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Abstract—There has recently been an increased scientific in-
terest in the de-anonymization of users in anonymized databases
containing user-level microdata via multifarious matching strate-
gies utilizing publicly available correlated data. Existing litera-
ture has either emphasized practical aspects where underlying
data distribution is not required, with limited or no theoret-
ical guarantees, or theoretical aspects with the assumption of
complete availability of underlying distributions. In this work,
we take a step towards reconciling these two lines of work
by providing theoretical guarantees for the de-anonymization of
random correlated databases without prior knowledge of data
distribution. Motivated by time-indexed microdata, we consider
database de-anonymization under both synchronization errors
(column repetitions) and obfuscation (noise). By modifying the
previously used replica detection algorithm to accommodate
for the unknown underlying distribution, proposing a new
seeded deletion detection algorithm, and employing statistical
and information-theoretic tools, we derive sufficient conditions on
the database growth rate for successful matching. Our findings
demonstrate that a double-logarithmic seed size relative to row
size ensures successful deletion detection. More importantly, we
show that the derived sufficient conditions are the same as in
the distribution-aware setting, negating any asymptotic loss of
performance due to unknown underlying distributions.

Index Terms—dataset, database, matching, de-anonymization,
alignment, distribution-agnostic, privacy, synchronization, obfus-
cation

I. INTRODUCTION

With the accelerating growth of smart devices and ap-
plications, there has been a considerable collection of user-
level microdata in private companies’ and public institutions’
possession which is often shared and/or sold. Although this
data transfer is performed after removing the explicit user
identifiers, a.k.a. anonymization, and coarsening of the data
through noise, a.k.a. obfuscation, there is a growing concern
from the scientific community about the privacy implica-
tions [1]. These concerns were further validated by the success
of a series of practical attacks on real data by researchers [2]–
[6]. In the light of these successful attacks, recently there
has been an increasing effort on the information-theoretic and
statistical foundations of database de-anonymization, a.k.a.
database alignment/matching/recovery [7]–[16].

In our recent work we have focused on the database de-
anonymization problem under synchronization errors. In [13],
we investigated the matching of Markov databases under
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synchronization errors only, with no subsequent obfusca-
tion/noise. We showed that the synchronization errors could
be detected through a histogram-based detection. Furthermore,
we found the noiseless matching capacity to be equal to the
erasure bound where locations of deletions and replications are
known a priori. More relevantly, in [14], we considered the
de-anonymization of databases under noisy synchronization
errors. We proposed a noisy replica detection algorithm and a
seeded deletion detection algorithm to recover synchronization
errors. We proposed a joint-typicality-based matching algo-
rithm and derived achievability results, which we subsequently
showed to be tight, given a seed size logarithmic with the
row size of the database. Then in [15], we improved this
sufficient seed size to one double logarithmic with the row
size. Albeit successful in deriving detecting and matching
results, in these works, the availability of information on
the underlying distributions was assumed and the proposed
algorithms were tailored for these known distributions.

Motivated by most practical settings where the underlying
distributions are not readily available, but only could be
estimated from the available data, in this paper, we investigate
the de-anonymization problem without any prior knowledge
of the underlying distributions. We focus on a noisy random
column repetition model borrowed from [14], as illustrated in
Figure 1. We modify the noisy replica detection algorithm
proposed in [14] so that it still works in the distribution-
agnostic setting. Then we propose a novel outlier-detection-
based deletion detection algorithm and show that when seeds,
whose size grows double logarithmic with the number of users
(rows), are available, the underlying deletion pattern could be
inferred. Finally, through a typicality-based de-anonymization
algorithm that relies on the estimated distributions, we show
that database de-anonymization could be performed with no
asymptotic loss of performance compared to when all the
information on the distributions is available a priori.

The structure of the rest of this paper is as follows:
Section II introduces the formal statement of the problem.
Section III contains our proposed algorithms, states our main
result, and contains its proof. Finally, Section IV consists of
the concluding remarks.
Notation: We denote a matrix D with bold capital letters,
and its (i, j)th element with Di, j. A set is denoted by a
calligraphic letter, e.g., X. [n] denotes the set of integers
{1, . . . ,n}. Asymptotic order relations are used as defined
in [17, Chapter 3]. All logarithms are base 2. H(.) and I(.; .)
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X1,1 X1,2 X1,3 X1,4 X1,5
X2,1 X2,2 X2,3 X2,4 X2,5
X3,1 X3,2 X3,3 X3,4 X3,5
X4,1 X4,2 X4,3 X4,4 X4,5
X5,1 X5,2 X5,3 X5,4 X5,5
X6,1 X6,2 X6,3 X6,4 X6,5

Y4,1 Y(1)
4,2 Y(2)

4,2 Y4,3 Y4,5
Y1,1 Y(1)

1,2 Y(2)
1,2 Y1,3 Y1,5

Y5,1 Y(1)
5,2 Y(2)

5,2 Y5,3 Y5,5
Y3,1 Y(1)

3,2 Y(2)
3,2 Y3,3 Y3,5

Y6,1 Y(1)
6,2 Y(2)

6,2 Y6,3 Y6,5
Y2,1 Y(1)

2,2 Y(2)
2,2 Y2,3 Y2,5

mn

n

D(1) σn D(2)

Fig. 1: An illustrative example of database matching under
column repetitions. The column coloured in red is repeated
zero times, i.e., deleted, whereas the column coloured in
blue is repeated twice, i.e., replicated. Y (1)

i,2 and Y (2)
i,2 denote

noisy copies/replicas of Xi,2. Our goal is to estimate the
correct row permutation σn =

(
1 2 3 4 5 6
2 6 4 1 3 5

)
, by matching the

rows of D(1) and D(2) without any prior information on the
underlying database (pX ), obfuscation (pY |X ), and repetition
(pS) distributions.

denote the Shannon entropy and the mutual information [18,
Chapter 2], respectively.

II. PROBLEM FORMULATION

We use the following definitions, most of which are bor-
rowed from [14] to formalize our problem.

Definition 1. (Anonymized Database) An (mn,n, pX )
anonymized database D = {Xi, j ∈ X},(i, j) ∈ [mn]× [n]} is a
randomly generated mn×n matrix with Xi, j

i.i.d.∼ pX , where pX
has a finite discrete support X= {1, . . . , |X|}.

Definition 2. (Column Repetition Pattern) The column
repetition pattern Sn = {S1,S2, ...,Sn} is a random vector with
Si

i.i.d.∼ pS, where pS has a finite integer support {0, . . . ,smax}.

Definition 3. (Anonymization Function) The anonymization
function σn is a uniformly-drawn permutation of [mn].

Definition 4. (Labeled Correlated Database) Let D(1), Sn

and σn be a mutually-independent (mn,n, pX ) anonymized
database, repetition pattern and anonymization function triplet.
Let pY |X be a conditional probability distribution with both X
and Y taking values from X. Given D(1), Sn, σn and pY |X ,
D(2) is called the labeled correlated database if the respective
(i, j)th entries Xi, j and Yi, j of D(1) and D(2) have the following
relation:

Yσn(i), j =

{
E, if S j = 0
ZS j if S j ≥ 1

∀i ∈ [mn], ∀ j ∈ [n] (1)

where ZS j is a row vector consisting of S j noisy replicas of
Xi, j with the following conditional probability distribution

Pr
(
ZS j = zS j |Xi, j = x

)
=

S j

∏
l=1

pY |X (zl |x) (2)

where zS j = z1, . . . ,zS j and Yσn(i), j = E corresponds to Yσn(i), j
being the empty string.

D(1)
σn

D(2)Anonymization Synchronization 
Errors Obfuscation

Sn pY|X

Fig. 2: Relation between the unlabeled database D(1) and the
labeled noisy repeated one, D(2).

Note that S j indicates the times the jth column of D(1) is
repeated. When S j = 0, the jth column of D(1) is said to be
deleted and when S j > 1, the jth column of D(1) is said to be
replicated.

The ith row Xi of D(1) and the σn(i)th row Yσn(i) of D(2) are
called matching rows.

The relationship between D(1) and D(2), as described in
Definition 4, is illustrated in Figure 2.

Remark 1. (Assumptions)
(a) The fact that Xi, j and Si are i.i.d. can be checked through

the Markov order estimation algorithm of [19] with a
probability of error vanishing in n. Thus from now on,
we assume that the i.i.d. nature of Xi, j and Si is known,
while the distributions pX and pS are not.

(b) Since |X| and smax do not depend on n, they can easily
be estimated with a probability of error vanishing in n.
Therefore, we will assume that |X| and smax are known.

(c) In this work, we assume a memoryless noise model, so
that the conditional independence of the noisy replicas
stated in (2) is known, whereas the noise distribution pY |X
is not.

As often done in both the graph matching [20] and the
database matching [14] literatures, we will assume the avail-
ability of a set of already-matched row pairs called seeds, to
be used in the detection of the underlying repetition pattern.

Definition 5. (Seeds) Given a pair of anonymized and labeled
correlated databases (D(1),D(2)), a seed is a correctly-matched
row pair with the same underlying repetition pattern. A batch
of Λn seeds is a pair of seed matrices of respective sizes Λn×n
and Λn×∑

n
j=1 S j.

For the sake of notational brevity, we assume that the
seed matrices G(1) and G(2) are not submatrices of D(1)

and D(2). Throughout this work, we will assume a seed size
Λn = ω(logn) = ω(log logmn) which is double-logarithmic
with the number of users mn.

As done in [8], [12]–[14], [16], we utilize the database
growth rate, defined below, as the main performance metric.

Definition 6. (Database Growth Rate) The database growth
rate R of an (mn,n, pX ) anonymized database is defined as

R = lim
n→∞

1
n

logmn (3)

Similar to [8], [12]–[14], our goal is to characterize the
supremum of the achievable database growth rates allowing



the almost-perfect recovery of the anonymization function σn.
However, unlike [8], [12]–[14], we consider the case when the
underlying distributions pX , pY |X and pS are not provided a
priori. More formally, “almost-perfect recovery” corresponds
to the construction of the estimate σ̂n such that

lim
n→∞

Pr(σn(J) ̸= σ̂n(J))→ 0 (4)

where J ∼ Unif([mn]).

III. DE-ANONYMIZATION ALGORITHM AND
ACHIEVABILITY

In this section, we present our main result in Theorem 1 on
the achievable database growth rates when no prior informa-
tion is provided on pX , pY |X , and pS.

Theorem 1. (Main Result) Consider an anonymized and
labeled correlated database pair, with underlying database
distributions pX ,Y and a column repetition distribution pS
which are assumed to be not known a priori. Given a seed
size Λn = ω(logn), any database growth rate R satisfying

R < I(X ;Y S|S) (5)

is achievable where S∼ pS, X ∼ pX and Y S = Y1, . . . ,YS with
Yi|X

i.i.d.∼ pY |X .

In order to demonstrate the tightness of the achievabil-
ity result stated in Theorem 1, we now compare it to the
distribution-aware results derived in [14, Theorem 1].

Theorem 2. (Converse of [14, Theorem 1]) Consider an
anonymized and labeled correlated database pair, with under-
lying joint database distributions pX ,Y and a column repetition
distribution pS. Then, a necessary condition for the existence
of a successful de-anonymization scheme is:

R≤ I(X ;Y S|S) (6)

Theorems 1 and 2 imply that given a seed size
Λn = ω(logn) = ω(log logmn) we can perform matching as if
we knew the underlying distributions pX ,Y and pS, and the
actual column repetition pattern Sn a priori. Hence in the
asymptotic regime, not knowing the distributions causes no
loss in the matching capacity.

The rest of this section is on the proof of Theorem 1.
In Section III-A, we present our detection of noisy replicas
algorithm and prove its asymptotic performance. Then in
Section III-B, we propose a seeded deletion algorithm and
derive a sufficient seed size that guarantees its asymptotic
performance. Finally in Section III-C, we present our de-
anonymization algorithm.

A. Noisy Replica Detection

Similar to [14], we use the running Hamming distances be-
tween the consecutive columns C(2)

j and C(2)
j+1 of D(2), denoted

by H j, j ∈ [Kn − 1], where Kn ≜ ∑
n
j=1 S j as a permutation-

invariant future of the labeled correlated database. More for-
mally,

H j ≜
mn

∑
t=1

1
[D(2)

t, j+1 ̸=D(2)
t, j ]

, ∀ j ∈ [Kn−1] (7)

We first note that

H j ∼

{
Binom(mn, p0), if C(2)

j |= C(2)
j+1

Binom(mn, p1), otherwise
(8)

where

p0 ≜ 1− ∑
y∈X

pY (y)2 (9)

p1 ≜ 1− ∑
x∈X

pX (x) ∑
y∈X

pY |X (y|x)2 (10)

From [16, Lemma 1], we know that as long as the databases
are correlated, i.e., pX ,Y ̸= pX pY , we have p0 > p1 for any
pX ,Y . Thus, as long as pX ,Y ̸= pX pY , replicas can be detected
based on the Hamming distances H j similar to [14], [16]. How-
ever, the algorithm in [14] depends on the choice of a threshold
that depends on pX ,Y through p0 and p1. In Algorithm 1,
we propose the following modification: We first construct the
estimates p̂0 and p̂1 for the respective parameters p0 and p1
through the moment estimator proposed by Blischke in [21].
Note that we can use this estimator because the Binomial
mixture is guaranteed to have two distinct components. More
formally, the distribution of H j conditioned on Sn is given by

Pr(H j = h|Sn) =

(
mn

h

)
[α ph

0(1− p0)
mn−h

+(1−α)ph
1(1− p1)

mn−h] (11)

for h = 0, . . . ,mn where the mixing parameter α is given by

α =
1

Kn−1

(
n−

n

∑
j=1

1[S j=0]

)
(12)

Since pS, and in turn δ and α , are constant in n, it can easily
be verified that as n→ ∞, α

p→ 1−δ

E[S] . Hence it is bounded
away from both 0 and 1, suggesting that the moment estimator
of [21] and in turn Algorithm 1 can be used to detect the
replicas. More formally, for any ε > 0.

lim
n→∞

Pr
(∣∣∣∣α− 1−δ

E[S]

∣∣∣∣> ε

)
= 0. (13)

The following lemma states that this algorithm has a van-
ishing error probability.

Lemma 1. (Noisy Replica Detection) Algorithm 1 has a
vanishing probability of replica detection error, as long as
mn = ω(logn).

Proof. The estimator proposed in [21] works as follows:
Define the kth sample factorial moment Fk as

Fk ≜
1

Kn−1

Kn−1

∑
j=1

k−1

∏
i=0

H j− i
mn− i

, ∀k ∈ [mn] (14)



Algorithm 1: Noisy Replica Detection Algorithm
Input : (D,mn,Kn)
Output: isReplica
H← RunningHammingDist(D); /* Eq. (7) */
(p̂0, p̂1)←EstimateParams(H); /* See [21] */
τ ← p̂0+p̂1

2 ; /* Threshold */
isReplica ←∅;
for j = 1 to Kn−1 do

if H[ j]≤ mnτ then
isReplica[ j]← TRUE;

else
isReplica[ j]← FALSE;

end
end

and let

A ≜
F3−F1F2

F2−F2
1

(15)

Then the respective estimators p̂0 and p̂1 for p0 and p1 can
be constructed as:

p̂0 =
A+

√
A2−4AF1 +4F2

2
(16)

p̂1 =
A−

√
A2−4AF1 +4F2

2
(17)

From [21], we get p̂i
p→ pi and in turn τ

p→ p0+p1
2 . Thus for

large n, τ is bounded away from p0 and p1. At this stage, we
are ready to finish the proof following the same steps taken
in the proof of [15, Lemma 1], which we provide below for
the sake of completeness.

Let A j denote the event that C(2)
j and C(2)

j+1 are noisy replicas
and B j denote the event that the algorithm infers C(2)

j and C(2)
j+1

as replicas. Via the union bound, we can upper bound the total
probability of replica detection error as

Pr(
Kn−1⋃
j=1

E j)≤
Kn−1

∑
j=1

Pr(Ac
j)Pr(B j|Ac

j)+Pr(A j)Pr(Bc
j|A j) (18)

where E j denotes the replica detection event for C(2)
j and C(2)

j+1.
Observe that conditioned on Ac

j, H j ∼ Binom(mn, p0) and
conditioned on A j, H j ∼Binom(mn, p1). Then, from the Cher-
noff bound [22, Lemma 4.7.2], we get

Pr(B j|Ac
j)≤ 2−mnD(τ∥p0) (19)

Pr(Bc
j|A j)≤ 2−mnD(1−τ∥1−p1) (20)

Thus, we obtain

Pr(
Kn−1⋃
j=1

E j)≤ (Kn−1)
[
2−mnD(τ∥p0)+2−mnD(1−τ∥1−p1)

]
(21)

Since the RHS of (21) has 2Kn = O(n) terms decaying
exponentially in mn, for any mn = ω(logn) we have

Pr(
Kn−1⋃
j=1

E j)→ 0 as n→ ∞. (22)

Observing that n∼ logmn, we get

lim
n→∞

Pr(Noisy replica detection error) = 0. (23)

Note that the condition in Lemma 1 is automatically sat-
isfied since mn is exponential in n (Definition 6). Finally,
we stress that as opposed to deletion detection, discussed in
Section III-B, no seeds are necessary for replica detection.

B. Deletion Detection

In this section, we propose a deletion detection algorithm
that utilizes the seeds. Since the replica detection algorithm
of Section III-A (Algorithm 1) has a vanishing probability of
error, for notational simplicity we will focus on a deletion-
only setting throughout this subsection. Let G(1) and G(2) be
the seed matrices with respective sizes Λn× n and Λn× K̃n,
and denote the jth column of G(r) with G(r)

j , r = 1,2 where
K̃n ≜ ∑

n
j=11[S j ̸=0]. Furthermore, for the sake of brevity, let

Li, j denote the Hamming distance between G(1)
i and G(2)

j for
(i, j) ∈ [n]× [K̃n]. More formally, let

Li, j ≜
Λn

∑
t=1

1
[G(1)

t,i ̸=G(2)
t, j ]

(24)

Observe that

Li, j ∼

{
Binom(Λn,q0), G(1)

i |= G(2)
j

Binom(Λn,q1), otherwise
(25)

where

q0 = 1− ∑
x∈X

pX (x)pY (x) (26)

q1 = 1− ∑
x∈X

pX ,Y (x,x) (27)

Thus, we have a problem seemingly similar to the one in
Section III-A. However, we cannot utilize similar tools because
of the following: i) Recall that the two components of the
Binomial mixture discussed in Section III-A were distinct for
any underlying joint distribution pX ,Y as long as the databases
are correlated, i.e., pX ,Y ̸= pX pY . Unfortunately, the same idea
does not automatically work here as demonstrated by the
following example: Suppose Xi, j ∼Unif(X), and the transition
matrix P associated with pY |X has unit trace. Then,

q0−q1 = ∑
x∈X

pX ,Y (x,x)− pX (x)pY (x) (28)

=
1
|X| ∑

x∈X
pY |X (x|x)− pY (x) (29)

=
1
|X|

(tr(P)−1) (30)

= 0 (31)

In [14], we overcame this problem using the following mod-
ification: Based on pX ,Y , we picked a bijective remapping
Φ ∈ S(X) and applied it to all the entries of G(2) before
computing the Hamming distances Li, j, where S(X) denotes



1 2 3 4 5 6 7

1

2

3

4

5

6

7

8

9

10
7600

7800

8000

8200

8400

8600

8800

9000

9200

Fig. 3: Hamming distances between the columns of G(1) and
G(2) with n = 10, K̃n = 7 and Λn = 104 for q0 ≈ 0.76 and
q1 ≈ 0.92. The (i, j)th element corresponds to Li, j, with the
color bar indicating the approximate values. It can be seen
that there are no outliers in the 4th, 6th, and 10th rows. Hence,
it can be inferred that Idel = (4,6,10).

the symmetry group of X. Denoting the resulting version of the
Hamming distance Li, j by Li, j(Φ), we proved in [14, Lemma
2] that there as long as pX ,Y ̸= pX pY , there exists Φ ∈S(X)
such that the Binomial mixture distribution associated with
Li, j(Φ) has two distinct components with respective success
parameters q0(Φ) and q1(Φ). In other words, we have

Li, j(Φ)∼

{
Binom(mn,q0(Φ)), G(1)

i |= G(2)
j

Binom(mn,q1(Φ)), otherwise
(32)

and q0(Φ) ̸= q1(Φ). We will call such Φ a useful remapping.
ii) In the known-distribution setting, we chose the useful

remapping Φ and threshold τn for Hamming distances based
on pX ,Y . In Section III-A, we solved the distribution-agnostic
case via parameter estimation in Binomial mixtures. However,
the same approach does not work here. Suppose the jth

retained column G(2)
j of G(2) is correlated with G(1)

r j . Then the
jth column of L(Φ) will have a Binom(Λn,q1(Φ)) component
in the r j

th row, whereas the remaining n− 1 rows will con-
tain Binom(Λn,q0(Φ)) components, as described in (32) and
illustrated in Figure 3. Hence, it can be seen that the mixture
parameter β of this Binomial mixture distribution approaches
1 since

β =
(n−1)K̃n

nK̃n
= 1− 1

n
(33)

This imbalance prevents us from performing a parameter
estimation as done in Algorithm 1.

We propose to exploit the aforementioned observation that
for a useful mapping Φ, in each column of L(Φ), there is

exactly one element with a different underlying distribution,
while the remaining n−1 entries are i.i.d., rendering this entry
an outlier. Note that Li, j(Φ) being an outlier corresponds to
G(1)

i and G(2)
j being correlated, and in turn Si ̸= 0. On the other

hand, we stress that the lack of outliers in any given column of
L(Φ) implies that Φ is useless. Thus, it can easily be seen that
Algorithm 2 is capable of deciding whether a given remapping
is useful or not. In fact, the algorithm sweeps over all elements
of S(X) until we encounter a useful one.

To detect the outliers in L(Φ), we propose to use the
distances of Li, j(Φ) to the sample mean µ(Φ) of L(Φ) where

µ(Φ)≜
1

nK̃n

n

∑
i=1

K̃n

∑
j=1

Li, j(Φ) (34)

As given in Algorithm 2, if these distances are lower than τ̂n,
we detect retention i.e., non-deletion.

Note that this step is equivalent to utilizing Z-scores (also
known as standard scores), a well-studied concept in statistical
outlier detection [23], where the distances to the sample
mean are also divided by the sample standard deviation. In
Algorithm 2, for the sake of brevity, we will avoid such
division.

The following lemma states that for sufficient seed size,
Λn = ω(logn) = ω(log logmn), Algorithm 2 works correctly
with high probability.

Lemma 2. (Deletion Detection) Let IR = { j ∈ [n] : S j ̸= 0} be
the true retention index set and ÎR be its estimate output by
Algorithm 2. Then for any seed size Λn = ω(logn), we have

lim
n→∞

Pr(ÎR = IR) = 1 (35)

Proof. For now, suppose that Φ is a useful remapping. Start
by observing that using Chebyshev’s inequality [24, Theorem
4.2] it is straightforward to prove that for any εn > 0

γ ≜ Pr(|µ(Φ)−Λnq0(Φ)|> Λnεn)≤ O
(

1
KnnΛnεn

)
(36)

Let IR = {r1, . . . ,rK̃n
} and note that Li, j ∼ Binom(Λn,q1(Φ)).

Thus, from the Chernoff bound [22, Lemma 4.7.2] we get

βr j , j ≜ Pr(|Lr j , j(Φ)−Λnq1(Φ)| ≥ εnΛn) (37)

≤ 2−ΛnD(q1(Φ)−εn∥q1(Φ))

+2−ΛnD(1−q1(Φ)−εn∥1−q1(Φ)) (38)

where D(p∥q) denotes the relative entropy [18, Chapter 2.3]
(in bits) between two Bernoulli distributions with respective
parameters p and q.

Now, for notational brevity, let

f (ε)≜ D(q− ε∥q) (39)

g(ε)≜ D(1−q− ε∥1−q) (40)



Algorithm 2: Seeded Deletion Detection Algorithm

Input : (G(1),G(2),Λn,n, K̃n,X)
Output: retentionIdx
S(X)← SymmetryGroup(X);
τ̂n← 2Λ

2/3
n (logn)1/3; /* Threshold */

for s← 1 to |X|! do
retentionIdx←∅;
Φ←S(X)[s]; /* Pick a remapping. */
L(Φ)← HammDist(G(1),G(2)); /* Eq. (24) */
µ(Φ)← SampleMean(L(Φ)); /* Eq. (34) */
M(Φ)← |L(Φ)−µ(Φ)|;
for j← 1 to K̃n do

count ← 0;
for i← 1 to n do

if M(Φ)[i][ j]≤ τ̂n then
retentionIdx← retentionIdx ∪{i};
count ← count + 1;

end
end
/* count = 0: no outliers (Φ is useless). */
/* count > 1: misdetection. */
if count > 1 then

return ERROR
else

if count = 0 then
Skip to next Φ;

end
end

end
return ÎR;

end

Then, one can simply verify the following

f ′(ε) = log
q

1−q
− log

q− ε

1−q− ε
(41)

f ′′(ε) =
1

loge

[
1

q− ε
+

1
1−q+ ε

]
(42)

g′(ε) = log
1−q

q
− log

1−q− ε

q+ ε
(43)

g′′(ε) =
1

loge

[
1

1−q− ε
+

1
q+ ε

]
(44)

Observing that

f (0) = f ′(0) = 0 (45)
g(0) = g′(0) = 0 (46)

and performing second-order MacLaurin Series expansions on
f and g, we get for any ε < 1

f (ε) = c(q)ε2 +O(ε3) (47)

g(ε) = c(q)ε2 +O(ε3) (48)

where

c(q)≜
1

loge

[
1
q
+

1
1−q

]
(49)

Let Λn = Γn logn and εn = Γ
−1/3
n and pick the threshold as

τ̂n = 2Λnεn. Observe that since Γn = ωn(1), we get

τ̂n = 2Λnεn = on(Λn) (50)

Λnε
2
n = Γ

1/3
n logn = ωn(logn) (51)

Then, we have

βr j , j ≤ 21−Λn(c(q1(Φ))ε2
n+O(ε3

n )) (52)

= 21−c(q1(Φ))Γ
1/3
n logn+O(ε3

n )) (53)

Note that with probability at least 1− γ−βr j , j we have

|µ(Φ)−Λnq0(Φ)| ≤ Λnεn (54)
|Lr j , j(Φ)−Λnq1(Φ)| ≥ Λnεn (55)

From the triangle inequality, we have

|Lr j , j(Φ)−µ(Φ)| ≥ Λn(|q1(Φ)−q0(Φ)|−2εn) (56)

≥ τ̂n (57)

for large n. Therefore, from the union bound we have

Pr(∃ j ∈ [K̃n] :|Lr j , j−µ(Φ)| ≤ τ̂n) (58)

≤ γ +
K̃n

∑
j=1

βr j , j (59)

= γ +2log K̃n−1−c(q1(Φ))Γ
1/3
n logn+O(ε3

n )) (60)

Since K̃n ≤ n and Λn = ωn(logn), we have

lim
n→∞

log K̃n− c(q1(Φ))Γ
1/3
n logn =−∞ (61)

Thus we have

lim
n→∞

Pr(∃ j ∈ [K̃n] : Mr j , j ≤ τ̂n) = 0 (62)

Next, we look at i ̸= r j. Repeating the same steps above,
we get

βi, j ≜ Pr(|Li, j(Φ)−Λnq0(Φ)| ≥ εnΛn) (63)

≤ 2−ΛnD(q0(Φ)−εn∥q0(Φ))+2−ΛnD(1−q0(Φ)−εn∥1−q0Φ)) (64)

= 21−c(q0(Φ))Γ
1/3
n logn+O(ε3

n )) (65)

Again, from the triangle inequality, we get

|Li, j(Φ)−µ(Φ)| ≤ 2εn = τ̂n (66)

From the union bound, we obtain

Pr(∃ j ∈ [K̃n]∃i ∈ [n]\{r j} : |Li, j(Φ)−µ(Φ)| ≥ τ̂n) (67)

≤ γ +
K̃n

∑
j=1

∑
i ̸=r j

βi, j (68)

≤ γ +n221−c(q0(Φ))Γ
1/3
n logn+O(ε3

n )) (69)



Since Λn = ω(logn), we have

lim
n→∞

Pr(∃ j ∈ [K̃n]∃i ∈ [n]\{r j} : |Li, j(Φ)−µ(Φ)| ≥ τ̂n) = 0

(70)

Thus, for any useful remapping Φ, the misdetection probability
decays to zero as n→ ∞.

For any useless remapping Φ, following the same steps, one
can prove that

Pr(Useless remapping Φ is inferred as useful.) (71)

≤ γ +
n

∑
i=1

K̃n

∑
j=1

Pr(Mi, j ≥ εnΛn) (72)

≤ γ +n221−c(q0(Φ))Γ
1/3
n logn+O(ε3

n )) (73)
= on(1) (74)

Observing |S(X)|= |X|! = On(1) concludes the proof.

C. De-Anonymization Scheme

In this section, we propose a de-anonymization scheme by
combining the detection algorithms Algorithm 1 and Algo-
rithm 2, and performing a modified version of the typicality-
based scheme proposed in [14]. Then using this scheme we
prove the achievability of Theorem 1.

Given the database pair (D(1),D(2)) and the corresponding
seed matrices (G(1),G(2)), the de-anonymization scheme we
propose is as follows:
1) Detect the replicas through Algorithm 1.
2) Remove all the extra replica columns from the seed matrix

G(2) to obtain G̃(2) and perform seeded deletion detection
via Algorithm 2 using G(1),G̃(2). At this step, we have an
estimate Ŝn of the column repetition pattern Sn.

3) Based on Ŝn and the matching entries in G(1),G̃(2), obtain
an estimate p̂X ,Y S|S of pX ,Y S|S where

p̂X (x)≜
1

Λnn

Λn

∑
i=1

n

∑
j=1

1
[G(1)

i, j =x]
, ∀x ∈ X (75)

p̂Y |X (y|x) =

Λn
∑

i=1

K̃n
∑
j=1

1
[G(1)

i,r j
=x,G̃(2)

i, j =y]

Λn
∑

i=1

K̃n
∑
j=1

1
[G̃(2)

i, j =y]

, ∀(x,y) ∈ X2 (76)

p̂S(s) =
1
n

n

∑
j=1

1[S j=s], ∀s≥ 0 (77)

and construct

p̂X ,Y S|S(x,y
s|s) =

p̂X (x)1[ys=∗] if s = 0

p̂X (x)
s

∏
j=1

p̂Y |X (y j|x) if s≥ 1 (78)

with ys = y1 . . .ys.
4) Using Ŝn, place markers between the noisy replica runs of

different columns to obtain D̃(2). If a run has length 0, i.e.
deleted, introduce a column consisting of erasure symbol
∗ /∈ X.

5) Fix ε > 0. Match the lth row Y K
l of D̃(2) with the ith

row Xn
i of D(1), if Xi is the only row of D(1) jointly ε-

typical [18, Chapter 7.6] with Y K
l according to p̂X ,Y S,S,

assigning σ̂n(i) = l. Otherwise, declare an error.

Let κ
(1)
n and κ

(2)
n be the error probabilities of the noisy replica

detection (Algorithm 1) and the seeded deletion (Algorithm 2)
algorithms, respectively. By the Law of Large Numbers, we
have

p̂X ,Y S|S
p→ pX ,Y S|S (79)

and by the Continuous Mapping Theorem [25, Theorem 2.3]
we have

Ĥ(X ,Y S|S) p→ H(X ,Y S|S) (80)

I(X̂ ;Ŷ Ŝ|Ŝ) p→ I(X ;Y S|S) (81)

where Ĥ(X ,Y S|S) and Î(X ,Y S|S) denote the conditional joint
entropy and conditional mutual information associated with
p̂X ,Y S|S, respectively. Thus, for any ε > 0 we have

κ
(3)
n ≜ Pr(|Ĥ(X ,Y S|S)−H(X ,Y S|S)|> ε)

n→∞−→ 0 (82)

κ
(4)
n ≜ Pr(|Î(X ,Y S|S)− I(X ,Y S|S)|> ε)

n→∞−→ 0 (83)

Using a series of union bounds and triangle inequalities,
the probability of error of the de-anonymization scheme can
be bounded as

Pr(error)≤ 2−n(I(X ;Y S,S)−4ε−R)+ ε +
4

∑
i=1

κ
(i)
n (84)

≤ ε (85)

as n→∞ as long as R < I(X ;Y S,S)−4ε , concluding the proof
of the main result.

IV. CONCLUSION

In this work, we have investigated the distribution-agnostic
database de-anonymization problem under synchronization er-
rors and noise. We have showed that the noisy replica detection
algorithm of [14] tailored for specific pX ,Y could be adjusted
to work in tandem with a moment estimator to accommodate
the unknown pX ,Y . We have proposed an outlier-detection-
based seeded deletion detection algorithm and showed that
a seed size growing double logarithmic with the number of
rows is sufficient for the correct estimation of the deletion
pattern. Finally, we have used a joint-typicality-based de-
anonymization scheme utilizing the estimated distributions.
Overall, our results show that the resulting achievable database
growth rate is equal to the matching capacity derived when full
information on the underlying distributions is available.
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