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Abstract

The increasingly large scale of deployed biometric sys-
tems necessitates approaches for computational workload
reduction in order to perform identification queries effi-
ciently. Simple database binning based on classification
of features in biometric samples is amongst the most fre-
quently used and researched methods for achieving said
goal. However, multi-instance database binning appears to
be a neglected topic in the scientific literature: best to the
authors’ knowledge, for fingerprints there exists only one,
entirely theoretical, study on this subject. In this paper, we
propose a retrieval algorithm based on multi-instance bin-
ning of fingerprint databases, along with usage of statistical
information on fingerprint classes and their correlations.

The aforementioned statistics are obtained from NIST
SD9 database and data obtained from the German Fed-
eral Criminal Police Office. Subsequently, the experimen-
tal evaluation of the proposed algorithm is performed on
the NIST SD9 database. The proposed system is evaluated
using a classifier based on the PCASYS tool and neuronal
networks. The results show a significant workload reduc-
tion from a baseline exhaustive search scenario – down to
12.7% for this particular classifier and 5.8% for a theoret-
ical perfect (completely accurate) classifier. The proposed
method could be seamlessly integrated into operational sys-
tems, as it relies on well-established features and compati-
bility with the current acquisition methods.

1. Introduction
Nowadays, biometric technologies are already deployed

in numerous nation-wide large-scale applications, such as
the Indian Aadhaar project [21]. With the rapid growth of
biometric systems’ sizes and popularity, technologies sup-
porting efficient and accurate processing of large amounts
of biometric data are vital in order to guarantee practical re-
sponse times. Conventional biometric systems require ex-

haustive one-to-many comparisons in order to identify bio-
metric probes, i.e. comparison time frequently dominates
the overall computational workload of an identification at-
tempt. In past years, researchers have invested significant
efforts to tackle the challenge of computational workload
reduction in biometric identification systems. Basically,
four different key concepts can be distinguished: classifica-
tion or “binning”, indexing, a serial combination of a com-
putationally efficient and an accurate (but more complex)
algorithm and hardware-based acceleration. Depending on
the used biometric characteristic, the vast majority of clas-
sification approaches are designed to reliably extract human
understandable attributes from a biometric sample, e.g. sex
or ethnicity for face. While not necessarily unique to an in-
dividual, those attributes allow for a binning of biometric
databases according to a predefined number of classes, i.e.
the search space (=̂ computational workload) for a given
biometric probe can be reduced to one (or a few) bin(s).
In contrast, biometric indexing approaches introduce hierar-
chical search structures (tolerating a certain amount of bio-
metric variance), where the process of search space reduc-
tion might not be reproducible by human experts. Lastly,
the latter two categories do not aim at reducing the com-
plexity of an identification attempt but response times.

Focusing on fingerprint recognition systems, the clas-
sification model of Henry [12] has been widely used by
researchers, as well as commercial vendors, for computa-
tional workload reduction in identification scenarios. The
five fingerprint classes (or types), i.e. arch, tented arch,
right loop, left loop and whorl, which are depicted in figure
1, are unevenly distributed in the population. Fingerprint
classes are mainly determined based on the global (level-
1) features, in particular ridge line flow (orientation map)
and the singular points, i.e. core and delta, derived from
it. Numerous approaches, which either directly employ or
further process those features, have been proposed for the
purpose of distinguishing between said classes. For more
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(a) Arch (A) (b) Tented arch (T) (c) Left loop (L)

(d) Right loop (R) (e) Whorl (W)

Figure 1: Example fingerprints for each of the five classes
displaying minutiae, core and delta points (images gener-
ated using Synthetic Fingerprint Generator (SFinGe) [5])

details on the topic of fingerprint classification and a com-
prehensive survey of proposed approaches, the reader is re-
ferred to [9, 10]. State-of-the-art fingerprint classification
schemes obtain near-optimal classification accuracy. Table
1 summarises most notable approaches and reported results
in terms of Correct Classification Rate (CCR) of the last
five years. Note, that all of these classification approaches
aim to determine the class of a single fingerprint. As op-

Table 1: Most relevant fingerprint classification approaches
proposed in the last five years

Ref. Year Method Database(s) Classes CCR Reject
[4] 2013 MCC SD4 4 / 5 97.2% / 95.9% -

[11] 2014 FCA FVC00/02/04 4 92.74% -
[15] 2014 KNN SD4 4 / 5 96.8% / 94.6% -

[24] 2014 FCA FVC02-1 5 91.1% -
FVC04-1 5 91.8% -

[8] 2015 FCA
SD4 5 80.51% 12%

FVC02-1 5 90.11% -
FVC04-1 5 88.98% -

[14] 2015 RDM
FVC00 4 91.1% -
FVC02 4 97.8% -
FVC04 4 97.3% -

[7] 2016 FCA SD4 4 / 5 88.3% / 92.13% -
[22] 2016 ANN SD4 4 91.4% / 93.1% -
[2] 2017 ANN FVC2000 - 97.56% -

[19] 2017 MCC
SD4 5 92.97% -

SD14 5 93.76% -
SFinGe 5 94.38% -

MCC . . . multiple classifier combination
FCA . . . fixed classifier approach
KNN . . . k-nearest neighbour

RDM . . . ridge distribution models
ANN . . . artificial neuronal networks

posed to the existing literature, this paper investigates fin-
gerprint classification in multi-finger identification systems.
This is motivated by the facts that large-scale identification
systems leverage the information of multiple fingerprints
of data subjects, e.g. [21], and modern fingerprint capture
devices can acquire multiple fingerprints of data subject’s

hand simultaneously, e.g. [13]. It is well-known that the
classes of fingerprints obtained from one hand are highly
correlated. Nevertheless, to the best of the authors’ knowl-
edge, the potential of multi-fingerprint database binning has
only been theoretically analysed by Wayman [23]. It was
confirmed that bins formed by combinations of fingerprint
classes highly vary in probability. Moreover, theoretical
estimations about expected penetration rates are reported.
However, so far the potential of improving the overall fin-
gerprint retrieval accuracy by consolidating information ob-
tained from single fingerprint classification scores has been
neglected. In this work, we obtain universally valid statis-
tics of fingerprint class distributions and correlations from
two datasets, namely the NIST SD9 [17] and an in-house
database of the German Federal Criminal Police Office
(BKA). Those statistics are used to effectively retrieve bins
representing combinations of fingerprint classes according
to their likelihood. In experiments on the SD9 database the
well-established, publicly available Pattern-level Classifica-
tion Automation SYStem (PCASYS) tool [3] in conjunction
with a neuronal network-based classifier are employed for
the purpose of fingerprint classification. The proposed ap-
proach is shown to substantially reduce the computational
workload by combining the classifier scores obtained from
up to five fingers of a data subject’s hand.

The remainder of this paper is organised as follows: fin-
gerprint class distributions and correlations are analysed in
section 2. Section 3 describes the proposed multi-finger
binning and retrieval approach. Experimental results are re-
ported in section 4. Conclusions are drawn in section 5.

2. Fingerprint class statistics
In the following subsections, the used databases are pre-

sented, along with statistical distributions of fingerprint
classes and their correlations.

2.1. Databases

Two databases were used for experiments in this paper:

SD9 NIST Special Database 9 [17], containing fingerprint
images from scanned/rolled-ink ten-print cards. 2 sam-
ples per finger are available for each of the 2,700 sub-
jects, hence the total number of images is 54,000. Fin-
gerprint class annotations made by professional foren-
sic examiners are included. Example images from the
database are shown in figure 2.

Figure 2: Sample images from the SD9 database



Table 2: Fingerprint class distributions
(a) Percentages

Hand Finger NIST SD9 BKA
A L R T W A L R W

Right

Thumb 3.49% 0.71% 48.94% 0.22% 46.64% 1.49% 0.57% 49.02% 48.92%
Index 5.61% 14.72% 39.43% 7.06% 33.18% 4.23% 22.41% 36.62% 36.74%

Middle 4.76% 1.30% 69.48% 2.94% 21.52% 2.17% 2.66% 74.24% 20.93%
Ring 1.19% 1.41% 49.61% 1.19% 46.60% 0.65% 1.56% 50.84% 46.95%
Pinky 0.93% 0.19% 79.41% 0.82% 18.65% 0.38% 0.56% 83.47% 15.59%

All 3.20% 3.66% 57.37% 2.45% 33.32% 1.79% 5.55% 58.84% 33.82%

Left

Thumb 5.50% 53.31% 0.93% 0.48% 39.78% 2.60% 57.75% 0.42% 39.23%
Index 5.84% 37.72% 15.17% 9.63% 31.64% 3.60% 45.48% 16.35% 34.57%

Middle 5.61% 67.36% 1.49% 5.06% 20.48% 2.66% 74.01% 1.70% 21.63%
Ring 1.90% 58.66% 0.48% 1.67% 37.29% 0.81% 62.00% 0.62% 36.57%
Pinky 1.26% 83.95% 0.22% 1.08% 13.49% 0.47% 88.07% 0.19% 11.27%

All 4.02% 60.20% 3.66% 3.58% 28.54% 2.03% 65.46% 3.86% 28.65%
Both All 3.61% 31.93% 30.52% 3.01% 30.93% 1.91% 35.76% 31.11% 31.22%

(b) Heatmap
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BKA A subset of the Automated Fingerprint Identification
Systems (AFIS) data of the BKA consisting of fin-
gerprint type statistical data from around 26,000 ran-
domly selected subjects. Due to lack of actual images
(data protection restrictions), this dataset was only
used to validate the statistical results obtained on SD9
and not the computational workload reduction experi-
ments. The data does not distinguish between arches
and tented arches; instead classifying them together
into one class.

The subjects in both databases were selected from their
respective AFIS’ randomly, hence ensuring a natural distri-
bution of the fingerprint classes.

2.2. Distributions and Correlations

For the statistical analysis, only a single (first) sample
from each finger is considered in order to avoid using re-
dundant information. The class distributions for the SD9
and BKA datasets can be seen in table 2a, while table 2b
presents the same information graphically in a heatmap for-
mat. It can be observed, that the loop classes are the most
prevalent; overwhelmingly, their direction corresponds to
the hand of the given finger (left loops on left hand and
analogously for the right hand). Together with whorls, they
account for around 95% of the total samples. The finger-
print class distributions (both for overall percentages and
individual fingers) obtained from both datasets tend to co-
incide. The largest (relative) discrepancies can be seen for
the arches and tented arches. Overall, however, the find-
ings from both datasets are very similar, which suggests the
generality of the results.

As previously mentioned, the classes of fingers of one
hand are also known to be correlated. Tables 3 to 6 show the
occurrence frequency for the most prevalent (top 10 from
SD9) class combinations between contiguous sequences of
two to five adjacent fingers of each hand. For example, RL
corresponds to a right and left loop fingerprint class (recall
figure 1), for the pair of fingers noted in the table header.
It can be observed, that combinations of loops and whorls

again account for the vast majority of cases; furthermore,
it is very often the case that same fingerprint classes are
seen across multiple or even all fingers of a given hand. As
was the case for the class distributions described earlier, the
results for the class combinations within both datasets tend
to largely coincide.

Table 3: Distributions of fingerprint class combinations for
two contiguous fingers

Hand Thumb, index Index, middle Middle, ring Ring, pinky
Cls. SD9 BKA Cls. SD9 BKA Cls. SD9 BKA Cls. SD9 BKA

Right

WW 26.53% 25.35% RR 35.12% 36.66% RR 41.66% 46.58% RR 46.93% 49.70%
RR 25.94% 26.31% WW 16.69% 17.04% RW 25.75% 26.00% WR 29.73% 30.93%
WR 11.82% 12.33% WR 15.98% 19.14% WW 19.47% 18.74% WW 16.76% 14.69%
RL 8.21% 11.57% LR 10.33% 14.89% AR 2.90% 1.76% RW 1.67% 1.47%
RW 6.43% 11.11% TR 5.65% — TR 2.30% — TR 1.11% —
WL 6.02% 7.14% LW 2.45% 2.07% WR 2.04% 1.81% LR 1.04% 1.13 %
RT 5.13% — AA 2.45% 1.28% RL 1.15% 0.94% AR 0.59% 0.54%
RA 3.23% 2.64% AR 2.42% 3.01% AA 0.93% 0.54% RT 0.52% —
WT 1.64% — RW 2.16% 1.53% RT 0.74% — AA 0.41% 0.11%
AA 1.45% 0.71% RT 1.00% — LR 0.71% 1.79% RA 0.37% 0.37%

Other 3.60% 2.84% Other 5.75% 4.38% Other 2.35% 1.84% Other 0.87% 1.06%

Left

LL 24.05% 32.50% LL 32.42% 40.77% LL 46.51% 52.45% LL 55.58% 58.05%
WW 21.56% 20.83% WW 16.17% 17.17% LW 19.41% 18.74% WL 25.69% 27.18%
WL 11.34% 11.99% WL 14.91% 16.60% WW 17.10% 18.34% WW 11.38% 10.41%
LR 9.59% 9.44% RL 10.71% 12.53% TL 4.13% — LW 2.04% 1.60%
LW 9.48% 13.13% TL 7.21% — AL 3.42% 2.69% TL 1.49% —
LT 7.10% — AA 2.94% 1.83% WL 3.38% 4.01% AL 0.93% 0.63%
WR 4.91% 5.69% LW 2.64% 3.32% AA 1.38% 0.69% AA 0.71% 0.31%
LA 3.09% 2.58% AL 2.12% 2.32% RL 1.23% 1.09% LT 0.48% —
AA 2.04% 0.86% RW 1.45% 1.95% LT 0.71% — LA 0.45% 0.43%
AL 1.93% 1.32% RT 1.45% — AT 0.56% — AT 0.26% —

Other 4.91% 1.66% Other 7.98% 3.51% Other 2.17% 1.99% Other 0.99% 1.39%

Table 4: Distributions of fingerprint class combinations for
three contiguous fingers

Hand Thumb, index, middle Index, middle, ring Middle, ring, pinky
Cls. SD9 BKA Cls. SD9 BKA Cls. SD9 BKA

Right

RRR 23.78% 24.47% RRR 24.19% 25.43% RRR 39.69% 44.77%
WWW 15.01% 14.09% WWW 15.46% 15.76% RWR 18.06% 19.05%
WWR 11.11% 11.00% WRW 10.89% 11.14% WWR 10.78% 10.94%
WRR 10.00% 11.34% RRW 9.92% 10.63% WWW 8.70% 7.77%
RLR 6.61% 9.84% LRR 6.54% 10.86% RWW 7.69% 6.72%
RWR 4.72% 8.00% WRR 5.02% 7.91% ARR 2.42% 1.62%
RTR 4.27% — TRR 4.46% — TRR 2.19% —
WLR 3.42% 4.82% LRW 3.49% 3.84% WRR 1.97% 1.67%
WLW 2.04% 1.36% LWW 2.04% 1.70% RRW 1.52% 1.30%
RWW 1.60% 2.89% RWW 1.82% 1.28% RLR 0.82% 0.77%
Other 17.44% 12.19% Other 16.17% 11.45% Other 6.16% 5.39%

Left

LLL 21.26% 29.64% LLL 23.35% 31.50% LLL 44.24% 50.82%
WWW 12.08% 12.36% WWW 14.13% 14.54% LWL 14.28% 14.85%
WLL 9.37% 9.99% RLL 8.85% 10.27% WWL 10.97% 11.87%
WWL 9.11% 8.27% LLW 8.62% 8.67% WWW 6.13% 6.47%
LRL 7.10% 8.07% WLW 8.40% 7.87% LWW 4.94% 3.83%
LWL 5.43% 8.13% WLL 6.51% 8.64% TLL 3.98% —
LTL 5.32% — TLL 5.99% — WLL 3.20% 3.75%

LWW 3.87% 4.81% LWW 2.12% 2.40% ALL 3.01% 2.46%
WRL 3.20% 4.18% WWL 2.04% 2.55% LLW 1.71% 1.34%
ALL 1.52% 2.46% ALL 1.82% 2.03% RLL 1.15% 1.03%
Other 21.74% 12.09% Other 18.17% 11.53% Other 6.39% 3.58%



Table 5: Distributions of fingerprint class combinations for
four contiguous fingers

Hand Thumb, index, middle, ring Index, middle, ring, pinky
Cls. SD9 BKA Cls. SD9 BKA

Right

RRRR 18.99% 18.34% RRRR 23.19% 24.35%
WWWW 14.12% 13.21% WWWR 8.18% 8.70%
WWRW 8.10% 6.72% WWWW 7.28% 7.03%
WRRW 5.46% 4.82% RRWR 6.91% 7.97%
RLRR 5.02% 7.80% WRWR 6.76% 7.57%
WRRR 4.31% 6.44% LRRR 6.21% 10.69%
RRRW 4.12% 5.61% WRRR 4.50% 7.54%
RTRR 3.53% — TRRR 4.38% —

WWRR 3.01% 4.05% WRWW 4.12% 3.52%
RWRW 2.71% 4.14% LRWR 3.08% 3.09%
Other 30.63% 28.87% Other 25.39% 19.54%

Left

LLLL 16.51% 24.14% LLLL 22.08% 30.70%
WWWW 10.86% 10.79% WWWL 8.85% 9.36%

LRLL 6.32% 6.87% RLLL 8.70% 9.99%
WWLW 5.87% 4.29% LLWL 6.39% 7.18%
WLLL 5.61% 6.44% WLLL 6.10% 8.21%
LTLL 4.65% — WLWL 5.91% 5.89%
LLLW 4.54% 5.04% TLLL 5.76% —
WLLW 3.64% 3.49% WWWW 5.28% 5.18%
WWLL 3.23% 3.95% WLWW 2.45% 1.95%
LWWW 3.12% 3.75% LLWW 2.16% 1.46%

Other 35.65% 31.24% Other 26.32% 20.08%

Table 6: Distributions of fingerprint class combinations for
five contiguous fingers

Hand Thumb, index, middle, ring, pinky
Cls. SD9 BKA

Right

RRRRR 18.43% 17.75%
WWWWR 7.28% 6.97%
WWWWW 6.84% 6.21%
WWRWR 4.76% 4.28%
RLRRR 4.76% 7.68%
WRRRR 3.86% 6.10%
RTRRR 3.53% —
RRRWR 3.42% 4.20%

WWRWW 3.34% 2.61%
WRRWR 3.23% 3.57%

Other 40.55% 40.63%

Left

LLLLL 16.06% 23.58 %
WWWWL 6.51% 6.61%

LRLLL 6.25% 6.72%
WLLLL 4.87% 6.21%
LTLLL 4.42% —

WWWWW 4.35% 4.18%
WWLWL 3.90% 3.29%
LLLWL 3.61% 4.29%
WWLLL 2.94% 3.69%
LWLLL 2.94% 4.41%

Other 44.15% 37.02%

3. Multi-fingerprint binning and retrieval
Figure 3 shows the overview of the proposed multi-

fingerprint binning and retrieval algorithm. The binning
step consists of enumerating all possible bins based on the
combinations of fingerprint classes and accordingly assign-
ing the data from the enrolled subjects to the bins. Subsec-
tions 3.1 and 3.2 describe the combination and adjustment
of classifier outputs, as well as the utilised retrieval strategy.

3.1. Combining classifier outputs

1. For each of the {n|2 ≤ n ≤ 5} considered fingers of
a hand, the classifier produces a list of k classification
probabilities (p), where k is the number of possible fin-
gerprint classes and

∑k
i=0 pi = 1. In other words, a

Fingerprint
classification

Correction

Variable search
order retrievalPn×k

Class prediction matrix

Pmax

Row maxima

. . .

Fingerprint class
statistics

Fingerprint
database

R
Ranked list
of bins

Figure 3: System overview

Pn×k matrix of class predictions is obtained for the
given hand, which may, for example, look as follows
for n = 5 and k = 4:

P =



A L R W

Thumb 4% 92% 1% 3%
Index 1% 2% 1% 96%

Middle 5% 76% 2% 17%
Ring 1% 0% 0% 99%
Pinky 1% 12% 2% 85%

 (1)

2. For each finger, the probability of the most probable
class is determined (i.e. the row-wise maximum val-
ues). In this case:

Pmax =
[ Thumb Index Middle Ring Pinky

92% 96% 76% 99% 85%
]

(2)

3. All possible combinations (Cartesian product) of class
labels for all fingers and corresponding probabilities
taken from P are recorded in matrix Bkn×n:

B =


Bin Thumb Index Middle Ring Pinky

AAAAA 4% 1% 5% 1% 1%
AAAAL 4% 1% 5% 1% 12%

... . . . . . . . . . . . . . . .
WWWWW 3% 96% 17% 99% 85%

 (3)

For example, the second bin (AAAAL) consists of the
A class probabilities for the thumb, index, middle, and
ring fingers, along with the L class probability for the
pinky finger taken from P.

4. In order to fix unreliable classifier outputs, for each
row (i.e. possible bin) in the above matrix, a classifica-
tion correction algorithm is ran. It works based on the
previously described correlation statistics (subsection
2.2). For every classification probability in the given
bin, if the value is below a threshold (previously esti-
mated on a disjoint training set), the statistical data is
used to adjust it. In the current case (n = 5), data from



table 6 is retrieved. For instance, if the algorithm is
correcting the second (index finger) probability in the
bin AAAAA:

(a) The statistics for itself, along with ALAAA,
ARAAA, and AWAAA would be retrieved.

(b) Subsequently, the sum of the statistical probabil-
ities (p) for each of those bins is computed, i.e.
s = sum (pAAAAA, pALAAA, pARAAA, pAWAAA).

(c) Finally, the probability for the bin is divided by
said sum and normalised by the maximum prob-
ability for the finger currently under processing
(derived in step 2), i.e. pAAAAA

s ∗ Pmax (index).
In other words, the probabilities below the thresh-
old are considered to contain no useful/significant in-
formation regarding the classification output, so the
global (statistical) information is incorporated in a nor-
malised manner to complement the classifier.

5. The probabilities are summed row-wise, and nor-
malised to the interval [0, 1] ∈ R. Thus, for each bin
in the final list, the overall probability that it matches
the fingerprint classes of the probe is recorded.

O =


Bin Probability

AAAAA 2%
AAAAL 0.5%

... . . .
WWWWW 50%

 (4)

3.2. Retrieval strategy

The variable search order strategy [16] is employed in
the retrieval step. The previously acquired list of bin prob-
abilities (O) for the probe is first sorted in descending or-
der of bin occurrence probability, thus producing a ranked
list of bins (R). Subsequently, the corresponding bins in
the enrolment database are successively searched using the
one-to-first strategy, i.e. until a match is found, whereupon
the retrieval is concluded immediately.

4. Performance evaluation
The following subsections describe the experimental

setup, the used fingerprint classification method, and the ob-
tained results.

4.1. Experimental setup

Performance evaluations are conducted on the previously
described SD9 database. A ten-fold cross-validation with
randomly chosen disjoint training (20%) and test (80%)
sets is performed using scikit-learn [18]. Classification ac-
curacy is measured in terms of CCR, while the computa-
tional workload reduction is estimated in terms of the num-
ber of visited database bins and corresponding subjects for
the identification transactions.

4.2. Feature extractor and classifiers

To facilitate the reproducibility of presented results, the
publicly available PCASYS tool is employed for fingerprint
classification. Extracted feature vectors comprise 128 ele-
ments, which are further processed using the Keras Frame-
work [6] with Tensorflow 1.7 [1]. In order to obtain a suit-
able classifier input feature vector, the elements are nor-
malised and scaled to the range [−2, 2] ∈ R using the
Keras MinMaxScaler function. For the classification task, a
neuronal network-based classifier1, i.e. a Multi-Layer Per-
ceptron, is trained. The network consists of three (hidden)
dense layers (192/64/32 nodes), each with a ReLU activa-
tion kernel, which are initialised with the RandomNormal
initialiser. The output layer comprises four nodes and is
initialised with zeroes. Four fingerprint classes are used,
i.e. arch and tented arch are represented as one class due to
their rare occurrences. The output of the classifier is deter-
mined by the Sigmoid activation function. In the training
(learning) step, a stochastic gradient descent is used with a
learning rate of 0.005, a beta1 of 0.95 and a beta2 of 0.999.
Training feature vectors are shuffled once and subsequently
150 epochs are performed with a batch size of 64.

Table 7: CCR at a confidence interval of 95% for the clas-
sification of single fingerprints

Class Mean Lower bound Upper bound
A 63.50% 61.02% 65.98%
L 90.95% 90.11% 91.78%
R 90.19% 89.50% 90.88%
W 86.73% 85.69% 87.78%

Table 8: Single-finger binning and retrieval results

Hand Finger Visited
bins

Visited
subjects

% of
naı̈ve

Best
possible

Thumb 1.13 725.3 53.7% 45.9%
Index 1.19 524.6 38.8% 30.7%

Right Middle 1.14 821.7 60.8% 53.6%
Ring 1.12 731.1 54.1% 46.5%
Pinky 1.11 995.3 73.7% 66.6%

Thumb 1.12 728.0 53.9% 44.7%
Index 1.22 544.6 40.3% 29.1%

Left Middle 1.15 806.7 59.7% 50.9%
Ring 1.16 792.7 58.7% 48.6%
Pinky 1.14 1,102.1 81.6% 72.4%

4.3. Results

The performance of the employed method for the sin-
gle fingerprint classification task is summarised in table 7.

1Parameters of the DNN-based classifier are summarised according to
the guidelines provided by the IEEE Signal Processing Society.



Compared to the current state-of-the-art (c.f . table 1), the
applied fingerprint classification scheme achieves a moder-
ate accuracy. Particularly, a significantly lower CCR can be
observed for the arch class, which results from natural (un-
balanced) fingerprint class distribution in the training data.
The resulting workload reduction obtained in a single-finger
binning and retrieval strategy is listed in table 8 (average
values are given for “visited” bins and “visited subjects”).

With respect to the estimation of the maximum computa-
tional workload reduction (denoted “best possible”), a per-
fect fingerprint recognition system is assumed. This means,
the retrieval is considered successful, when the fingerprints
of the correct identity are reached in a closed set identifi-
cation. This assumption is reasonable considering the accu-
racy reported for multi-fingerprint recognition systems [20].
Obtained workload reduction (denoted “% of naı̈ve”) for the
proposed multi-finger binning and retrieval strategy for dif-
ferent number of contiguous fingers used (as described in
subsection 2.2), and combinations thereof is summarised in
table 9. The computational workload reduction is estimated
by comparing the proposed scheme to a naı̈ve system per-
forming an exhaustive one-to-many search. The results for
multi-fingerprint binning represent a significant improve-
ment over a conventional single-finger binning, c.f . table 8.
Additionally, the computational workload could be further
reduced, by employing a more accurate classifier

Table 9: Multi-finger binning and retrieval results

Nr.
fingers Hand First finger Visited

bins
Visited
subjects

% of
naı̈ve

Best
possible

Thumb 1.47 349.4 25.9% 17.9%

Right Index 1.49 384.9 28.5% 20.2%
Middle 1.38 499.5 37.0% 28.3%

2 Ring 1.33 584.3 43.3% 33.8%
Thumb 1.50 345.0 25.5% 15.4%

Left Index 1.56 392.4 29.1% 18.3%
Middle 1.46 545.2 40.4% 29.4%
Ring 1.43 696.7 51.6% 39.1%

Thumb 2.12 261.9 19.4% 12.1%
Right Index 2.14 266.0 19.7% 12.4%

3 Middle 1.84 419.7 31.1% 22.0%
Thumb 2.17 254.2 18.8% 10.0%

Left Index 2.35 289.6 21.4% 11.6%
Middle 2.09 493.4 36.5% 24.4%

Right Thumb 3.81 199.1 14.7% 8.5%

4 Index 3.69 227.1 16.8% 9.5%

Left Thumb 4.08 197.7 14.6% 7.0%
index 4.21 261.5 19.4% 9.3%

5 Right Thumb 8.35 171.6 12.7% 6.6%
Left Thumb 9.41 182.8 13.5% 5.8%

5. Conclusion
With the consistently growing size of deployed biomet-

ric databases, the need to reduce the computational require-
ments of the biometric identification scenario is clear. One
of the popularly employed methods is arranging the en-
rolled database into bins based on the samples’ tangible fea-
tures (such as fingerprint classes). By doing so, during an

identification transaction, only a small fraction of bins (and
thereby biometric references) needs to be visited during the
retrieval step. In this paper, the idea of multi-instance fin-
gerprint binning is explored. Best to the author’s knowl-
edge, this is a neglected topic in the scientific literature, with
only a single theoretical analysis done in the past.

In the proposed system, the classifier outputs for mul-
tiple fingers of one hand are combined and adjusted with
statistical information about the occurrences of fingerprint
classes and correlations among them obtained from two
large databases (NIST SD9 and an in-house dataset of the
German Federal Police). Subsequently, a variable search or-
der strategy is applied to conduct a one-to-first search of the
enrolled database. The experiments were conducted using
the publicly available and well-established PCASYS tool
and a neuronal network classifier. The results convince by
significant reduction of the computational workload: for in-
stance, when using all five fingers of a hand, it is reduced to
less than 15% of the naı̈ve exhaustive search. Additionally,
the theoretical limits of the approach are established for a
perfect (always accurate) classifier, with which the compu-
tational workload could be brought down to approximately
5% of the naı̈ve exhaustive search.

Furthermore, several interesting observations can be
made regarding the choice of the binning parameters:

• One or few fingers: Few bins (each containing many
subjects) have to be visited, but more subjects have to
be considered, i.e. the overall search space is larger.

• Many fingers: Many bins (each containing few sub-
jects) have to be visited, but fewer subjects have to be
considered, i.e. the overall search space is smaller.’

• Choice of fingers: the thumb appears to exhibit less
correlation to other fingers, which makes its inclusion
in the binning scheme beneficial, c.f . table 9, where
the lowest workload is always achieved by including
the thumb.

By using data from both hands (i.e. ten fingers instead
of five), the computational workload could presumably be
further reduced, but this scenario would be less practical
for operational deployments, which typically perform ac-
quisition for a single hand or individual fingers only. Since
the proposed approach utilises well-known and understood
features, and is readily compatible with the current finger-
print sample acquisition methods, it could be seamlessly in-
tegrated into operational biometric deployments.
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