variant under translation, scaling and rotation. Without giv-
ing details we mention that, unfortunately, fingerprint match-
ing based on |Lx|, |Lxθ| without the phase information per-
forms badly.
Similar to Xu et al we need to sample w at equally spaced
steps in order to exploit the phase behaviour (4),(5) under
scaling. However, if we choose to ignore scaling entirely (see
point 2 in Section 3), then there is no reason to Fourier trans-
form the radial direction, and we introduce an alternative
spectral function,

Mx(q,R)
def
=
∑

a,b∈{1,...,Z}
a 6=b

eiqϕab exp

[
− (R−Rab)2

2σ2

]
(6)

Mxθ(q,R)
def
=
∑

a,b∈{1,...,Z}
a 6=b

eiqϕab exp

[
− (R−Rab)2

2σ2

]
ei(θa−θb). (7)

In the radial direction, the functions Mx and Mxθ consist
of a sum of

(
Z
2

)
Gaussian peaks centered on the values Rab.

The width σ > 0 reduces the scheme’s sensitivity to small
perturbations in the minutia properties.
Under a rotation (xj 7→ Φxj , θj 7→ θj + ϕ) we have
Mx(q,R) 7→ eiqϕMx(q,R) and Mxθ(q,R) 7→ eiqϕMxθ(q,R).
We want all our spectral functions to be single-valued.2

Hence q always has to be integer.

Lemma 4.1. For odd q it holds that Lx(q, w) = 0 for all w,
and Mx(q,R) = 0 for all R.

Proof. In (2) every pair of indices a, b gives two terms in
the summation. Using Rba = Rab and ϕba ≡ ϕab + π
mod 2π (see Fig. 1), we write eiqϕabeiw lnRab +eiqϕbaeiw lnRba

= eiqϕabeiw lnRab [1 + eiqπ] = eiqϕabeiw lnRab [1 + (−1)q]. This
vanishes when q is odd. The proof for Mx is analogous.

2 Invariant under rotations ϕ that are an integer multiple of 2π.
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4.2 Choosing the grid points

We have to choose a discrete (q, w)-grid of points on which
to evaluate Lx and Lxθ. On the one hand, the grid should
contain many points so that the spectral functions contain
sufficient information about the fingerprint. On the other
hand, having too many grid points results in an inefficient
scheme. Lemma 4.1 tells us that we do not have to com-
pute Lx for odd q. Furthermore, we know that, at a given
q, the spectral functions detect angular periodic features
of size ≈ 2π/q radians. This leads to a natural cutoff at
large q where the length scale becomes smaller than the fea-
ture size in a typical fingerprint, and noise starts to domi-
nate. Similarly, there is a natural maximum for w, namely
where 2π/w matches minab:a 6=b lnRab. Finally we note that
Lx(−q,−w) = L∗x(q, w) and Lxθ(−q,−w) = (−1)qL∗xθ(q, w).
This means that the grid point (−q,−w) contains exactly the
same information as (q, w) and hence can be omitted. The
considerations listed above are the only theoretical guidelines
for choosing the grid; the best choice must be found by trial
and error.
The considerations for Mx,Mxθ are similar. The grid is a
(q,R)-grid. The maximum q should be roughly the same as
for the L-functions. The natural cutoffs for R are given by
minab:a6=bRab and maxabRab. It holds that Mx(−q,R) =
M∗x(q,R) and Mxθ(−q,R) = (−1)qM∗xθ(q,R). Hence it suf-
fices to look at positive q only.

4.3 Introducing weights

In the computation of a spectral function at enrollment, it
is possible to introduce a weight factor for each of the (a, b)-
pairs in the summation. It is advantageous to set a low weight
for minutia pairs which are unlikely to be recovered later. A
low recovery likelihood may occur e.g. when a minutia has
low quality. Another reason can be a very large value of Rab,
in which case the recovery is sensitive to noise at the edge of
the image, or a very small Rab which may cause later minutia
misidentification in case of noise. In our experiments we have
not used weights other than 0 or 1.

4.4 Choosing the score function

Let F denote one of the four spectral functions Lx, Lxθ, Mx,
Mxθ obtained at enrollment, and F ′ the noisy version of F
obtained later, in the verification phase. We need a metric
or ‘score’ function which quantifies how close F ′ is to F . As
F and F ′ are complex-valued, there are quite some options.
We have experimented with correlation functions for the ra-
dial and phase part of the complex numbers, as well as the
real and imaginary part. Furthermore we have tried distance
in the complex plane, with and without normalisation of the
function F as a whole. In our experiments it turns out that
a complex correlation-like quantity is best able to discrimi-
nate between genuine fingerprint matches and impostors. We
define our score S as

S(F, F ′) = |ρ(F, F ′)| (8)

where ρ stands for the correlation as defined in Section 2.1,
and the matrices F, F ′ are treated as vectors.

4.5 Fusion of scores

The spectral functions Lx and Lxθ together contain more
information about the fingerprint than each one separately.
The information is partially overlapping. We construct a
‘fused’ score by adding the two scores (8) in the same way
as [17]: S(Lx, L

′
x) + S(Lxθ, L

′
xθ). Analogously, for the

M -functions we work with the fused score S(Mx,M
′
x) +

S(Mxθ,M
′
xθ).

5 Experimental results

We have applied our minutia-pair approach to the Verifin-
ger database and the MCYT database [11]. The Verifinger
database contains fingerprints from six individual persons,
ten fingers per individual, eight images per finger. The size of
each image is 326×357 pixels. The MCYT database contains
fingerprints from 100 individuals, 10 fingers per individual,
12 images per finger (256× 400 pixels). The fingerprints are
generally of higher quality than in the Verifinger database.
We extracted minutia coordinates and orientations from the
images by using the VeriFinger software [1].

5.1 Optimal parameter choices

Good results were obtained with the following parame-
ter settings. For the L-functions, |q| ∈ {1, . . . , 24} and
w ∈ [0.2, 37.7] with 32 equally spaced values. For the M -
functions, q ∈ {1, . . . , 16}; R ∈ [16, 130] with 20 equally
spaced points (MCYT database); R ∈ [16, 160] with 25
equally spaced points (Verifinger database). For the Lx and
Mx functions we take only even q, as explained in Lemma 4.1.
We set σ = 2.3 pixels.
A minutia extracted by VeriFinger is labeled with a quality
Q ∈ [0, 100]. We took only minutiae with Q ≥ 45. Further-
more we used an additional selection rule that turns out to
improve overall results a bit: a minutia pair is discarded from
the

∑
ab summation in (2,3,6,7) if 2Rab exceeds the horizon-

tal size of the image.
In Fig. 2 we show an example of the Mx and Mxθ spectral
function. Entirely different fingers obviously produce very
different results. The two leftmost columns correspond to
the same finger. Noisy images of the same finger do not pro-
duce results that, to the human eye, are clearly correlated.
However, it turns out (Section 5.2) that the similarities are
enough to distinguish between the enrolled user from an im-
postor.

5.2 ROC curves and Equal Error Rates

We work in a verification setting, i.e. a stated identity has to
be verified. We determine the False Rejection Rate (FRR)
by comparing, for each finger in the database, all the pairs of
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person 1, finger 6
image 5

person 1, finger 6
image 8

person 3, finger 4
image 2

Re

Mx

Im

Mx

Re

Mxθ

Im

Mxθ

Figure 2: Example of the spectral functions Mx and Mxθ.
MCYT database. The vertical axis is the q-axis, with q in-
creasing upward. In each image, black represents the most
negative value on the grid, and white the most positive.

images. We determine the False Acceptance Rate (FAR) by
looking at each pair of different fingers, where one image is
drawn at random for each finger (independently per pair).3

We draw Receiver Operating Characteristic (ROC) curves
as FAR plotted against FRR. Each point in the ROC curve
corresponds to one threshold setting. The Equal Error Rate
(EER) is the error rate in the point where FRR equals FAR.

Table 1 lists the EER values that we obtained. The ROC
curves are shown in Fig. 3. We see that the M -functions con-
sistently outperform the L-functions, and that the Lxθ,Mxθ

spectral functions outperform the location based functions.
Furthermore we see that fusion of Mx and Mxθ yields only
a modest improvement over Mxθ. We conclude that, in our
pair-based approach, the best option is to work either with
Mxθ or the fusion of Mx and Mxθ.

We benchmark our system against results reported by Xu et
al. [17], which are based on ten individuals in the MCYT
database who have high-quality fingerprint images. The
ROC curves are shown in Fig. 4, and Table 2 contains the
EER comparison.4 We conclude that our pair-based spectral
function Mxθ has a discrimination performance comparable
to Xu et al.’s spectral function.

3 This includes pairs of unlike fingers, e.g. thumb vs index finger.
The statistics do not change much when only pairs of like fingers are
compared.

4 Unfortunately, [17] does not mention which ten individuals were
selected.

Table 1: Equal Error Rates obtained with the parameter set-
tings given in Section 5.1. The notation ‘F ’ stands for either
L or M . No rotation of the verification image.

Database Function F Fx Fxθ Fusion

MCYT L 5.3% 3.5% 3.0%
M 4.0% 2.5% 2.2%

Verifinger L 11% 4.9% 5.7%
M 8.0% 3.3% 3.2%

Table 2: Equal Error Rates for a subset of ten individuals
in the MCYT database who have high-quality fingerprints.
No rotation of the verification image. The last row is from
Table VI in [17]. The L and M function were computed for
individuals 16,24,26,32,34,35,46,53,80,94.

Function F Fx Fxθ Fusion

L 1.1% 0.73% 0.31%
M 0.65% 0.35% 0.15%
Xu et al 0.47% 0.42% 0.22%

5.3 Rotation of the verification image

The results of Section 5.2 were obtained without Xu et al.’s
procedure of trying out several image rotations so as to op-
timise the matching score. Now we discuss what happens
when we do try a number of different rotation angles ϕ.
First we checked for the MCYT and the VeriFinger database
how a rotation ϕ ∈ (−10◦,+10◦) affects the Mx and Mxθ-
based score in case of a genuine image pair. At some optimal
angle ϕ0 the score is maximal. For all genuine pairs we de-
termined ϕ0, for Mx and Mxθ. The histograms of ϕ0 are
shown in Fig. 5. We see that typically |ϕ0| < 6◦.
In Fig. 6 we present ROC curves that show the impact of try-
ing multiple rotation angles ϕ in a limited range; we set the
range based on Fig. 5. In the case of the MCYT database we
see a consistent though small improvement. For the VeriFin-
ger database the change is not always favourable; the ROC
curves intersect. For both databases, the effect on the EER
is minimal.
Increasing the range of ϕ does not improve the matching of
genuine pairs; it does however increase the FAR. Hence the
ROC curves become worse when we increase the range of ϕ.
These results allow for a very interesting trade-off: instead
of opting for a minimal improvement of matching accuracy,
we can skip the ϕ-search and thus significantly reduce the
computation time. Note that Xu et al.’s method has a ϕ-
search with 11 different values of ϕ.

6 Computational efficiency

In this analysis we do not use the potential speedup that can
be gained by skipping the ϕ-search.

5



Speed is important predominantly in the verification phase.
From a freshly captured image the spectral function has to
be computed on a number of grid points which we denote as
Ngr. The spectral function has to be computed not once but
several times, because Nϕ different image orientations have
to be tried. Fortunately this does not multiply the total
effort5 by a factor Nϕ, as the spectral function has a simple
transform under rotation. (This holds for Xu et al as well as
our L and M functions.)
Let Z be the number of minutiae. Let us denote the cost
of computing one summation term of the spectral function
in one grid point as Ts, and the cost of applying a rotation
transform in one grid point as Trot. The cost of computing the
score can be written as c ·Ngr where c is some small constant.
The superscript ‘G’ will refer to Xu et al’s spectral function;
the superscript ‘M ’ to our function M . The total cost for
the verification phase (not counting the secure sketch) is

Xu et al: NG
grZT

G
s + (Nϕ − 1)NG

grT
G
rot +NϕcN

G
gr

pair-based:NM
gr

(
Z

2

)
TMs + (Nϕ−1)NM

gr T
M
rot +NϕcN

M
gr .

We have TGs ≈ TMs , TGrot ≈ TMrot, Trot < Ts. The main differ-
ence between the two approaches lies in the first term: NG

grZ

versus NM
gr

(
Z
2

)
, i.e. NG

gr versus 1
2N

M
gr (Z − 1). Xu et al report

a 128×256 grid, yielding NG
gr = 32768. In contrast, our Mxθ-

function is evaluated on a grid of size NM
gr ≤ 16 · 25 = 400.

Given that typically Z ≈ 35, we have 1
2N

M
gr (Z − 1) ≈ 6800.

Hence our verification is faster than [17, 14, 15].
Note that [16] introduces a reduced template size by applying
Principal Component Analysis or a Discrete Fourier Trans-
form to select informative features. This selection reduces
the template size by roughly a factor 10. However, these
methods still require computation of the spectral function
on many grid points.

7 Discussion

Achieving translation invariance by looking at minutia pairs
seems to be advantageous compared to taking the absolute
value of a Fourier transform. The minutia-pair approach is
able to extract information from a fingerprint using fewer
grid points. We conjecture that this is due to the fact that
our spectral functions retain phase information instead of
discarding it. Of the four functions that we studied, the Mxθ

performs best. Fusion of the matching scores from Mx and
Mxθ leads to an EER comparable to Xu et al.
Due to the reduction of the number of grid points our method
is faster than the verification described by Xu et al., in spite
of the increased number of summation terms. As an unex-
pected bonus, it turns out that we can omit the search for
an optimal rotation angle; this gives an additional speed im-
provement.

5 Here we look only at the computation of the spectral function and
the score; not at the cost of Nϕ Secure Sketch reconstruction attempts.

As topics for future work we mention (i) further speedup by
discarding grid points that have a bad signal-to-noise ratio;
(ii) applying Principal Component Analysis and similar tech-
niques to improve the EER; (iii) constructing a HDS based
on Mx and Mxθ.
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[5] J. de Groot, B. Škorić, N. de Vreede, and J.P. Linnartz.
Quantization in Zero Leakage Helper Data Schemes.
EURASIP Journal on Advances in Signal Processing,
2016. 2016:54.

[6] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith. Fuzzy
Extractors: how to generate strong keys from biometrics
and other noisy data. SIAM J. Comput., 38(1):97–139,
2008.

[7] D. Frumkin, A. Wasserstrom, A. Davidson, and
A. Grafit. Authentication of forensic DNA samples. FSI
Genetics, 4(2):95–103, 2010.

[8] A. Juels and M. Wattenberg. A fuzzy commitment
scheme. In ACM Conference on Computer and Com-
munications Security (CCS) 1999, pages 28–36, 1999.

[9] J.-P. Linnartz and P. Tuyls. New shielding functions to
enhance privacy and prevent misuse of biometric tem-
plates. In Audio- and Video-Based Biometric Person
Authentication. Springer, 2003.

[10] T. Matsumoto, H. Matsumoto, K. Yamada, and
S. Hoshino. Impact of artificial ”gummy” fingers on
fingerprint systems. In Proc. SPIE, Optical Security
and Counterfeit Deterrence Techniques IV, volume 4677,
pages 275–289, 2002.

[11] J. Ortega-Garcia, J. Fierrez-Aguilar, D. Simon, J. Gon-
zalez, M. Faundez, V. Espinosa, A. Satue, I. Hernaez,
J.J. Igarza, C. Vivaracho, D. Escudero, and Q.I. Moro.
MCYT baseline corpus: A bimodal biometric database.
In Vision, Image and Signal Processing, Special Issue on
Biometrics on the Internet, volume 150, pages 395–401.
IEEE, 2003.

6

www.neurotechnology.com
www.neurotechnology.com
eprint.iacr.org/2014/243
eprint.iacr.org/2014/243


[12] T. Stanko, F.N. Andini, and B. Škorić. Optimized quan-
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Figure 3: ROC curves for our pair-based spectral functions
applied to two databases. No rotation of the verification im-
age.
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Figure 4: ROC curves for the ten-person subset of the MCYT
database. No rotation of the verification image.
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Figure 5: Histograms of the optimal rotation angle ϕ0 (de-
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Figure 6: ROC curves with and without rotation of the veri-
fication image.
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