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Abstract—Intrusion detection for Controller Area Network
(CAN) protocol requires modern methods in order to compete
with other electrical architectures. Fingerprint Intrusion Detec-
tion Systems (IDS) provide a promising new approach to solve
this problem. By characterizing network traffic from known
ECUs, hazardous messages can be discriminated. In this article,
a modified version of Fingerprint IDS is employed utilizing both
step response and spectral characterization of network traffic
via neural network training. With the addition of feature set
reduction and hyperparameter tuning, this method accomplishes
a 99.4% detection rate of trusted ECU traffic.

Index Terms—IDS, electronic control unit, controller area net-
work, machine learning (ML), artificial neural network (ANN),
automotive electronics (AE).

I. INTRODUCTION

Automotive electrical systems consist of several physically
isolated ECUs that control various functions and operations
of a vehicle, e.g., engine control, traction control. Common
in-vehicle communication bus networks include CAN, Local
Interconnect Network (LIN), and FlexRay [1]. CAN is the
most commonly used bus system in automotive networks, and
it has proven to be a reliable architecture for the exponential
growth of vehicle electrical systems.

As in-vehicle electrical architectures evolve in both com-
plexity and capability, so does their potential for cybersecurity
attacks and intrusion. CAN, unlike more modern architectures,
e.g., automotive Ethernet, does not have the inherent capability
to handle these new threats to security and safety [2]. However,
due to its ongoing success and broad institutional knowledge
manufacturers will continue to use CAN as the backbone of
in-vehicle architecture for the foreseeable future.

In order to maintain CAN’s relevancy in the face of newer
and more secure electrical architectures, it’s security capabili-
ties must be enhanced by novel methods for intrusion detection
and mitigation. This becomes even more pressing with the
onset of advanced connected-vehicle features such as vehicle
sensor networks, autonomous control, and mobile connectivity.
In addition, various interactions and interdependencies be-
tween several cyber-physical components or ECUs may cause
eavesdropping, spoofing or Denial of service (DoS) attacks,
hence compromising the system [3]. There are also growing
concerns of increased remote intrusion with the proliferation
of mobile network integration into modern vehicles [4].

CAN, a vehicle network communication standard using
CSMA/CD [5], allows network messages to be broadcast to
every ECU on the network on an open bus architecture. This
topology is beneficial for ease of information access across
the network, allowing an arbitrary ECU to extract all the
information they need from other ECUs while maintaining low
wiring cost and design complexity [6]. Unfortunately, this also
means that intrusive actors with physical access to the vehicle
can spoof ECU messages easily.

One solution to this problem is by uniquely identifying
known ECU messages, and recognizing when unknown ECU
messages are present on the network. This can be accom-
plished in a number of ways, but it is important that the
technique used for ECU identification creates enough contrast
and uncorrelated behavior with other ECUs so that messages
on the network can be classified accurately and with little
confusion. Once known and trusted ECUs have been suc-
cessfully identified and integrated into a detection model,
fingerprinting can be employed to detect and isolate unknown
ECU signatures, as illustrated in Fig 1.

Fig. 1. CAN Topology with ECU Fingerprinting

One such method, proposed by [7], shows a promising
way of fingerprinting network messages. Transient and step-
response features are extracted from sampled ECU communi-
cations. This feature set is then used to train an ANN to learn
which messages are sent by a given ECU, and then identify
whether future messages belong to trusted ECUs or adversarial
ECUs.
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In the proposed work, we investigate further improvements
of this method by increasing the feature space used to train
the ANN. In addition to signal transient and steady-state
characteristics, spectral analysis characteristics are included
to further bolster the classification accuracy. In addition, a
feature space reduction is performed to optimize performance
and remove features that provide neutral or negative influence
during the classification of messages.

With this new work we hope to replicate the previous
results of [7] and improve upon accuracy with our proposed
modifications.

II. MESSAGE DETECTION METHODS

There are two main categories of classification that are
discussed in the current literature on ECU authentication and
identification: (i) message authentication code (MAC) [8], and
(ii) IDS [9].

MAC-based methods achieve security by encrypting the
message payloads of a CAN packet prior to transmission.
This family of authentication protocols can lead to high
transmission costs, and part cost to each ECU on the network
[10]–[14].

Alternatively, IDS relies on the uniqueness of each ECU’s
electrical operation and message transmission channel to cre-
ate unique profiles from messages transmitted by the ECU.
This requires a supervisory monitoring ECU or additional
compute on a centralized ECU, but the data rate requirements
of IDS are much lower than that of MAC, meaning that net-
work bandwidth is not affected by the authentication system.
Additionally, there are four sub-classes of IDS that span the
current literature:

Parameter Monitoring IDS involves using periodic fre-
quency [15] and time-of-flight (TOF) (remote frame) charac-
teristics [16] of messages to establish a baseline of behavior.
Later, new messages are measured against the expected mes-
sage parameters in order to identify suspicious or fraudulent
messages.

Information Theory IDS relies upon an ordered messaging
schedule in which a specific sequence of messages is estab-
lished. If the sequence is violated, this indicates the presence
of an attack. This can prove to be a fairly effective technique
as the authors in [17] collected 6.673 million CAN packets
for different vehicles, and the experimental results show that
CAN messages have low entropy of an average of 11.915 bits.

ML IDS approaches rely upon consistent and regularly ob-
served characteristics for each node in the network. In general,
regression and clustering algorithms are trained on signals
or observed behaviors from each node separately in order to
uniquely identify the node. Then, an advisory system with
these known signatures confirm that messages propagating in
the network are indeed coming from the authorized nodes.
ML-based methods are effective for detecting network attacks
on nearly every level of communication, i.e., from physical
to application layer. [18] Examples of these methods include
Long Short Term Memory (LSTM) [19], Ternary Content

Addressable Memory (TCAM) [20], and CAN Frame Deep
Learning [21].

Fingerprint IDS involves measuring physical characteris-
tics of message packets sent from other ECUs on the network.
There are many characteristics that can be extracted from
signals and messages observed on the CAN bus, and therefore
it is a method that can be implemented in many different ways.

Previous works have employed different techniques, e.g.,
clock-based intrusion detection (CIDS) [22], time and fre-
quency domain features [23]. However, the latter method is
the primary focus of this paper, which works on optimizing
physical signal feature extraction and selection for categoriza-
tion of CAN traffic.

III. A PRACTICAL INTRUSION DETECTION MODULE

A practical realization of an IDS consists of a microcon-
troller with a frame buffer that isolates several recessive-
dominant transitions during an ECU’s communication frame.
This should allow the data processing algorithm to isolate at
least one single-bit pulse for each ECU, for every period of
CAN traffic. The frame buffer could then be processed to
classify the origin of the message.

Fig. 2. Algorithmic Data F low

Additionally, the microcontroller could be designed to per-
form reinforcement learning of the neural network in order
to adjust to changing physical conditions of the ECU and
harness wiring over time, as well as for addressing the dynamic
behavior of intruders. A cheaper alternative could utilize other
compute resources in the vehicle for network training, and
using the IDS microcontroller to hold the neural network in
memory.

In this paper, we will discuss a static / off-line data process-
ing method to produce the desired classification of network
messages.



IV. DATASET PREPARATION

The dataset used in this paper originates from the one used
in [7], which includes CAN-High (CANH) protocol data from
7 ECUs. Each ECU is recorded 30 times on average, with
roughly 600 samples per record at 20 kHz baud rate. The
records provided show a regular clock pulse from CANH
dominant bit (logic 1) to recessive bit (logic 0), with an 86%
duty-cycle of the dominant bit. CANH has two logical voltage
levels, 3.5V for the dominant bit and 2.5V for the recessive
bit [24]. Analyzing the CANH signal using a variety of
fingerprinting feature sets allowed us to create ML classifiers
of varying accuracy.

One key part of conditioning our static data required
employing Out-Of-Bound Pulse protection. This is a pre-
processing step used to isolate clean pulses that in turn produce
a better result in algorithm performance.

For a peak index vector i = [i1 i2 · · · in] ∀i ∈ W and peak
times t(i) : (W → R) sec., we check to see if any period
tp = t(in)− t(in−1) between peaks is less than the expected
signal interval t(avg)p = 1

Fs
. Fs is the sampling frequency. For

those indices that do not meet our desired criteria, we remove
them leaving only the desired peak index vector i∗ and desired
peak time vector t∗ s.t.

tp =
[
(t1 − t0) (t2 − t1) · · · (tn − tn−1)

]
t∗p =

[
tp t

(avg)
p

]
t∗ = t | tp(i) ≥ t(avg)p ∀i
i∗ = arg

i
t∗(i) > 0 ∀i

V. FEATURE SELECTION AND EXTRACTION

In the previous work [7], the feature set used for classifi-
cation of specific channels relied upon step response signal
characteristics. We repeated this analysis (Method 1 or M1)
and used it as our baseline for performance.

In addition to step response characteristics, we chose to also
include features generated from Spectral Analysis of the sam-
pled signal pulses. Each pulse can be evaluated through the use
of the Discrete Fourier Transform (DFT). With this frequency
spectrum representation of our signal we also extracted other
unique features that could provide improved performance to
our neural network model.

A. Rising and Falling Edge Detection

An important tool for the analysis of step response charac-
teristics is rising edge detection. For our purposes, we utilized
a moving average filter with a window size of 6 samples,
adjusted the sample values by a threshold value, and then used
zero-crossing detection to determine the time and indices of
each peak.

In practice, after removing DC bias from the signal, we
found that ±0.2 V provided accurate peak index output for
our dataset.

Similarly, we also are interested in the falling edge of
each pulse to measure other features from a signal. A similar

process is applied, but in addition we also dynamically paired
leading and falling edges to isolate dominant and recessive
pulses. Fig. 3 illustrates both processes on a multiple pulse
measurement.

Fig. 3. Edge Detection Output

B. Peak Time (Tp)

We calculated peak time by utilizing the paired rising and
falling edge indices, as well as the sampling time of the signal:

Tpeak = (irise − ifall) · Ts

C. Steady-State Value (SSV)

Measurement of the SSV required a moving average filter
window size approximately equal to the shorter bit pulse
length, followed by threshold detection. In this case, the
window size was equivalent to the recessive bit pulse duration
of roughly 20 samples.

D. Steady-State Error (SSE)

In order to calculate the SSE, we chose the closest ideal
voltage using the SSV of the current pulse (Videal(i) = 2.5V
if i ∈ Rec, 3.5V if i ∈ Dom) and found the difference.

E. Percent Overshoot (%OS)

Percent overshoot measures the amount of overshoot on the
rising edge of a pulse above SSV and is defined as,

%OS = 100%× Peak Amplitude− SSV

SSV

F. Settling Time (Ts)

Calculating settling time required using threshold detection
on a smoothed signal envelope, an example is shown in Fig. 4.
A 5% detection threshold was used to avoid poor measurement
consistency caused by aliasing and noise in the signal.

G. Rise Time (Tr)

Rise Time is the amount of time for the rising edge of a
pulse to reach SSV . Determining this value is similar to the
process for finding settling time, using SSV as the threshold
value on the rising edge of each pulse.



Fig. 4. Using Signal Envelope to find Settling T ime

Fig. 5. Bin−Reduced Power Spectral Density

H. Delay Time (Td)

Delay Time is the amount of time for the rising edge of
a pulse to reach 0.5SSV . Determining this value is similar
to the process for finding settling time, using 0.5SSV as the
threshold value.

I. Power Spectral Density (PSD or SD)

The method for frequency spectrum transformation of the
signal data used in this work utilizes Welch’s method [25] to
perform an efficient FFT of a sequential input vector (samples
series data in our case). This algorithm is available in the
scikitlearn library.

We could have utilized every value of the PSD magnitude
vector ( 200 values) in our ML model training, however this
could have lead to a high computational cost. Instead, we
chose to adopt frequency binning as a means of capturing the
spectral shape of the pulse’s frequency domain information,
as shown in Fig 5.

J. Signal-To-Noise Ratio (SNR)

SNR measures the ratio between the power of the ideal
pulse signal (step function) and the power of the signal noise

(measured signal minus the ideal step function). It is shown
in Fig. 6.

SNR = 10× log10
SUM(PSDsignal)

SUM(PSDnoise)

Fig. 6. Signal and Noise Power Spectral Density

K. Mean Frequency (MNF)

Mean frequency can be calculated directly from the PSD
and frequency vector data produced by the FFT algorithm [26]
as,

MNF =

∑M
j=1 fjPj∑M
j=1 Pj

L. Median Frequency (MDF)

Median frequency is the frequency at which energy is
split equivalently in the PSD of the pulse [26]. The PSD is
normalized, cumulatively summed, offset by 50% of the signal
energy, and an abs value is applied. Median frequency is found
by locating the frequency at which a minima occurs in this
resulting vector.

MDF∑
j=1

Pj =

M∑
j=MDF

Pj =
1

2

M∑
j=1

Pj

M. Feature Extraction

All the acquisition functions detailed above were processed
for each signal recording. The resultant database was then
parsed for pertinent feature data and copied to a data dic-
tionary, in addition to file metadata (CAN Id, Channel Length
(m), Channel Medium, ECU Record Id, and Filepath). Once a
record was created for each file, the data dictionary was used
to produce the feature subsets that are fed to our ANN.

VI. ML METHODOLOGY

The dataset was split into a training (70%) and test set (30%)
for each run. In early development static random number
generation seeds were utilized. This helped to maintain a con-
sistent understanding of performance across different subsets



of features. After generalized performance was understood, the
training and datasets were completely randomized, run to run,
in order to remove any training bias and overfitting that could
influence performance results.

For all feature sets in this work, we trained a multi-layer
perceptron neural network model (MLP Classifier from scikit-
learn) to predict classifications for the ECUs in our testing
set. This model utilizes the Adam solver [27].

For initial training, the hyperparameter values were chosen
to be quite large in order to allow the solver to converge to a
maximal solution. Early training typically used approximately
1000 hidden layers and 3000 epochs.

After the model was trained, the remaining test records were
used to measure performance of the model. A confusion matrix
was constructed with the actual values of the test set, and the
predicted values of the model.

VII. FEATURE TUNING

Two methods are evaluated initially using the feature ex-
traction data,

1) Step Response Features (M1) [7]
2) Step Response + Spectral Analysis Features (M2)
Figs. 7 and 8 show sample results for M2. M1 produced

an average ECU classification accuracy of 96.85%, and M2
produced an average accuracy of 98.28% in the initial trials.

Fig. 7. Sample M2 Performance Metrics

Fig. 8. Sample M2 Confusion Matrix (Percentage %)

With M1 performance as a baseline, we looked to improve
accuracy by fine tuning the feature set. Neural network training

was performed for each individual feature. We then ranked the
features by accuracy to identify the best performers (Fig 9).

Fig. 9. Feature Accuracy Ranked

We then added features one by one to successive neural
networks until we observed diminishing returns in accuracy
(Fig 10).

Fig. 10. Cumulative Feature Addition

The final feature set includes only SNR, SSV , SSE,
MNF , and %OS. Overall, we were able to exclude fea-
tures that did not provide significant value to the overall
performance of the neural network model, hence reducing
computational cost in the training of the model.

VIII. HYPERPARAMETER TUNING

Although in earlier testing we picked large values for our
neural network hyperparameters (maximum epochs of 3000,
maximum hidden layers of 1000) we wished to see if there
were points of diminishing returns for both.

We found that epoch performance converged at around 500
iterations. Hidden layer performance was variable and could
reach optimality from 100-1000 layers. These points/ranges
were chosen as the default hyperparameter values and adjusted
to maximize accuracy performance for each feature set.



IX. RESULTS

With our final feature sets chosen, we ran 20 randomized
trials using the MLP Classifier, with a hyperparameter opti-
mization of 275 hidden layers and 500 epochs for both M1
and M2. For M1, this led to an average accuracy of 97.17%
(M1opt). A similar optimization was performed with the M2
feature set, resulting in higher performance with a 99.4%
average accuracy (M2opt).

Fig. 11. Comparison of Methods (avg : std dev)

X. CONCLUSION

This paper adds new features to Fingerprint-based IDS and
optimizes feature selection through a single pass of feature
reduction. New features include signal characteristics from the
domain of spectral analysis, in particular, PSD, SNR, mean
frequency, and median frequency. The feature reduction pass
performs a quasi-heuristic search of feature combinations in
order to maximize the ratio of performance to computation.
Another quasi-heuristic search process is used to optimize
hyperparameter values for the multi-layer perceptron neural
network. We compare all of the primary methods of this paper
in Fig. 11. The accumulated channel detection accuracy of the
best performing method is 99.4%.
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